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Abstract. We applied four machine learning models, linear regression, the k-
nearest neighbors (KNN), random forest, and support vector machine, to predict
consumer demand for bike sharing in Seoul. We aimed to advance previous
research on bike sharing demand by incorporating features other than weather -
such as air pollution, traffic information, Covid-19 cases, and social economic
factors- to increase prediction accuracy. The data were retrieved from Seoul
Public Data Park website, which records the counts of public bike rentals in
Seoul of Korea from January 1 to December 31, 2020. We found that the two
best models are the random forest and the support vector machine models.
Among the 29 features in six categories the features in the weather, pollution,
and Covid-19 outbreak categories are the most important in model prediction.
While almost all social economic features are the least important, we found that
they help enhance the performance of the models.

Keywords: Machine learning � Data mining � Bike sharing � Demand
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1 Introduction

Over the past two decades sharing economy has not only revolutionized the organi-
zation of economic activity but also unleashed the consumption and production
potentials of a variety of tourism and hospitality businesses. These businesses include
but are not limited to sharing accommodation exemplified by Airbnb, sharing trans-
portation pioneered by Uber and Lyft, as well as various online booking platforms such
as Booking.com and OpenTable. There are even more localized sharing businesses,
such as bike sharing provided by private enterprises or governments as an alternative to
the so-called “last-mile” public transportation. Bike sharing has been popular in many
countries, due to the fact that environmental proception organizations proposed envi-
ronmental sustainability transportation methods such as electric vehicles and bicycles
[13]. Bike sharing provides benefits in various aspects and is achieving world-wide
popularity [20]. For instance, the number of renters in US was larger than 28 million in
2006 [33]. All these businesses share one commonality, for which consumer demand is
upon request. Namely, suppliers need to immediately, if not instantaneously, deploy
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goods and services as soon as demand is generated. On the one hand, the success of
sharing economy lies at such on-demand features; on the other hand, this requires
supplies to predict consumers demand on various occasions as accurately as possible in
the first place, thereby diverting goods and services to consumers as efficiently and
timely as possible.

One telling example is Uber’s surge pricing. Uber is capable of striking immediate
balance between demand and supply through detecting riders’ request in different
periods of time, especially when demand fluctuates drastically in small geographical
region [8]. In this case and many others, conventional econometric modeling in pre-
dicting demand would become less useful because it relies on predictors that usually do
not change in the short run. For instance, it is extremely rare, if at all, to model
consumer demand on a daily or hourly basis through using social or economic indi-
cators. Of course, both economic indicators, such as income and price and a wide range
of social demographics have compelling explanatory power in predicting long-term
demand because they are grounded on sound economic theories. They would become
useless in predicting instantaneous demand, such as in the case of Uber’s surge pricing
in which demand changes in a course of a few hours. The reason is that these predictors
are constant on a daily basis not to mention on an hourly basis, which renders con-
ventional economic modeling and forecasting obsolete. For this reason, machine
learning has gained momentum in predicting demand in these contexts.

While studies using machine learning techniques to predict consumer demand are
proliferating in tourism and hospitality, there are very few devoted to predicting
demand for bike sharing. A wealth of studies that indeed addressed bike sharing are
primarily from the field of computer sciences [5, 14, 26, 27, 34]. In fact, modeling
tourism demand is disproportionately devoted to predicting tourist arrivals using either
machine learning or a combination of machine learning and search query data [3, 9, 10,
23–25, 30]. However, sharing economy has not only changed the way we model
tourism demand but also extended what is modeled to reflect the nature of sharing
economy in various areas. In this regard, we aim to use machine learning techniques to
predict consumer demand for bike sharing. We also aim to advance previous research
on bike sharing by incorporating a wide range of features other than weather to increase
prediction accuracy.

2 Literature Review

Machine learning and big data have been increasingly applied to model and predict
tourism demand in various domains. This strand of research bifurcates evidently
between enhancing the performance of econometric models through incorporating
machine learning techniques and using search engine data in prediction algorithms [1,
3, 6, 9, 10, 30, 35]. As a matter of fact, tourism research has focused on predicting
tourist arrivals through using both conventional econometric models and machine
learning techniques [1, 3, 9, 10]. For instance, Akın [1] used Neural Network models to
predict tourist arrivals in Turkey while using conventional econometric techniques,
such as autoregressive integrated moving average (ARIMA), as a benchmark. Claveria
et al. [9] used machine learning algorithms such as the support vector regression,
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Gaussian process regression, and neural network models to predict tourist arrivals in
Spain. Similar to Akin [1], they found that machine learning methods improved
forecasting performance against the autoregressive moving average (ARMA) model as
a benchmark.

On the other hand, researchers have started to realize the importance of big data in
predicting tourism demand. In particular, search engine data provides researchers a
viable substitute for conventional economic variables as predictors in modeling and
forecasting tourism demand. In this respect, search engine data have been extensively
used to predict tourism demand and tourist arrivals in particular [23–25, 30, 35]. Sun
et al. [30] used kernel extreme learning machine (KELM) models and search results
generated by Google and Baidu to forecast tourist arrivals in China. Xie et al. [35] fed
search query data (SQD) generated from Baidu to a least squares support vector
regression model with gravitational search algorithm (LSSVR-GSA) to predict cruise
tourism demand. Many studies concluded that using machine learning coupled with
search query data increases the forecasting performance and robustness of the models
[25, 30, 35]. This perhaps explains why various search engine data were also used to
model and predict tourist arrivals [23, 24], which used to be addressed in conventional
econometric models.

One of the advantages of using machine learning is to predict micro-level tourist
demand and the facet of demand, such as network effects on the Internet, that cannot be
accounted for by conventional economic indicators. This advantage also enables
researchers to narrow down the prediction horizon, thereby modeling short-term
demand patterns. However, demand modeled in many studies is conventional tourism
consumption, such as park attendance, cruise demand, and tourist arrivals [23, 24, 35].
The overriding objective was to improve prediction accuracy through using machine
learning techniques. Hence the focus is a matter of model selection while having little
to do with modeling on-demand economy, such as car or bike sharing. In fact, bike-
sharing modeling entails short-term even almost instantaneous demand prediction. On
the other hand, machine learning models need to take into account stational-level
variance in bike demand, which would allow suppliers to deploy bikes efficiently
across destination to ensure supply. Such deployment requires modeling and fore-
casting demand across different docking stations on an hourly basis depending on the
degree of demand fluctuation.

There is a great deal research devoted to forecasting bike demand in various cities
[5, 27]. A majority of these studies modeled bike demand on an hourly basis, aiming to
provide policy implications for deploying bikes in a timely manner [14, 32]. For this
reason, the features that were used to predict bike demand were exclusively weather
conditions, ranging from precipitation, humidity to wind speed and temperature in the
course of 24 h. We aimed to predict bike demand by extending the scope of features on
a daily basis. Indeed, some studies have shown that the geography of bike-docking
stations has impacts on bike demand, which has a lot to do with social and economic
situations in which these stations are located. Obviously, hourly-based models with
weather conditions as the primary predictors are insufficient to account for such dif-
ference. Insofar as policy is concerned, this study can provide implications for the
supply of bikes in different districts and the deployment of bikes across stations.
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3 The Data

We retrieved the counts of public bike rentals in Seoul of Korea from January 1 to
December 31, 2020 from Seoul Public Data Park website [21]. This data set consists of
hourly bike rentals recorded from 2,148 docking stations in 25 districts of Seoul. Note
that 55 stations that were not functioning in the study period were discarded from the
analysis. We ended up identifying a total of 2,093 stations that were active during the
whole study period. We aggregated hourly data to compile daily rental counts, giving
rise to a total of 9,111 observations, with a daily average of 2029 bike rentals in Seoul
in the year 2020.

To predict bike rentals in Seoul, we identified a total 29 features in six categories:
(1) weather, (2) air pollution, (3) traffic accidents, (4) Covid-19 outbreak, (5) social and
economic factors, and (6) seasonality. These data are retrieved from the website Seoul
Open Data [21]. These 29 features are the potential features influencing bike sharing
demand. When weather or air quality is bad, people might be reluctant to rent a sharing
bike. On the other hand, when traffic is bad, renting a bike will be more efficient. We
also suspect that Covid-19 cases and other social economic factors might also influence
the demand of bike renting. Note that Covid-19 confirmed cases and deaths were
analyzed with a one-day time lag since their influence on bike demand, if any, would
take at least one day to emerge. The reason that we delayed one day confirmed and
deaths cases is that residents need time to process the news information produced. They
might not realize the disease cases immediately after the release of the news on media,
and they need some time to process the information. Since the new cases counts
updates each day, the case number delayed by one day is more applicable. We aimed to
pinpoint the most important features that can accurately predict bike demand.

4 Methods

We performed four machine learning algorithms to predict bike rentals, which are
linear regression, the k-nearest neighbors (KNN), random forest, and support vector
machine. All of these models were performed on R studio. Since these four models
were developed based on different assumptions for identifying the relationships
between independent and dependent variables, it is a convention in machine learning to
use them complementarily for prediction.

4.1 Algorithms

Linear regression. Linear regression is the most widely used and simplest method to
predict demand in various contexts. Due to its simplicity and straightforward economic
intuition in explaining the relationship between predictors and the outcome, we use
linear regression as a benchmark against which other more advanced models are
compared for their predictive power. The linear regression model is given as
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y ¼ b0 þ
Xn

i

bixi þ e ð1Þ

where bi is the coefficient of feature xi, b0 is the constant, and e is the random error
[28].

K-Nearest Neighbors (KNN). The k-nearest neighbors (KNN) is a machine learning
algorithm used for both classification and prediction. The KNN is a nonparametric
technique which provides solution for the curve fitting of unknown shape, and has an
advantage for data mining, because it does not assume specific forms of regression
functions [2]. For both classification and prediction, explanatory variables take into
account the k (a positive integer) closest instances. The parameter k needs to be tuned
before modeling and it is crucial for non-parametric regression performance [2]. The
calculations of the KNN are based on distances between an instance to its neighbors.
The distances used for continuous variables are the Euclidean distance. The Euclidean
distance d between two n-dimensional vectors p1; p2; . . .; pnð Þ and q1; q2; . . .; qnð Þ is
given by:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i

pi � qið Þ2
s

ð2Þ

The prediction of an observation is the mean of the values of k neighbors that are the
nearest when implementing the KNN as the regression model in prediction.

Random Forest. Random forest is a almighty tool which ensembles decision trees and
bagging [4].The base learner of random forests is a binary tree constructed by recursive
partitioning (RPART) and then developed using classification and regression trees [7].
Binary splits of the parent node of a random forest splits data into two children’s nodes
and increases homogeneity in children nodes compared to parent nodes. Note that a
random forest does not split tree nodes based on all variables; instead, it chooses
random variable subsets as candidates to find the optimal split at every node of every
tree [7]. Then the information from the n trees is aggregated for classification and
prediction [7]. Random forests also provide the importance of each feature by accu-
mulated Gini gains of all splits in all trees representing the variable discrimination
ability [19]:

imporj ¼ 1
#trees

X

v2xj
Gain xj; v

� � ð3Þ

where Gainðxj; vÞ is the gain of the Gini index of feature xj combined with node v [32].

Support Vector Machine. Support vector machine (SVM) is a machine learning
technique for classification and regression [11]. SVM is suitable for general relation-
ships between explanatory variables and responsive variables. The basic idea of SVM
is to map nonlinear explanatory vectors onto a high dimensional space in order to find a
linear decision hyperplane. The solution of SVM regression is given as:
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f xð Þ ¼
Xn

i¼1

ai � a�i
� �

K xi; xð Þþ b ð4Þ

where K xi; xð Þ is the kernel function that satisfy Mercer’s conditions, where ai and a�i
are the dual variables larger than or equal to 0 and smaller than or equal to the
hyperparameter C [31]. We use the radial basis function (RBF) kernels with the cor-
responding Kernel equation of

Kðxi; xÞ ¼ expð�c x� xij jj j2Þ ð5Þ

in which c is the kernel parameter. The RBF kernel provides solutions when the
relationship between features and responsive variables is nonlinear and is computa-
tionally easier than polynomial kernels [12].

4.2 Feature Selection

We split the 9,111 observations into a training set with 75% of the cases, or 6,235
observations, while 25% as a test set, or 2,276 observations. The training set was used
for feature selection, hyperparameter tuning, and prediction. The test set was used for
evaluation and prediction for bike rentals. Prior to selecting features, we explored the
Pearson correlation coefficients between the number of bike rentals and the features in
each of the six categories. Major findings are summarized here. Most of the pollution
features except CO are positively correlated with bike rentals. Covid-19 cases and
deaths are negatively correlated with bike rentals. All but two social economic factors,
namely the number of markets (−0.09) and number of stores (−0.06), are positively
correlated with bike rentals. The population in a district has the strongest correlation
with bike rentals (0.35). The number of traffic accidents is positively correlated with
bike rentals (0.20). Visibility and humidity are most correlated with bike counts (0.29).
Visibility is positively correlated to the number of bike rentals, while humidity, pre-
cipitation, and wind speed are negatively correlated with bike rentals.

We proceeded to use Boruta and recursive feature elimination (RFE) to select
features. Boruta is a wrapper approach to determine the relevance of features through
implementing a random forest classifier. A shadow attribute is created for each feature,
and classification is performed based on the feature importance by using all attributes
and shadow attributes. These shadow attributes help reduce the distracted impact of
random fluctuations [22]. Even though Boruta uses random forest as the base algo-
rithm, this will not increase the accuracy of random forest since the testing set was
never exposed to the algorithm. Figure 1 shows the result of the Boruta feature
selection on all 29 features but districts and rented bike counts because it is the
dependent variable. The blue boxes represent the shadow attributes, green ones are the
accepted or confirmed attributes while red attributes are rejected. Thus, the number of
deaths in the category of traffic accidents is rejected, so this feature will not be entered
in the regression models. Binary variables of traditional holidays and leisure holidays

Using Machine Learning Methods to Predict Demand for Bike Sharing 287



are not as important as expected, and this result indicates that bike renting demand was
not strongly influenced by the indicator holiday. We suspected that most residents rent
bikes for many other reasons instead of holiday leisure activities.

While the Boruta algorithm can indicate what features will be accepted or not based
on their performance, it does not state the variable’s root mean squared error (RMSE).
To retrieve lower RMSE, we further used the recursive feature elimination (RFE) to
select features that can minimize the RMSE [15]. Like Boruta, RFE is also based on
random forests in terms of method of implementation. RFE was implemented along
with cross validation repeated three times for training to increase prediction perfor-
mance. Like Boruta, no testing set instances had been exposed to the RFE algorithm.
We identified the threshold number of features with the lowest RMSE is 25. Thus, the
first 25 confirmed features are selected, and the excluded features are the number of
injuries in the category of traffic accidents and holidays in the category of seasonality.

4.3 Model Development

We used hyperparameter tuning to optimize the performance of each of the four
models. Hyperparameters are crucial to the result of machine learning algorithms and
can affect the performance of the models [34]. There are several hyperparameter tuning
methods, such as manual tuning, random search, and grid search, which can be applied
in different contexts. We performed grid search for it is widely implemented and
requires less experience and computational efforts. Grid search iteratively assesses over
potential hyperparameter values, which are the number of neighbors (k). Figure 2
shows that a search on k value between 1 and 30 is computed, and the optimal k value
with the highest coefficient of determination (R-squared) is 12. We identified two
hyperparameters: ntree and mtry of the random forest. ntree is the number of trees to
grow in the model and mtry is the number of variables that are selected as candidates at

Fig. 1. Boruta feature selection.
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liberty during each split [18]. We set ntree as the default value of 500, which is large
enough to produce stable models and mtry in the range from 1 to 15 in the tune grid.
Figure 3 shows that 10 is the optimal value of mtry.

The support vector machine (SVM) has two essential hyperparameters, sigma and
cost, to be tuned. The tune grid of cost ranges from 0 to 120 with the step of 10. The
tune grid of sigma uses 0.1, 0.01 and 0.001 as these three values are the conventional
learning rate of SVM models. Figure 4 shows that the optimal combination with the
highest R-squared is a cost of 120 with sigma equal to 0.01.

5 Results and Discussion

All prediction models were implemented using10-fold cross-validation process repe-
ated for three times during training, which generated a total 30 results for each model.
Cross-validation is an approach to increase the performance of the proposed models
[29]. The K-fold cross-validation separates the data set randomly into k subsets and one

Fig. 2. Grid search of KNN.

Fig. 3. Grid search of random forest.
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subset is used for testing while the other k-1 subsets are used for training. The whole
process of randomly separating, splitting, training, and testing is repeated several times
and the optimal one is identified as having the minimum RMSE.

5.1 Model Performance

We use the R-squared, RMSE, and the mean absolute error (MAE) to evaluate the
performance of each of the four models. R-squared is a statistic measure (also called
coefficient of determination) of the variation proportion in the responsive variable
predicted by the explanatory variable [16]. Higher R-squared suggests better model
performance in predicting dependent variable [17, 19]. Model with the highest R-
squared, lowest RMSE and MAE is considered having the best predictive power.
Table 1 shows that SVM yields the highest R-squared and the lowest RMSE and MAE
in the training set. While RF has the same R-squared in training set (0.92), SVM
outperforms RF due to its lower RMSE and MAE. However, when it comes to the
testing set, RF outperforms SVM in terms of both R-squared and RMSE and MAE
values. RF performs slightly better in the testing set than in the training set. Comparing
prediction performance in the training and testing sets, RF’s R-squared in the testing set
is 0.93 while 0.1 lower in the training set. This result suggests that the RF model
performs even better in the testing sets. The R-squared of KNN in the testing set
decreases by 0.4 than in the training set which is the largest decrease compared with
other models. The LM has the worst performance in both the training and testing sets,
indicating that the relationship between bike rentals and the explanatory variables is
nonlinear.

Fig. 4. Grid search of support vector machine.

290 C. Gao and Y. Chen



5.2 Feature Importance

As shown, the random forest model performs the best in terms of R-squared, RMSE,
and MAE. Figure 5 shows the feature importance of the RF model. As we can see,
precipitation is the most important feature in predicting daily bike rentals, followed by
Covid-19 confirmed cases and the O3 level of air pollution. Heat index and the levels
of PM10 and PM2.5 are also strong predictors. The least important predictor for bike
rentals is the number of traffic accidents. The most important social-economic feature is
population while the rest are not salient. Table 2 shows the average of the feature
importance in different categories of variables for the RF model. The category with the
highest average feature importance is Covid-19 (50.37) while the lowest average
feature importance category is traffic accidents (14.56). Air pollution and weather have
similar average feature importance.

Although the SVM has lower performance than RF, the evaluation matrices of
SVM is also superior. The SVM in this study implemented RBF kernel. Unlike linear
kernel, since RBF does not directly provide feature importance, the relative feature
importance is composed by the weight of weight vectors. Features with higher weights
indicate higher importance. Figure 6 shows the feature importance generated by the
SVM model. The level of O3 has the highest weights, followed by wind chill tem-
perature, visibility, temperature, and population. The feature for the number of stores in

Table 1. Results of regression algorithms.

Models Training Testing

R2 RMSE MAE R2 RMSE MAE

LR .48 1065.12 778.87 .46 1062.37 796.30
KNN .85 589.95 408.74 .81 641.82 448.22
RF .92 442.25 274.04 .93 399.21 264.40
SVM .92 415.45 252.40 .90 457.88 306.21

Note: LM = Linear regression, KNN = k-nearest
neighbors, RF = Random Forest, SVM = Support
vector machine, R2 = R-squared, coefficient of
determination, RMSE = Root mean squared error,
and MAE = Mean average error.

Table 2. Average feature importance by category of RF

Feature category Average importance of features

Weather 40.31
Air pollution 41.70
Covid-19 outbreak 50.37
Traffic accidents 14.56
Social economic 21.86
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the district has the least weight. The level of PM10, weekend or not, the number of
business and number of employees in the district also have low weights. It is worth
noting that the features that are important in RF are not necessarily important in the
SVM model, for instance PM10 level and heat index. The number of markets, business
and employees are not the strong indicators in both RF and SVM models.

We also calculated the average feature importance in each of the six categories of
the variables. Table 3 shows that weather has the highest weight, followed by Covid-19
outbreak and traffic accidents. Social economic features have the lowest weight.
Comparing the feature importance of the RF model and SVM model, features in
weather and Covid-19 are important in both models. Features in the Social-economic
category have less importance in the RF and SVM models. In the RF model, the
category of air pollution is more important than traffic accident, while in SVM model,
air pollution is less important than traffic accidents. In both models, the level of O3

ranks top 5 for the feature with high importance or weights.

Fig. 5. Random forest model feature importance.

Fig. 6. SVM model feature importance.
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Although social-economic features are not important, they did increase the pre-
dictivity of both the RF and SVM models. A subset without social-economic features
was taken from the data set and implemented in RF and SVM models. Table 4 shows
that the RF and SVM models without social economic factors have substantially lower
evaluation matrices. For the RF model, the R-squared of the model without social
economic features decreased by 0.39 in the training set and 0.38 in the testing set
compared to the evaluation matrices with the features. As for the SVM model, the R-
squared of the model without social economic factors also decreased drastically in both
the training (0.34) and testing sets (0.37). This result suggests that social economic
features are crucial to increase prediction accuracy, even though they may not have
high feature importance values on their own right.

6 Conclusion

While machine learning models are completely data driven, we have attempted to
incorporate social economic variables in the models to predict bike sharing demand.
Despite the fact that these variables are barely useful in explaining and predicting short-
term bike demand because they are constant, they did reveal demand differences
between docking stations that are characterized by different social economic condi-
tions. The roles that these variables play are to reveal population and economic activity
that may differ across districts where bike docking stations are located. In this regard,
bike sharing demand at the station level could perhaps be divided into basic demand,
which is determined by social economic factors and induced demand, which changes
with weather, pollution as well as a wide range of features that vary in the short term or

Table 3. Average feature importance by category in SVM

Feature category Average importance of features

Weather 144.77
Air pollution 94.30
Covid-19 outbreak 122.58
Traffic accidents 106.33
Social economic 53.93

Table 4. Results of the RF and SVM models with and without social economic factors

Models Training Testing

R2 RMSE MAE R2 RMSE MAE

RF 0.92 442.25 274.04 0.93 399.21 264.40
RF w/o 0.53 1019.77 722.62 0.55 972.90 693.26
SVM 0.92 415.45 252.40 0.90 457.88 306.21
SVM w/o 0.58 982.13 615.05 0.53 1018.03 649.37
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even instantaneously. We advanced studies conducted by V E et al. [32] and E and Cho
[14] in predicting bike demand in Seoul in the sense that they only addressed the
induced demand for bike sharing on a daily basis.

The best model is the random forest model in our study, and the most important
features are precipitation, the number of Covid-19 cases, the level of O3, heat index,
and the level of PM10. The most important categories of features for the random forest
model are Covid-19 outbreak, followed by air pollution and weather. Almost all social
economic features are the least important, however they played a role in enhancing the
performance of the models. The SVM is also an acceptable model. The features in the
categories of weather, Covid-19 outbreak and traffic accidents have highest average
weights. These results indicate that weather features such as precipitation, temperature,
heat index, wind chill temperature as well as Covid-19 outbreak have huge impacts on
bike sharing demand in Seoul. Further research can focus on many other potential
features that influence bike sharing demand and many other machine learning algo-
rithms such as Multilayer Perception Model.
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