Citation
American Psychological Association 7th edition (APA 7th)
🇺🇸 English, US
Specker, E., Hungerbühler, N., & Wasem, M. (2022). Polyfunctions over commutative rings. Journal of Algebra and Its Applications, 23(01). https://doi.org/10.1142/s0219498824500142
Formate | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Résumé
A function f:R→R, where R is a commutative ring with unit element, is called polyfunction if it admits a polynomial representative p∈R[x]. Based on this notion, we introduce ring invariants which associate to R the numbers s(R) and s(R′;R), where R′ is the subring generated by 1. For the ring R=Z/nZ the invariant s(R) coincides with the number theoretic Smarandache or Kempner functions(n). If every function in a ring R is a polyfunction, then R is a finite field according to the Rédei–Szele theorem, and it holds that s(R)=|R|. However, the condition s(R)=|R| does not imply that every function f:R→R is a polyfunction. We classify all finite commutative rings R with unit element which satisfy s(R)=|R|. For infinite rings R, we obtain a bound on the cardinality of the subring R′ and for s(R′;R) in terms of s(R). In particular we show that |R′|≤s(R)!. We also give two new proofs for the Rédei–Szele theorem which are based on our results.