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Abstract—The popularity of reducing domestic electricity con-
sumption is growing following the decision of several European
governments to quit nuclear power in the near future. However,
finding out which equipment should be replaced and more
importantly which behavior should be modified to reach this
goal is not a simple task, since helpful tools are not easy to
find or implement. The disaggregation of the global electricity
consumption could be achieved in the framework of concepts like
the Internet of Things where the monitoring of each appliance
is made possible using embedded power sensors. However, the
implementation of such solutions in the near future will be very
difficult due to the costs generated by the modification of existing
appliances. Another more elegant solution to provide people with
useful information about their electricity consumption consists
in a single recording unit measuring the entire consumption
coupled with a system able to disaggregate the appliance load
curve. This is better known as non-intrusive appliance load
monitoring (NIALM). The aim of this study is to investigate
the feasibility of a load curve disaggregation based feedback
system for consumer service development. For that purpose, a
low-frequency recording unit was developed to record the global
electricity consumption of fifty Swiss households. The recorded
data, as well as simulated data, have been used to develop
and validate a simple appliance detection technique with low
computational requirements as this is a key issue for a potential
future use in real-time remote feedback systems. This paper
shows that the developed disaggregation technique, although
simple, provides satisfactorily detection performances and could
be used to provide consumers with useful information about their
electricity consumption.

Index Terms—Domestic Electric Consumption, Non-Intrusive
Appliance Load Monitoring (NIALM), Energy Advice, Consumer
Service Development.

I. INTRODUCTION

The importance of reducing domestic energy consumption

to minimize environmental footprint is growing in European

countries as a consequence of the efforts engaged by sev-

eral European governments to reduce their dependence on

fossil energy and to phase out nuclear power following the

2011 Fukushima disaster. The potential reduction of domestic

energy bills also contributes to the growing popularity of

sustainable development and energy saving.

In 2010, households in Switzerland have consumed 19 TWh

and a typical Swiss household of 4 people consumes about

4500 kWh yearly, representing a 1000 USD electricity bill [1].

Although Swiss households could potentially save 40 % of

their electricity bills by 2035, thanks for example to the op-

timization of the energy efficiency of appliances [1], efficient

tools to reduce this consumption are not easy to find and

implement for private individuals. Different studies show that

providing relevant information about the home consumption

could lead to a reduction of electricity use between 4 and

15 % [2]. However, the general consumption does not provide

the consumer with sufficient information about what counts

for the main parts of her/his electricity invoice.

On another hand, systems able to display the energy used

by the main appliances, in other words systems able to

disaggregate the global consumption, would greatly help the

consumer finding out which equipment should be replaced

and/or which behavior should be modified. The disaggregation

could be achieved using a measuring unit embedded in each

appliance, in a similar way to the Web of Things [3]. This

kind of solution is however very difficult to implement, espe-

cially with the already existing appliances, and generates high

investments and operating costs. Another way to achieve this

disaggregation is to measure the global electricity consumption

of the household and to extract the most important information

from this general load curve. This solution requires only one

measuring unit coupled with a system able to recognize the

main appliances in real-time.

This is known as non-intrusive appliance load monitoring

(NIALM), in which individual appliance power consumptions

are disaggregated from a central recording. Several NIALM

techniques have been proposed in the last few decades.

Zeifman and Roth published a NIALM review in 2011 [4].

NIALM methods can be based on low-frequency installation.

These devices provide information with a typical frequency of

1 Hz and rely on changes of real power [5], changes of real

power and reactive power [6], or changes of real power, reac-

tive power, and other additional macroscopic signatures [7].

NIALM methods can also be based on higher-frequency

hardware. In this case the used features can be harmonics [8],

Fourier transforms [9], or wavelet transforms [10].

The HES-SO Valais-Wallis (University of Applied Sciences

Western Switzerland) is currently working in this field. To

develop recognition algorithms from aggregated load curves,

a low-frequency acquisition system able to measure the three

phases of a standard household has been built. This system

has been deployed in fifty households and is acquiring data

ENERGYCON 2014 • May 13-16, 2014 • Dubrovnik, Croatia

978-1-4799-2449-3/14/$31.00 ©2014 IEEE 813

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on March 25,2022 at 10:59:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Data acquisition system. The PC Engine can be seen on the left
whereas the PM810 from Schneider Electric and the electric connections can
be seen on the right.

sampled at 1 Hz for about five weeks to build a statistically

relevant database. Where possible, EcoWizz [11] plugs were

used to acquire disaggregated data of the main appliances in

parallel to the central measure. To first tackle the complexity of

the aggregated load curve, a simulator of the main contributors

(washing machine, dishwasher, tumble dryer, oven, stove,

etc.) was also created, thus allowing to initially test the

disaggregation algorithms with an a priori knowledge of the

contributors. This paper focuses first on the appliance detection

technique and on the results for one simulated household and

five real households.

As the aim of this study is to investigate the feasibility of a

load curve disaggregation based feedback system for consumer

service development, this paper then describes how this disag-

gregation technique was used to provide fifty households with

relevant information about their electricity consumption. The

focus was put on the robust detection of several appliances us-

ing simple solutions enabling its future use in real-time remote

feedback systems. We show that the described disaggregation

method, although simple, is valid and leads to good detection

performances, validated by simulated data, reference values

for real data, and inhabitants expectations.

The collected data allow a better understanding of the

main contributors to the electricity bill as well as the useful

characteristics to recognize them. Both the database of real-

world signals and the simulator are powerful tools for further

research on load curve disaggregation and consumer service

development.

II. EXPERIMENTAL METHOD

A. Measuring unit

The measuring unit is a power meter PowerLogic Series 800

PM810 from Schneider Electric. This power meter is equipped

with 40/5 current transformers and with RS485 communica-

tions for integration into any power monitoring/control system.
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(a) Typical raw 24-hour active power recorded using the measuring unit.
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(b) Processed data corresponding to Figure 2(a). The high power pairs are
shown in grey, the medium and low power pairs (both cumulated) are shown
in black. A high power pair present on all phases can be seen before 3 pm,
a few high power pairs present on phases 1 and 2 can be seen around 6 pm
and a few high power pairs present on phases 2 and 3 can be seen around
9 pm.

Fig. 2. Typical raw and corresponding processed 24-hour active power.

The PM810 is a true RMS meter capable of accurate mea-

surements of highly non-linear loads. The sampling frequency

is 6.4 kHz (128 samples per 50 Hz cycle) and the sampling

technique enables accurate measurements through the 31st

harmonic [12], [13]. The data is integrated, finally sampled

at 1 Hz, and values of voltage, current, active power, reactive

power, and power factor are recorded for the three phases.

The system also allows to store the value of the total active

energy. The data is stored through a Modbus communication

on a small PC platform (PC Engines, http://www.pcengines.

ch/) running Voyage Linux (http://linux.voyage.hk/), a very

stripped-down Debian Linux. More details about the measur-

ing unit can be found in [14].
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The data is stored in CSV files (Comma Separated Values)

and is saved on two flash drives for redundancy. The data

is composed of two timestamps (one from the PM810 and

one from the PC Engine), the 3 voltages values, the 3 current

values, the 3 active power values, the 3 reactive power values,

the 3 power factor values, and the cumulated active energy.

The system generates one CSV file for every period of 24

hours, each CSV file consists thus of 86400 entries. The

recordings are finally synchronized with a data server at the

HES-SO Valais-Wallis that provides the final storage location.

Figure 1 shows the details of the acquisition system, the

PC Engine can be seen on the left whereas the PM810

and the electric connections can be seen on the right. The

measuring unit has been deployed in fifty households to create

a statistically relevant database and it recorded the general

electricity consumption for about five weeks. The recording

campaign started in December 2012 and ended in November

2013. The selected households were all located in the Sion

area (Switzerland) and only a few of them were using electric

power for heating or domestic hot water. In some households,

EcoWizz plugs [11] were used to acquire the load curve of

specific appliances in parallel to the central measure provided

by the measuring unit.

B. Simulator

To first tackle the complexity of the aggregated load

curve, a simulator of the main contributors (washing machine,

dishwasher, tumble dryer, oven, stove, boiler, etc.) has been

created. The simulator aims at producing realistic load curves

by combining different electrical appliances. The format of

the generated data is the same as the format of the real data

recorded by the measuring unit. The simulator is based on

configuration files defining the set-up of the simulations (start

and stop times, appliances to be used, phase(s) on which

the appliances will appear, etc.), and models of the different

appliances. Every electrical appliance used is the simulator is

either generated using a statistical model or directly extracted

from a database containing previously recorded measurements

of the specific appliance. Two main aspects are simulated:

the occurrence probability and the load curve. The occurrence

probability varies during time (e.g. the dishwasher is more

likely to be used around 1 pm and/or 7 pm rather than in the

middle of the night). The statistical models contain parameters

representing the appliance (number of cycles, duration of the

cycle(s), duration of the different functioning states of the

cycle, power levels of the different states, etc.). The output

of the simulation is stored in different files. The global load

curves, similar to real data, can be used to test different

disaggregation algorithms. The specific load curves of every

appliance used in the simulation can be used for quantitative

evaluations of the disaggregation algorithms. More details

about the simulator can be found in [14].

C. Disaggregation algorithm

1) Data processing: Raw active power data sampled at

1 Hz and either recorded using the measuring unit or generated

Fig. 3. Algorithm flowchart. The raw data are filtered and transformed into
a square wave. Then the events are paired based on power and finally the
pairs are classified using a decision tree.

using the simulator are first filtered using a 1 minute median

filter to remove high frequencies. At that time, the baseload is

evaluated for all three phases. The baseload is the minimum

power continuously consumed in the 24-hour window. After

subtraction of the baseload, the next step consists in detecting

all power changes of more than 10 W (edge detector) and

lasting more than 10 seconds. The active power data is then

reconstructed using these power changes to obtain a “square

wave”. The power changes are then grouped in pairs according

to the following rule: any positive power change must be

followed by a later very similar negative power change. Once

all power changes are paired, the next step consists in grouping

the pairs according to the amplitude of the power change: high

power pairs above 750 W, low power pairs under 250 W and

medium power pairs in between. The final data processing step

is to check for every high power pair if there is a synchronized

high power pair similar in duration on one or both other

phases. The result is high power pairs grouped according

to the fact that they appear on all phases, two phases, or a

single phase. Figure 2(a) shows a typical raw 24-hour active

power recording (all three phases) and Figure 2(b) shows the

corresponding processed data. The high power pairs are shown

in gray, the medium and low power pairs (both cumulated) are

shown in black. A high power pair present on all phases can

be seen before 3 pm, a few high power pairs present on phases

1 and 2 can be seen around 6 pm, and a few high power pairs

present on phases 2 and 3 can be seen around 9 pm.

2) Detection: As already mentioned, the aim of this study

is the robust detection of several appliances using simple

techniques enabling their future use in real-time remote feed-

back systems. The detection algorithm first evaluates the three

baseloads and is then able to detect cold chain appliances

(fridges and/or freezers), dish washers, washing machines, and

tumble dryers. The lunch (11 am to 1 pm) and dinner (6 pm

to 8 pm) cooking energy are then estimated based on the

remaining high power pairs and the remaining low energy

is considered to mainly regroup lighting and electronics.

Finally the energy not associated to any of the previously

listed appliances is labeled as “other”. This would typically

include a hair dresser, a vacuum cleaner or any not previously

listed appliance consuming more than 250 W. Parameters

for appliance detection including the phase(s) on which the

different appliances appear are manually evaluated using the

first few days of the recording period and the automatic

detection is then performed on the entire recording period.

Typical parameters are power and duration of the working
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Fig. 4. Typical raw-24 hour active power simulation. A fridge and an baseload
can be seen on each phase, one washing machine cycle can be seen on phase 1,
three tumble dryer cycles can be seen on phases 2 and 3 and two dish washer
cycles can be seen on all three phases.

period of the compressor for a fridge, or power and duration

of the heating period(s) and duration of the cycle for a

washing machine or a dish washer. The detection, based on

decision tree learning [15], scans all pairs generated during

the data processing step. The characteristics of a given pair,

and possibly “neighbor” pairs located in a specific time

window (the cycle duration of the appliance), are compared

to the manually evaluated parameters of an appliance. If the

characteristics of the analyzed pairs sufficiently match the

appliance’s parameters, they will be considered to belong to

that specific appliance. If not, they will be left unlabeled and

compared to the parameters of another appliance until they

are associated with an appliance. The analyzed pairs might

be located on different phases in the case of appliances using

power from more than a phase. At the end of the detection

process, the remaining pairs are labeled as “other”. For the

simulated household, the ground truth is known both in terms

of number of cycles (how many times the compressor of the

fridge was on or how many times the dish washer was used

on a particular day) and energy (the energy consumed by the

fridge or the dish washer on a particular day). For the real

world households, the ground truth is partially known thanks

to the EcoWizz plugs and is completed by manual annotation.

The flowchart in Figure 3 summarizes the main steps of the

disaggregation algorithm.

III. EXPERIMENTAL RESULTS

A. Simulated household

To first test our disaggregation algorithms with an a priori
knowledge of the appliances, we simulated 15 days of the

electric consumption of an imaginary household using the

simulator. The simulation includes a baseload for each phase,

3 fridges (one on each phase), one washing machine on phase

1, one tumble dryer on phase 2 and 3, and one dish washer on

TABLE I
CYCLES DETECTION PERFORMANCES. FOR EACH APPLIANCE (THREE

FRIDGES, A DISH WASHER, A WASHING MACHINE, AND A TUMBLE

DRYER), THE TABLE SHOWS THE TOTAL A PRIORI NUMBER OF CYCLES,
THE TOTAL NUMBER OF DETECTED CYCLES, AND THE PERCENTAGE OF

FALSE POSITIVES (F. P.) AND FALSE NEGATIVES (F. N.).

Cycles
Reality Detection F. P. [%] F. N. [%]

Fridge/Freezer 1 466 466 1.7 1.7
Fridge/Freezer 2 350 347 0.3 1.2
Fridge/Freezer 3 527 526 0.4 0.6

Dish washer 22 22 0.0 0.0
Washing machine 29 29 0.0 0.0

Tumble dryer 15 15 0.0 0.0

TABLE II
ENERGY DETECTION PERFORMANCES. FOR THE BASELOAD AND EACH

APPLIANCE (THREE FRIDGES, A DISH WASHER, A WASHING MACHINE,
AND A TUMBLE DRYER), THE TABLE SHOWS THE TOTAL A PRIORI ENERGY,

THE ENERGY OF ALL THE DETECTED CYCLES, AND THE ERROR RATE.

Energy [kWh]
Reality Detection Error [%]

Total energy 234.1 235.3 0.5
Baseload 69.4 69.8 0.6

Fridge/Freezer 1 14.3 14.0 2.1
Fridge/Freezer 2 16.5 16.2 1.8
Fridge/Freezer 3 9.1 8.8 3.3

Dish washer 65.3 63.0 3.5
Washing machine 21.0 21.1 0.5

Tumble dryer 38.5 38.3 0.5

all phases. Figure 4 shows a typical raw 24-hour active power

simulation (all three phases). A fridge and a baseload can be

seen on each phase, one washing machine cycle can be seen

on phase 1, three tumble dryer cycles can be seen on phases

2 and 3 and two dish washer cycles can be seen on all three

phases.

Table I shows the detection performances in terms of

number of cycles. For each appliance (three fridges, a dish

washer, a washing machine, and a tumble dryer), the table

shows the total a priori number of cycles, the total number of

detected cycles, and the percentage of false positives (F. P.)

and false negatives (F. N.). With F. P. and F. N. both below

2 %, the performance of the algorithm is really noticeable.

This is in particular true for high power appliances such as

the dish washer or the tumble dryer.

Table II shows the detection performances in terms of

energy. For the baseload and each appliance (three fridges,

a dish washer, a washing machine, and a tumble dryer), the

table shows the total a priori energy, the energy of all detected

cycles, and the error rate. The total energy consumed during

the 15 days of the simulation is 234.1 kWh. The detected

total energy is 235.3 kWh, representing a 0.5 % error. Finally,

4.1 kWh were not assigned to any appliance, representing

1.8 % of the total energy. With such small error rates, the

ability of the system to evaluate the consumption of the

different appliances is demonstrated.

B. Real households

All fifty households recorded data were analyzed using the

aforementioned technique to provide the households inhabi-

tants with advice on their electricity consumption. Five of them
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TABLE III
TOTAL TRUE NUMBER OF CYCLES AND TOTAL NUMBER OF DETECTED

CYCLES FOR EACH HOUSEHOLD (H1 TO H5) AND EACH APPLIANCE. A
HYPHEN MEANS THAT THE APPLIANCE WAS NOT PRESENT IN THE

HOUSEHOLD.

H1 H2 H3 H4 H5

Reality 988 629 1326 287 696
Fridge / Detection 934 575 1311 300 686

Freezer 1 F. P. 0.1 0.6 0.5 6.6 1.0
F. N. 5.6 9.2 1.6 2.1 2.4

Reality

- - -

718 531
Fridge / Detection 720 505

Freezer 2 F. P. 1.1 1.5
F. N. 0.8 6.4

Reality 6 39 21 19 23
Dish Detection 6 39 23 20 24

washer F. P. 0.0 0.0 9.5 5.3 8.7
F. N. 0.0 0.0 0.0 0.0 4.4

Reality 10 17 31 21 25
Washing Detection 9 15 28 19 22
machine F. P. 0.0 0.0 3.3 9.5 0.0

F. N. 10.0 11.8 10.0 19.1 12.0
Reality 3 12

- - -
Tumble Detection 3 11
dryer F. P. 0.0 0.0

F. N. 0.0 8.3

Lunch

Reality 10 31 29 25 25
Detection 10 31 31 25 25

F. P. 0.0 0.0 6.9 0.0 4.0
F. N. 0.0 0.0 0.0 0.0 4.0

Dinner

Reality 22 31 41 27 28
Detection 22 31 38 27 31

F. P. 0.0 0.0 0.0 0.0 10.7
F. N. 0.0 0.0 7.3 0.0 0.0

(H1 to H5) were however more thoroughly studied to serve

as ground truth to evaluate performances of the technique on

real data. All households include a fridge, a dish washer, and

a washing machine. Households 4 and 5 include a second

fridge or a freezer, Households 1 and 2 include a tumble

dryer, and all households use their stove/oven for lunch and/or

dinner cooking. Table III shows the total true number of cycles

partially based on manual annotation, the total number of

detected cycles, and the percentage of false positives (F. P.) and

false negatives (F. N.) for each household and each appliance.

A hyphen means that the appliance was not present in the

household. Errors on real data are noticeably higher than on

simulated data. Although the accuracy is certainly improvable,

an error rate of 10 % is still sufficient to provide the consumer

with a good overview of the repartition of his electrical

consumption between the main appliances. Moreover, as the

number of cycles per appliance can be as low as 3, the

statistical significance of these results still has to be confirmed

on a larger panel of households. The results remained however

valid and really useful for the consumers.

Table IV shows the energy of all detected cycles for each

appliance. It also shows the total energy and the number of

recorded days for each households. A hyphen still means

that the appliance was not present in the household. The

comparison with true values is only possible in the case of the

number of cycles, thanks to the EcoWizz plugs completed by

manual annotation. This comparison is not possible in the case

of the energy since the EcoWizz plugs did not systematically

TABLE IV
APPLIANCE SPECIFIC ENERGY, TOTAL ENERGY, AND NUMBER OF

RECORDED DAYS FOR EACH HOUSEHOLD.

H1 H2 H3 H4 H5

Baseload 11.9 102.5 37.5 35.4 65.4
Fridge/Freezer 1 38.4 19.4 40.8 29.0 22.6
Fridge/Freezer 2 - - - 18.4 30.0

Dish washer 6.8 65.7 19.5 23.0 28.6
Washing machine 6.2 7.8 21.0 9.9 10.9

Tumble dryer 4.5 18.5 - - -
Lunch 5.1 42.2 16.8 36.5 22.9
Dinner 25.3 50.2 38.1 19.9 27.5

Low power 42.5 91.5 134.1 51.8 99.7
Other 1.9 35.7 9.7 21.3 13.7

TOTAL 142.6 433.5 317.5 245.2 321.3
# of days 34 34 46 27 33

provide a reliable recording and manual estimation of the

energy would only be very approximate. Variations among the

different households are high, especially with the baseload and

the dish washer consumption, which can vary from a factor of

10. This small overview already shows the high variance of

the households consumption behaviors. A factor of 3 can be

observed between the minimum and maximum total electricity

consumption.

C. Overall consumption

Following the data presented in the previous sections to

demonstrate the disaggregation technique validity, this section

aims to provide an overview of consumption behaviors en-

countered during this pilot study. The box plot in Figure 5

shows the overall detection results extrapolated to a year of

the fifty households through their quartiles. The horizontal

whiskers indicate variability outside the upper and lower

quartiles and crosses show outliers. Appliances not present

in a household was considered to consume 0 kWh. The yearly

consumption of high power appliances (washing machines,

dish washers, and tumble dryers) is relatively low and shows a

moderate variance. The baseload and the low power appliances

are the two main contributors to the electricity bill and both

show a large variance.

The pie chart in Figure 6 shows the distribution of the

overall detected consumed energy. The baseload and the low

power appliances, categories with possibly the best potential of

consumption reduction, represent together nearly 50 % of the

consumption. The high power appliances (washing machines,

dish washers, and tumble dryers) only represent 15 % of the

consumption.

Finally, the minimal total consumption extrapolated to a

year was as low as 1’184 kWh, whereas the maximum was

close to 11’204 kWh. It was not possible to link this variation

to the volume of the house or the number of people in the

household. These variations are clearly linked to differences

of consumption behaviors.

IV. DISCUSSION

A. Simulated household

To first test the performances of the disaggregation method

using a priori reference values both in terms of number
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Fig. 5. Overall detection results extrapolated to a year of the fifty households
through their quartiles. The horizontal whiskers indicate variability outside the
upper and lower quartiles and crosses show outliers.
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Cold chain (17.6 %)

Cooking (11.5 %)

Dish washer (7.4 %)

Washing machine (4.4 %)

Tumble dryer (3.2 %)

Other (6.6 %)

Fig. 6. Distribution of the overall detected consumed energy. The baseload
and the low power appliances represent together nearly 50 % of the con-
sumption. The high power appliances (washing machines, dish washers, and
tumble dryers) only represent 15 % of the consumption.

of cycles and energy, we simulated 15 days of the electric

consumption of an imaginary household including baseloads,

fridges/freezers, a dish washer, a washing machine, and a

tumble dryer. The cycles detection results presented in Table I

show very low detection errors. The maximum error rate

occurs for the first fridge/freezer and is below 2 % of false

positive and false negative.

The energy detection errors presented in Table II are also

very low, the highest error rate is associated with the dish

washer but is below 4 %. These detection results on simulated

data first show that although the detection method is very

simple, it is valid and performing very well. On another hand,

low error rates were to be expected as the generated data do not

contain signals not related to the simulated appliances and are

thus relatively easier to disaggregate compared to real data.

Finally, for most appliances, the detected energy is slightly

underestimated. This can be explained by the fact that some of

the pairs are not associated to any detected appliances. Indeed,

4.1 kWh were not assigned to any appliance. This represents

1.8 % of the total energy. The underestimation can also be

explained by the fact that the median filter applied to raw

data removes the high frequencies and therefore suppresses a

small portion of the energy. Moreover, the reconstruction of

the active power to obtain a “square wave” can either add or

remove a small amount of energy.

B. Real households

The cycles detection results presented in Table III show

very encouraging error rates. The detection of fridges/freezers

generated a maximum of false positives and negatives for

household 2 (H2), but the accumulated error rate remains

just below 10 %. The detection of the dish washer was most

problematic with household 5 (H5) with an accumulated error

rate of about 13 %. The washing machine was the most

difficult appliance to detect, with a maximum accumulated

error rate for household 4 (H4). This could be explained by

the different possible settings of a washing machine (40, 60,

or 95 degrees, special programs, spin speeds, etc.), generat-

ing largely varying electrical signatures of a given washing

machine. In particular the part of the electrical signature

associated with water heating will be very different between

low and high temperature washing cycles. Only 2 households

included a tumble dryer and the maximum error rate remains

below 10 %, which is acceptable for our application. Finally,

the cooking detection (both lunch and dinner) performed very

well with no errors at all for 3 households and a maximum

error rate for household 5 (H5) just below 11 %.

As already mentioned, we do not have access to true values

of the energy consumed since the EcoWizz plugs didn’t sys-

tematically provide a reliable recording and manual estimation

of the energy would only be very approximate. However, en-

ergy detection results presented in Table IV are in accordance

with our expectations and more importantly consistent with

the expectations of the households inhabitants. Even if the

validity of the disaggregation algorithms is presented in this

article through the results of only five households, they were

applied and verified on the whole set of fifty households. The

results were consistent with our experience of the field and

confirmed by the inhabitants during feedback meetings. To

enhance the evaluation of the detection technique, it would be

useful to extend the analysis to more households, as the variety

of appliances used by households is really extended. Finally,

the detailed detection results presented for five households

show that although the detection method is not perfect, it

is performing well. The main advantage of this technique is

its simplicity and its low computational requirements. Indeed,

after the evaluation of the parameters of each appliance,

the whole detection can be performed on a standard office

computer in less than one minute. This is a key issue for al

future application in real-time remote feedback systems.
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C. Overall consumption

Figure 5 shows the overall detection results extrapolated

to a year of the fifty households through their quartiles and

Figure 6 presents the distribution of the appliances according

to their average electricity consumption. The main contributor

(26.6 %) is the low power appliances (below 250 W) mainly

including lighting and electronics. The second contributor is

the baseload (22.7 %). Together, these first two categories

represent almost 50 % of the consumption and also show large

variances. This means that these two categories include a large

variety of appliances, but also that the inhabitants behavior has

a strong impact on their importance. The high potential of con-

sumption reduction of these two categories has been confirmed

during feedback meetings with the inhabitants. Indeed, it is

relatively easy to point out which appliances contribute to the

baseload (modems/routers, media boxes, circulation pumps for

domestic hot water, stand-bys, etc.) and the impact of some

of them can be reduced simply using multi-socket plugs or

timers. Similarly, although the electricity consumption related

to consumer electronics is growing, its impact can be reduced

or at least controlled by behavioral adaptation (turn off the TV

when nobody is watching it, etc.). The impact of lighting can

also easily be reduced through similar behavioral adaptation

and/or by replacing old technologies like halogen lamps with

newer consuming much less energy such as saving bulbs or

LEDs. According to a Swiss Agency for Efficient Energy Use

(SAFE) distribution mentioned in a 2012 World Wide Fund for

Nature communication [16], the low power category represents

nearly 40 % of the electricity consumption, which is consistent

with our results considering that the baseload contains part of

the electronics consumption through devices permanently on

and stand-bys.

The next two categories are cold chain appliances (fridges

and freezers, representing almost 18 % of the consumption)

and cooking (almost 12 %). Our study on fifty households

suggest that over 75 % of the total electricity consumption is

explained by these first four categories. The yearly consump-

tion of the high power appliances (washing machines, tumble

dryers, and dish washers) is relatively low with low variance.

This suggests that these appliances are used in a similar way

in all households. Even if there are significant differences

between our results and the SAFE distribution (in particular

with the tumble dryers, 12 % in the SAFE distribution), both

distributions are relatively similar. This is another evidence of

the validity of the proposed disaggregation technique. Finally,

the average total yearly household electricity consumption is

about 3’680 kWh. This is consistent with the SAFE analysis

estimating that consumption between 3’000 and 4’000 kWh

for a standard Swiss household not using electric power for

heating and domestic hot water. The standard deviation is

very high (2’027 kWh). This can easily be explained by the

highly variable consumption behaviors of the fifty measured

households, spanning from people that already tracked and

analyzed thoroughly their electric consumption to reduce it

to more carefree people. It should be however noted that all

households were all volunteers for this study and showed a

great interest in their electricity consumption and advice to

reduce it.

D. Algorithm performance

Most NIALM studies use their own dataset recorded from

different types of appliances in various environment (work-

bench, households, public buildings, etc.) using different mea-

suring units. These varying recording conditions have a strong

impact on the available features (phases, low frequency signa-

tures (e.g., active and reactive power), high frequency signa-

tures (e.g., harmonics, Fourier transforms, wavelet transforms),

etc.) and the data accuracy. The performance of a disaggre-

gation algorithm is directly dependent of these elements. In

consequence, comparing the performance of reported NIALM

algorithms is very difficult if not impossible. The development

of publicly available datasets like the REDD database [17] or

the BLUED database [18] would help researchers in the devel-

opment and evaluation of disaggregation algorithms. Another

aspect making the comparison very complicated is the fact

that most studies report the performance of their system using

different accuracy metrics. Common measures of accuracy

include fraction of correctly recognized events, fraction of

total energy explained, classification accuracy, difference in

estimated and true power draw, etc. Zeifman and Roth [4]

proposed the use of ROC curve [19] for benchmarking of

NIALM algorithms, but there’s no agreement upon what

accuracy metrics should be used.

In their survey, Zoha et al. [20] compare the most commonly

used learning algorithms for load disaggregation (support

vector machine, bayesian learning, hidden markov model,

neural networks, k-nearest neighbors and optimization). The

reported accuracies vary between 60 and 99 %. Based on

the results of Table I and Table III, the accuracy of the

presented method could be calculated as the ratio of the

correct predictions (true positives and true negatives) and the

total number of classified samples. In this case the accuracy

would systematically be very high (over 95 %) due to the

large number of true negatives. This is therefore probably not

the best way to evaluate the accuracy. To illustrate this, let’s

consider the following example: a totally biased algorithm

detects none of the 20 cycles of a washing machine out of 500

events. This is clearly a bad clissifier. However, the accuracy,

calculated as the ratio of the correct predictions and the total

number of classified samples would be 480/500 = 96 %! A

better way to evaluate the accuracy is the fraction of correctly

recognized events. In this case the accuracy is over 95 % for

the simulated household and varies between 70 % and 90 %

for the real households. This is a more realistic way to compute

the accuracy of the system. Finally, another interesting way to

calculate the accuracy would be the fraction of the correctly

explained energy. In this case the accuracy is again over 95 %

for the simulated household but is not possible to compute for

the real households as we don’t have references values for the

energy.
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More generally on this topic, the main goal of this study

was not to develop a new and better performing disaggregation

algorithm. The goal was to design a real world NIALM system

to provide consumers with personalized advice about their

electricity consumption. The detection algorithm, although

simple, performs sufficiently well for this application, thank to

the good quality of the recorded data together with an efficient

initial data processing algorithm.

V. CONCLUSION

This paper shows a field application of NIALM techniques

to provide consumers with personalized advice about their

electricity consumption and how to possibly reduce it. The

detection algorithms, although simple, performed sufficiently

well for this application. Moreover, they could be directly

embedded in a real-time product, thanks to their low complex-

ity and thus low computational requirements. The proposed

solution was successfully tested on 50 households measured

during about one month. The feasibility of this solution and

the interest of the consumers for such an analysis was also

demonstrated. As a result, a new pilot of 200 households is

already in plan in collaboration with local DSO (Distribution

System Operators).

The next step will also aim at improving the disaggregation

algorithms and adapt them to both lower resolution and preci-

sion data that could be recorded by simpler systems like pulse

counters for electricity meters. Simpler recording solutions are

required for a wider study. Pulse counters can be installed

by anyone whereas the measuring unit presented in this

paper required the intervention of an electrician. In the near-

future, smart-meters should also provide access to electricity

consumption data measured with a typical frequency of 1 Hz

and a precision of a few Watts.

Last but not least, a consequent development work remains

to be done in the field of the interaction with the consumers.

NIALM techniques provide the consumer with information

to better understand what counts for the main parts of his

electricity invoice. This information is however not sufficient.

The key issue is to provide the consumer with concrete advices

on how to reduce the consumption of the different appliances.

These concrete advice might not be obvious to find and/or

implement. Developing automated and personalized systems

comparing the consumer’s appliances consumption with refer-

ence values and showing predicted electricity bills reduction

should help taking the most efficient actions. Special attention

should finally be given to the baseload consumption as this

category can count for up to 58 % of the total consumption

in our pilot study, and means to reduce it have been relatively

easy to find out during feedback meetings with the consumers.
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