
1

Distributionally Robust Chance Constrained
Optimization for Providing Flexibility

in an Active Distribution Network
Mohammad Rayati, Mokhtar Bozorg, Rachid Cherkaoui, Mauro Carpita

Abstract—In this paper, we propose a distributionally robust
chance constrained (DRCC) optimization problem for the op-
eration of an active distribution network (ADN). The ADN’s
operator uses the proposed problem to centrally optimize the
dispatch plan of his resources, namely photovoltaic (PV) and
battery energy storage (BES) systems, and to participate in
wholesale real/reactive power and flexibility markets. We model
the uncertainties in the problem by knowing a set of probability
distributions, i.e., an ambiguity set. The uncertainties include
production capability of PV systems, end-users’ consumption,
requested flexibility by the external network’s operator, and
voltage magnitude at the point of common coupling (PCC).
The resulting formulation is a DRCC optimization problem
for which a solution methodology based on freely available
solvers is presented. We evaluate the performance of proposed
solution in the numerical results section by comparing it with two
benchmark models based on stochastic and chance constrained
(CC) optimization.

Index Terms—Active distribution network (ADN), battery
energy storage (BES) systems, distributionally robust chance
constrained (DRCC) optimization, flexibility, photovoltaic (PV)
systems.

I. Introduction

A. Context and Literature Review

THE support of distributed resources in active distribution
networks (ADNs) for providing flexibility is an essential

asset for the system operator to accommodate high penetration
of renewable energy sources in tomorrow’s electrical networks
[1]. Here, we refer to distributed resources such as photovoltaic
(PV) and battery energy storage (BES) systems. In addition,
flexibility refers to the ability of regulating real/reactive power
profiles of the distributed resources and, subsequently, at the
point of common coupling (PCC).

Due to the small size and large number of distributed
resources that provide flexibility, we cannot incorporate the
decision variables of distributed resources directly into large-
scale problems of electrical networks, e.g., wholesale markets.
Each ADN’s operator is responsible for ensuring that the
dispatch plan of distributed resources with planned/requested
flexibility at the PCC complies with the operational constraints
and uncertainties of the ADN. In this regard, we obtain
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the optimal dispatch plan for the PV and BES systems by
considering the operational constraints and uncertainties for
planning and providing flexibility in an ADN.

In [2], an optimal dispatch plan for an ADN has been
proposed, ignoring the network’s uncertainties and physical
constraints. The dispatch plan of an ADN has been determined
using a hybrid of stochastic and robust optimization, according
to [3]. A two-stage framework for dispatching the power
of an ADN has been developed in [4], with a BES system
serving as a flexible element. The dispatch plan, including
the power profile that we must realize at the PCC during the
operation, has been determined in the first-stage, allowing the
BES system to regain an adequate level of flexibility. In the
second-stage, a model predictive control algorithm has been
proposed to compensate for the mismatch between profile
realization of the PCC and determined dispatch plan of the
first-stage.

In [5], it has been demonstrated that the optimal dis-
patch plan of distributed resources results in an infeasible
or costly outcome when the ADN’s hard security constraints
are ignored. As a result, robust optimization in [5] has been
written with ADN’s hard security constraints. In [6,7], the
robust optimization method has been used to mitigate the
ADN’s congestion by reducing the variance of daily branch
power flow while accounting for end-users’ consumption and
PV system production uncertainties. The dispatch plans have
been set up in [8,9] based on a two-stage adaptive robust
optimization for calculating the optimal real/reactive power
dispatch of PV systems within an ADN, which is robust
against the uncertainties of PV system production capability.
The importing and exporting of real power from the external
network, as well as the energy transition of each BES system,
have been determined in the first-stage of proposed problems.
In the second-stage, cost of deviation from the first-stage plan,
voltage magnitude deviations, and the cost of replanning BES
systems have been minimized considering the realized PV pro-
duction capability. Distributionally robust chance constrained
(DRCC) optimization problems have been developed to solve
a real-time power dispatch problem in an ADN in [10,11].

The provision of flexibility by distributed resources within
the ADNs has been neglected in [2-11]. According to [12],
the real/reactive power flexibility area of an ADN, including
PV systems, has been determined using linear stochastic
optimization. A framework for co-optimization of primary fre-
quency control provision by a BES system has been proposed
in [13]. A strategy for planning BES and PV systems to pro-
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vide flexibility based on chance constrained (CC) optimization
has been presented in [14]. An adaptive robust optimization for
planning the dispatch of distributed resources, including PV
and BES systems, has been developed in [15]. An adaptive
robust restoration optimization involving the uncertainties of
PV systems and end-users’ consumption has been proposed in
[16].

The gaps in previous studies for optimizing the dispatch
plan of distributed resources in an ADN are fourfold:

• The hard security constraints of ADN, such as voltage and
current constraints, have been ignored in studies such as
[3,4,13,14].

• The dispatch plan has been limited to determining
the power profile at the PCC, not providing up-
ward/downward real and reactive power flexibility. When
flexibility has been included in the model, such as the
models of [13,14], it refers to droop-based real power
control that is directly dependent on frequency deviation
from the nominal value. Thus, historical frequency data
are used as input, whereas statistical data about requests
for flexibility by the external network’s operator is not
available if we want to consider both real/reactive power
flexibility.

• The flexible resources have been bound to either the
BES or PV systems. Compared to [8,12], if we consider
both kinds of distributed resources, then the problems of
all time-steps must be solved in a single optimization
problem, where managing the dimensions of the variables
and constraints is a challenge.

• The proposed solution in [8-10] is a conservative dispatch
plan for PV systems in ADNs, whereas a more optimal
solution can be achieved such that the robustness against
the uncertainties is not altered significantly.

B. Solution Approach

In this paper, we present a DRCC optimization problem
to obtain the optimal dispatch plan of PV and BES systems
within an ADN. The ADN’s operator may apply the optimal
dispatch plan for obtaining his bidding strategy in wholesale
real/reactive power and flexibility markets. The difficulty for
ADN’s operators is that the probability density functions
(PDFs) parameters of uncertainties are unknown. Because the
data related to the uncertainties in ADNs are not available and
obtaining an accurate prediction is not possible, the ambiguity
set of PDFs is used1. Then, a DRCC optimization is developed
to deal with the ambiguity set. In addition, we include the
models and constraints of PV and BES systems in the decision-
making process for obtaining the dispatch plan, as well as the
ADN’s hard security constraints.

In contrast to stochastic optimization, the DRCC optimiza-
tion considers weaker assumptions on the exact PDFs of the
uncertainties and utilizes a known portion of their statistical
properties, such as moments of distribution or bounded devi-
ation from a reference distribution. Compared with the robust

1For more information on ambiguity sets, see [17].

optimization, the DRCC optimization reduces the conserva-
tiveness degree by exploiting data in the ambiguity set and
demonstrates more statistically optimal performance.

The DRCC optimization problems have recently been stud-
ied in [18-21] to deal with ambiguity in the parameters of
PDFs. Furthermore, the DRCC optimization problems have
been used in a wide range of power system applications, in-
cluding unit-commitment [22,23], optimal power flow [24,25],
generation/transmission expansion planning [26,27], ADN’s
optimization [10,11], and so on.

Given the foregoing context, the paper’s major contributions
in terms of modeling and solution methodology are discussed
in the following section.

C. Contributions

The following points are the contributions of this paper:

• An optimal dispatch plan for providing real/reactive
power flexibility is presented based on DRCC optimiza-
tion for the PV and BES systems within an ADN. The
proposed optimal dispatch plan is robust against the
uncertainties of PV systems’ production capability, end-
users’ consumption, requested flexibility by the external
network’s operator, and the voltage magnitude at the PCC.

• The confidence level of satisfying chance constraints is
introduced as an indicator of flexibility quality. Thus, the
ADN’s operator may provide low-quality to high-quality
flexibility, with the ability to deviate from the flexibility
requested by the external network’s operator in real-time,
providing the ADN’s operator with an additional degree
of freedom for optimal day-ahead planning2.

• From a modeling standpoint, in comparison to previous
studies on DRCC optimization, we have to deal with
several chance constraints and hard security constraints
simultaneously. We present such a model because keeping
the hard security constraints in an ADN is a must.

• For the proposed optimization problem, a solution
methodology based on second-order conic programming3

is presented.

D. Structure of the Paper

The mathematical formulation and the model of constraints
for the described problem are presented in Section II. The
DRCC optimization problem is formulated in Section III. A
solution methodology is proposed in Section IV for solving
the proposed DRCC optimization by a commercial or freely
available solver. A numerical case study is given in V. Finally,
Section VI concludes the paper. Appendix A presents the
nomenclature. Additional seven appendices provide technical
information that will be required throughout the paper.

2The corresponding adjustable parameter for setting the confidence level in
the proposed DRCC optimization, is explained in Section II-B.

3In a second-order conic program, a linear function is minimized over the
intersection of an affine set and the product of second-order cones. The second-
order conic programs are non-linear convex problems that include linear and
convex quadratic programs [28].
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II. Mathematical Formulation

A. Preliminary

The index for time is t ∈ T , where T := {1, . . . ,T }.
Buses other than the PCC are denoted by n ∈ N , where
N := {1, . . . ,N}. The PCC is represented by the index of 0.
The PV and BES systems are indexed by i and s. The sets
of PV and BES systems connected to bus n are denoted by
Sn := {1, . . . , S n} and In := {1, . . . , In}, respectively.

We use lower-case and upper-case bold letters for the
vectors and matrices, respectively. (·)> represents the transpose
operator, D is a PDF, ED(·) is the expectation operator over
the PDF D, D(·) is the probability operator for the PDF D.

There are no data available about the detailed PDF of
uncertain parameters. However, the ambiguity set D, i.e., the
set of uncertainties’ PDFs with predetermined first-order and
second-order moments, as well as the lower-bound and upper-
bound, is known. We consider the uncertain parameters with
the magnitudes equal to the vector m+ζ, where m is the mean
forecast and ζ is the forecast error with mean 0, covariance
matrix Σ, minimum ζ, and maximum ζ. The ambiguity set D
is defined as follows:

D := {D ∈ Ψ(D) : ED(ζ) = 0, ED(ζ · ζ>) = Σ, ζ ≤ ζ ≤ ζ}, (1)

where Ψ(D) is the set of all possible PDFs. All D have first-
order and second-order moments of 0 and Σ, respectively. The
forecast error is also between ζ and ζ.

The vectors of decision variables that are independent
of uncertain parameters, the control variables of distributed
resources, and the state variables are denoted by z, w(ζ), and
y(ζ), respectively.

There are two types of constraints in this paper: (i) the hard
security constraints as defined in (2); (ii) the chance constraints
as defined in (3).

D
[
ghard (z,w(ζ), y(ζ)) ≤ 0

]
= 1, ∀D ∈ D, (2)

inf
D∈D
D

[
gcc (z,w(ζ), y(ζ)) ≤ 0

]
≥ 1 − ε, (3)

where 1−ε ∈ [0, 1] is the chance constraint’s confidence level.
(2) denotes that the hard security constraints must be satisfied
under uncertainties for each PDF instance in the ambiguity set
(even the worst case of PDF instance)4. On the other hand,
(3) indicates that the probability of satisfying a constraint is
greater than a confidence level under the uncertainties for the
worst PDF in the ambiguity set.

It is worth mentioning that the ambiguity set in the context
of this paper includes the moment information 0 and Σ, as well
as support information ζ and ζ, whereas the typical ambiguity
sets only include the moment information [20]. In the context
of this paper, the moment information is used for the chance
constraints, while the support information is utilized in the
hard security constraints to ensure that the ADN is completely
secure considering the uncertainties. We could reformulate the

4For ease of presentation, (2) is represented as (4) in the rest of the
paper, which means that the hard security constraints must be satisfied for
all instances of the forecast error vector.

ghard (z,w(ζ), y(ζ)) ≤ 0, ∀ζ. (4)

proposed model of this paper such that the ambiguity set only
contains moment information and all hard security constraints
are also represented as chance constraints. The reformulated
problem would then be equivalent to the model presented
in this paper. However, we prefer the proposed model with
simultaneous hard security and chance constraints for the
following reasons: (i) The hard security constraints must be
maintained with a confidence level close to one; and (ii) The
ADN’s operator can derive the support information ζ and ζ
(the range of ζ) with a confidence level close to one and
maintain the hard security constraints.

B. Modeling Objective Function of the ADN’s Operator

In this section, we characterize the objective function of
the ADN’s operator. It should be noted that in this case, the
ADN’s operator does not reconfigure the network or change
the transformer tap position to optimize the dispatch plan
and flexibility because they are not changed on a daily basis.
Furthermore, smart home participation and the binary variables
associated with it are not taken into account.

Flexibility refers to the option of upward/downward move-
ments of real/reactive power in real-time provided by the ADN
for the use of the external network. The planned real/reactive
power at the PCC are indicated as p(PL)

t and q(PL)
t , respectively.

The planned upward/downward real and reactive power flexi-
bility are also denoted by r(p↑)

t /r(p↓)
t and r(q↑)

t /r(q↓)
t . The planned

flexibility is available for use according to the requirements of
the external network’s operator.

The objective of ADN’s operator is to maximize his profit
from selling real/reactive power, as well as the corresponding
flexibility, as formulated in the following.

max objective := λ> · z, (5)

where the vector z is defined as the combination of
planned real/reactive power and planned flexibility, i.e., z :=(
p(PL)

t , q(PL)
t , r(p↑)

t , r(p↓)
t , r(q↑)

t , r(q↓)
t

)
t∈T

; and the vector λ includes
the prices of real/reactive power and flexibility5.

The external network’s operator requests the planned ca-
pacity for real/reactive power flexibility in real-time. The
requested real and reactive power flexibilities are denoted by
p(RE)

t (ζ) and q(RE)
t (ζ), in which

− r(p↓)
t ≤ p(RE)

t (ζ) ≤ r(p↑)
t , ∀t ∈ T ,∀ζ, (6)

− r(q↓)
t ≤ q(RE)

t (ζ) ≤ r(q↑)
t , ∀t ∈ T ,∀ζ. (7)

Because the behavior of the external network’s operator when
requesting the real/reactive power flexibility is dependent on
many factors outside the framework of the ADN, the requested
real/reactive power is considered an ambiguous parameter,
which is a function of ζ, where p(RE)

t (ζ) = ζ
(RE,p↓)
t · r(p↓)

t +

ζ
(RE,p↑)
t · r(p↑)

t and q(RE)
t (ζ) = ζ

(RE,q↓)
t · r(q↓)

t + ζ
(RE,q↑)
t · r(q↑)

t .
The following constraints must be embedded in the problem

to tighten the feasible space and balance the ADN to provide
flexibility in real-time. Therefore, it leads to several non-linear

5It is worth mentioning that to find a bidding strategy to participate in the
markets, the ADN’s operator considers a set of values for the vector λ. Then,
the ADN’s operator determines his bidding strategy based on the optimal
value of z for each value of λ.
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distributionally robust chance constraints (two-sided chance
constraints), as shown below.

inf
D∈D
D

[∣∣∣p(PL)
t + p(RE)

t (ζ) − p0t(ζ)
∣∣∣ ≤ δ] ≥ 1 − ε, ∀t ∈ T , (8)

inf
D∈D
D

[∣∣∣q(PL)
t + q(RE)

t (ζ) − q0t(ζ)
∣∣∣ ≤ δ] ≥ 1 − ε, ∀t ∈ T , (9)

where p0t(ζ) and q0t(ζ) are real and reactive power available
at the PCC for forecast error instance of ζ, respectively, and
parameter δ is a small positive number, e.g., 0.01 kW, that
refers to the maximum allowable deviation from the requested
flexibility, i.e., p(RE)

t (ζ) and q(RE)
t (ζ), in addition to the dispatch

plan at the PCC, i.e., p(PL)
t and q(PL)

t . Because the ADN’s
power flow is a function of the uncertainties, p0t(ζ) and q0t(ζ)
depends on ζ6.

For all PDFs in the ambiguity set D of the uncertain
parameters, the actual real/reactive power provided by ADN’s
operator at the PCC differs from the requested flexibility
by less than δ with minimum confidence level greater than
1− ε. By adjusting the parameter ε, the ADN’s operator could
provide low-quality to high-quality flexibility, giving him a
degree of freedom, i.e., by loosening the obligation on him to
provide the requested flexibility perfectly in real-time. As a
result, the ADN’s operator maximizes his objective function
(5) while accounting for the chance constraints (8)-(9).

C. Power Flow Constraints

We consider a radial7 ADN. The label “up(n)” denotes the
bus that is upstream of the bus n, and the label “n” denotes the
line whose downstream bus is the bus n. The binary parameter
unn′ is defined, with unn′ = 1 if n′ = up(n), otherwise unn′ = 0.
The Π-model of a distribution line is depicted in Fig. 1 for
clarity and to introduce additional notations. Let v(up)

nt (ζ) be the
voltage square of bus “up(n)”; p(up)

nt (ζ) and q(up)
nt (ζ) represent

the real and reactive power flows entering line n from bus
“up(n)”; pnt(ζ) and qnt(ζ) denote the real and reactive power
flow entering bus n from the bottom of line n, and lnt(ζ)
denotes the square of the current flowing in the central element
of line n model. Finally, consider the resistance, reactance, and
shunt impedance of line n to be rn, xn, and 2 ·bn, respectively.

p
(up)

nt
(z)

q
(up)

nt
(z)

up(n)

bn

rn
xn

v
nt

(z)p
nt

(z)
q
nt

(z)l
nt

(z)

bn
p
(net)

nt
(z)

q
(net)

nt
(z)

Fig. 1: Π-model of a distribution line.

Parameter v0t(ζ) denotes the voltage square magnitude of
the PCC at time t. Because the magnitude of the voltage at the
PCC is affected by the external network’s operation conditions,
which include, among other factors, the voltage set-points at

6With the same reasoning, all variables calculated by the power flow, as well
as state/auxiliary variables of PV and BES systems, are written as functions
of ζ in the rest of the paper.

7This model can be applied to non-radial networks; however, the presented
power flow model would be approximation.

the power plants, and we lack the necessary data, v0t(ζ) =

m(v)
t + ζ(v)

t is regarded as an uncertain parameter and is written
as a function of ζ. It is worth mentioning that we solve the
problem for an ADN regardless of the neighboring distribution
networks’ dispatch plans.

The power flow constraints are presented in order to balance
the injection and withdrawal of power on various buses. Let
p(net)

nt (ζ) and q(net)
nt (ζ) represent the net real and reactive power

injections to the bus n at time t, respectively.

p(net)
nt (ζ) =

∑
i∈In

p(PV)
it (ζ) +

∑
s∈Sn

p(BS )
st (ζ) − p(DM)

nt (ζ), ∀ζ, (10)

q(net)
nt (ζ) =

∑
i∈In

q(PV)
it (ζ) +

∑
s∈Sn

q(BS )
st (ζ) − q(DM)

nt (ζ), ∀ζ, (11)

where p(PV)
it (ζ), q(PV)

it (ζ), p(BS )
st (ζ), and q(BS )

st (ζ) are real power
production of PV system i, reactive power of PV system i,
real power output of BES system s, and reactive power output
of BES system s, respectively. Here, the real and reactive
power consumption of bus n are denoted by p(DM)

nt (ζ) and
q(DM)

nt (ζ). Real and reactive power consumption are uncertain
parameters and functions of ζ, i.e., p(DM)

nt (ζ) = m(DM,p)
nt +ζ

(DM,p)
nt

and q(DM)
nt (ζ) = m(DM,q)

nt + ζ
(DM,q)
nt .

For a given radial ADN, the power flow constraints are
regarded as hard security constraints. They are defined as the
intersection of several linear equalities and second-order conic
inequalities for each instance of ζ.

Ω
(PF)
nt

(
y(PF)

nt (ζ)
)

= 0, ∀n ∈ N ,∀t ∈ T ,∀ζ, (12)

Γ
(PF)
nt

(
y(PF)

nt (ζ)
)
≤ 0, ∀n ∈ N ,∀t ∈ T ,∀ζ, (13)

where Ω
(PF)
nt

(
y(PF)

nt (ζ)
)

and Γ
(PF)
nt

(
y(PF)

nt (ζ)
)

represent linear
equalities and second-order conic inequalities of power flow,
respectively, that are presented in detailed format in Appendix
B; y(PF)

nt (ζ) is the state vector of the ADN that includes
p(net)

nt (ζ), q(net)
nt (ζ), p(up)

nt (ζ), q(up)
nt (ζ), pnt(ζ), qnt(ζ), v(up)

nt (ζ),
vnt(ζ), lnt(ζ) and also the auxiliary variables as defined in
Appendix B.

It is worth mentioning that the presented power flow con-
straints are exactly the ones introduced in [29]. As shown in
[29], the introduced constraints give us the feasible space as
AC exact power flow constraints for radial ADNs with reverse
power flow8.

D. PV Systems’ Capability Constraints

The capability curve of a PV system i is defined as the
intersection of the following hard security constraints, illus-
trated in Fig. 2; (i) the voltage constraint of its converter, (ii)
the current constraint of its converter, and (iii) the maximum
allowable power production due to the solar irradiance.

The feasible space is modeled by several second-order conic
inequalities for each instance of ζ, as shown below.

Γ
(PV)
it

(
w(PV)

it (ζ)
)
≤ 0, ∀i ∈ In,∀n ∈ N ,∀t ∈ T ,∀ζ, (14)

8The necessary conditions for the exactness and convexity of the presented
constraints have been given in Theorem I and Section IV of [29]. For our
case study in Section V of this paper, we confirm the validity of the necessary
conditions.
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Fig. 2: Capability curve of a PV system [30].

where Γ
(PV)
it

(
w(PV)

it (ζ)
)

is the set of second-order conic inequal-
ities of each PV system i that are presented in detailed format
in Appendix C; w(PV)

it (ζ) is the control vector of PV system i
at time t that is

(
p(PV)

it (ζ), q(PV)
it (ζ)

)
.

Note that the solar irradiance is an uncertain parameter. The
real power production of a PV system, i.e., p(PV)

it (ζ), must
be less than p(PV,max)

it (ζ), which is an uncertain parameter and
function of ζ, i.e., p(PV,max)

it (ζ) = m(PV,max)
it + ζ(PV,max)

it .

E. BES Systems Constraints

Each BES s is interfaced to the ADN by a converter.
Therefore, the capability constraints of the converter must be
governed in a hard manner. Furthermore, the energy balance
known as the state-of-energy (SoE) of BES, which is denoted
by est(ζ), must be taken into account.

The constraints are shown below in the form of a number of
linear equalities and second-order conic inequalities for each
instance of ζ.

Ω(BS )
s

(
w(BS )

s (ζ), y(BS )
s (ζ)

)
= 0, ∀s ∈ Sn,∀n ∈ N ,∀ζ, (15)

Γ(BS )
s

(
w(BS )

s (ζ), y(BS )
s (ζ)

)
≤ 0, ∀s ∈ Sn,∀n ∈ N ,∀ζ, (16)

where Ω
(BS )
s (·) and Γ

(BS )
s (·) are linear equalities and second-

order conic inequalities of BES s, respectively, which are
detailed in Appendix D; w(BS )

s (ζ) is the control vector of BES
s that is

(
p(BS )

st (ζ), q(BS )
st (ζ)

)
t∈T

; and y(BS )
s (ζ) is the state vector

that includes (est(ζ))t∈T in addition to other auxiliary variables
defined in Appendix D.

The considered constraints are based on the technique intro-
duced in [31] for convexifying the constraints of BES systems.
Instead of adding binary variables9 to force a BES system to
operate in one charging or discharging mode at each time-
step, auxiliary continuous variables and convex constraints are
added in this paper, as explained in Appendix D.

Here, the SoE at time 1, i.e., es1(ζ), is treated as an uncertain
parameter. It is because the ADN’s operator solves the opti-
mization problem for obtaining the dispatch plan in advance,
and the initial SoE of the BES systems is not determined until
later in the day. As a result, the initial SoE of each BES s is
expressed as a function of ζ, i.e., es1(ζ) = m(BS )

s + ζ(BS )
s .

III. Optimal Dispatch Plan Based on DRCC
This section is dedicated to presenting the ADN operator’s

optimization problem for obtaining the optimal dispatch plan

9See [32] for further information on using binary variables in the model of
BES systems.

for PV and BES systems. Because it is assumed that the
ADN’s operator does not know the precise PDFs of uncer-
tain parameters, the proposed optimization problem is based
on DRCC and the resulting dispatch plan is distributionally
robust.

The proposed optimization problem is expressed as two-
stage program with recourse [33], as shown in Fig. 3. We
have a set of decisions to make in a two-stage program
with recourse that must be taken without full information
about random events (i.e., uncertainties). These are known as
first-stage decisions. Later, full information on the realization
of random events is received. Following that, second-stage
decisions or recourse actions are taken.

Here, the decision variables in the vector z, which include
the planned real/reactive power, as well as the planned flexi-
bility, are determined in the first-stage by the ADN’s operator.
Then, the uncertain parameters in the vector ζ are realized, and
the ADN’s operator takes his recourse actions to compensate
for the uncertainties with available distributed resources in the
second-stage and to meet the ADN’s operating criteria, as well
as the planned real/reactive power and requested flexibility.

First-stage

max  objective

Second-stage

min  imbalance
hard constraints

chance constraints

vector z*

realized   

imbalance settlement

ambiguity set

D-1 real-timeD

1 2 .        .         .

D+1

T         .         .

Fig. 3: Two-stage formulation of the ADN’s optimization problem.

The forecast error vector ζ is as below.

ζ =

((
ζ

(DM,p)
nt , ζ

(DM,q)
nt ,

(
ζ(PV,max)

it

)
i∈In

)
n∈N ,t∈T

,
(
ζ(BS )

s

)
s∈Sn,n∈N

,(
ζ(v)

t , ζ
(RE,p↑)
t , ζ

(RE,p↓)
t ζ

(RE,q↑)
t , ζ

(RE,q↓)
t

)
t∈T

)
. (17)

We want to incorporate the second-stage problem into the
first-stage constraints. Then, there would be a single opti-
mization problem that is solved in a one-shot. The available
flexible resources for ADN’s operator to compensate for the
mismatch due to the uncertainties are variables in the vector
w(ζ) =

((
w(PV)

it (ζ)
)

i∈In
,
(
w(BS )

st (ζ)
)

s∈Sn

)
n∈N ,t∈T

. To compensate

for the mismatch, we employ a linear decision rule10, where
the deviations in real/reactive power from forecast magnitudes
are distributed linearly among the flexible resources. Thus, the
control vector of distributed resources is

w(ζ) = ŵ + α · ζ, (18)

where,

α> · 1 = 1, (19)
0 4 α. (20)

10Other non-linear decision rules have been described in [34], as well as
their computational tractability.
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Here, the vector ŵ represents the base point of PV and
BES systems, the matrix α represents distributed resources’
participation factors for mitigation of uncertainties, 0 is a
matrix with all elements equal to zero, and 1 is a vector with all
elements equal to one. Note that (19) satisfies that the sum of
each column of α is equal to one, and by (20) each component
of the matrix α is greater than zero11.

To complete incorporating the second-stage problem into
the first-stage constraints, we must determine the dependence
of state vector y(ζ) =

((
y(PF)

nt (ζ)
)

n∈N ,t∈T
,

(
y(BS )

s (ζ)
)

s∈Sn,n∈N
,(

y(PV)
it (ζ)

)
i∈In,n∈N ,t∈T

)
on control vector w(ζ) and forecast error

vector ζ. To this end, we approximate the state vector y(ζ)
around ŷ as follows:

y(ζ) = ŷ + A · ζ − B · w(ζ) = (ŷ − B · ŵ) + (A − B · α) .ζ,
(21)

where the matrices A and B include the sensitivity coefficients
of the state variables to the uncertainties and control variables.

With a linear decision rule for the control vector (i.e., (18)-
(20)) and the linearization of the state vector (i.e., (21)), we
have the following one-shot DRCC optimization problem.

max
Ξ

objective = (5) (22)

subject to: (8) − (16), (18) − (21), (23)

where Ξ is the set of decision variables that is the union of
the variables in the vectors ŷ, ŵ, z, and the matrix α.

IV. SolutionMethodology

The proposed DRCC optimization problem (22)-(23) cannot
be solved directly by commercial solvers due to the non-
linearity and infinite-dimensionality issues. The non-linearity
is caused by the presence of the chance constraints (8)-(9).
Furthermore, for all possible values of ζ, the constraints (10)-
(16) must be satisfied, resulting in infinite-dimensionality. In
this regard, we need an approximation solution such that the
result would be viable for the original DRCC optimization
problem (22)-(23).

In Section IV-A, we find a second-order conic approxi-
mation for the constraints (8)-(9). To overcome the issue of
infinite dimensionality, we use the linear decision rule (18)
to obtain a final model with a finite number of constraints
that represent the worst-case of ζ for (10)-(16) as described
in Section IV-B. Eventually, the final optimization problem is
a second-order conic program.

A. Approximating the Chance Constraints (8)-(9)

The chance constraints (8)-(9) are non-linear. We have not
studied whether or not they represent convex space. We find
the following second-order conic replacements for our chance
constraints using a conservative approximation12 as discussed
in Appendix E.

a(p)
t =

(
R(p)

t · z · M
(p)
t − (h(p)

t )> · (A − B · α)
)>
, ∀t ∈ T , (24)

11The component-wise less or equal operator for matrices is denoted by 4.
12Such conservative approximation is also explained in Appendix E.

(
a(p)

t

)>
· Σ ·

(
a(p)

t

)
+ γ

(p)
t ≤ ε ·

(
δ − θ

(p)
t

)
, ∀t ∈ T , (25)

a(q)
t =

(
R(q)

t · z · M
(q)
t − (h(q)

t )> · (A − B · α)
)>
, ∀t ∈ T , (26)(

a(q)
t

)>
· Σ ·

(
a(q)

t

)
+ γ

(q)
t ≤ ε ·

(
δ − θ

(q)
t

)
, ∀t ∈ T , (27)∣∣∣∣p(PL)

t − (h(p)
t )> · (ŷ − B · ŵ)

∣∣∣∣ ≤ γ(p)
t + θ

(p)
t , ∀t ∈ T , (28)∣∣∣∣q(PL)

t − (h(q)
t )> · (ŷ − B · ŵ)

∣∣∣∣ ≤ γ(q)
t + θ

(q)
t , ∀t ∈ T , (29)

0 ≤ θ(p)
t ≤ δ, ∀t ∈ T , (30)

0 ≤ θ(q)
t ≤ δ, ∀t ∈ T , (31)

0 ≤ γ(p)
t , ∀t ∈ T , (32)

0 ≤ γ(q)
t , ∀t ∈ T , (33)

where γ(p)
t , γ(q)

t , θ(p)
t , and θ

(q)
t are the auxiliary variables. Fur-

thermore, the matrices R(p)
t , R(q)

t , M(p)
t , M(q)

t , and the vectors
h(p)

t , h(q)
t include the sensitivities of the chance constraints

terms to the vector z, ζ, and y(ζ). The detailed definitions of
R(p)

t , R(q)
t , M(p)

t , M(q)
t , h(p)

t , and h(q)
t are given in Appendix E.

B. Relaxing the Hard Security Constraints (10)-(16)

The constraints (10)-(16) must be satisfied for all instances
of ζ in order to maintain the security of ADN and connected
elements. The compact form of (10)-(16) is

Γ (w(ζ), y(ζ)) ≤ 0, ∀ζ, (34)

where Γ(·) is defined as combination of(
Ω

(BS )
s (·),−Ω

(BS )
s (·),Γ(BS )

s (·)
)

s∈Sn,n∈N
,

(
Γ

(PV)
it (·)

)
i∈In,n∈N ,t∈T

,

and
(
Ω

(PF)
nt (·),−Ω

(PF)
nt (·),Γ(PF)

nt (·)
)

n∈N ,t∈T
.

To deal with the issue of infinite dimensionality, we rewrite
the constraints (10)-(16) for the base-case and worst-case. As
shown in the following (using (18) and (21)), we regard ζ to
be zero in the base-case.

Γ (ŵ, ŷ − B · ŵ) ≤ 0. (35)

For the worst-case, we include the following constraints in
the optimization problem.

max (ŷ − B · ŵ + (A − B · α) · ζ) ≤ y, subject to: ζ ≤ ζ ≤ ζ,

(36)

min (ŷ − B · ŵ + (A − B · α) · ζ) ≥ y, subject to: ζ ≤ ζ ≤ ζ,

(37)

where y and y are maximum and minimum permissible range
values for the state vector variables. It is worth mentioning
that (36)-(37) is written component-wise because inequalities
must be satisfied individually for each row of the vector.

The final optimization problem based on DRCC is

max
Ξ

objective = (5) (38)

subject to: (19) − (20), (24) − (33), (35) − (37). (39)

In the constraints of this final problem, there are several
optimizations (36)-(37). Because we assume in (1) that we
know the range of uncertainties, the optimizations (36)-(37)
are over the range [ζ, ζ]. Furthermore, because the objectives
of (36)-(37) are affine with respect to ζ, the value of ζ or ζ
would be chosen based on the sign of each row of (A−B·α). In
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Appendix F, the equivalent linear constraints to replace (36)-
(37) are presented.

V. Numerical Case Study

A. Input Data

We use a case study based on a real low-voltage radial
ADN in a rural area in Switzerland. Fig. 4 depicts the ADN
in its abstract form. The ADN consists of three PV systems,
two BES systems with capacities of 40 and 290 kWh, a
transformer, and five distribution lines. Table I contains the
data for ADN’s parameters.

PV1

PV2

PV3

Line 1

Line 2 Line 5

Line 6Line 3

Line 4

Bus 1

Bus 4 Bus 2

Bus 3 Bus 6

Bus 5

BES1 BES2

Fig. 4: Single-line diagram of the ADN for the case study.

TABLE I: Parameters of the ADN.

Parameter Value
∆t 10 min
(rn)n∈N (0.0146, 0.263, 0.20, 0.096, 0.028, 0.018)
(xn)n∈N (0.0383, 0.078, 0.009, 0.072, 0.009, 0.005)
(2bn)n∈N (0.0000, 0.229, 0.0312, 0.241, 0.091, 0.015)
(S (PV,max)

i )i∈I (200 kW, 10 kW, 60 kW)
(e(min)

s )s∈S (0, 0)
(e(max)

s )s∈S (40 kWh,290 kWh)
(η(C)

s )s∈S (0.95, 0.95)
(η(D)

s )s∈S (0.95, 0.95)
δ 10−2 kW

All simulations are run on an Intel(R) Core(TM) i7-770
CPU with 3.6 GHz a clock speed and 32 GB of RAM. The
source code is written in Python and Gurobi solver 9.1.

The inputs of the case study are PV power production
and end-users’ consumption on November 28th, 2018. Fur-
thermore, a forecasting method based on an autoregressive
integrated moving average model is used. The sum of the mean
forecast and error of real/reactive power of all buses is shown
in Fig. 5.

B. Benchmark Optimization

We consider two benchmark models based on stochastic and
CC optimization to evaluate the performance of the proposed
DRCC dispatch plan. For stochastic optimization, historical
data are used to generate a finite number of scenarios (i.e.,
instances of ζ) K = {1, 2, . . . ,K}. Because the problem di-
mension is determined by the number of scenarios, i.e., K, we
require a clustering approach for selecting the representative

Fig. 5: The mean forecast and error of net real/reactive power.

scenarios and ensuring a secure level of confidence with small
K [35]. In Appendix H, we present the stochastic optimization
problem for the ADN’s dispatch plan.

For CC optimization, we have an assumption on the type
of PDFs for the ambiguity set D in (1). We assume that the
uncertain parameters have Gaussian PDF with a mean m and a
covariance matrix Σ. The optimization problem of ADN based
on CC optimization is explained in Appendix G.

C. Results Comparison

The dispatch plans for various confidence levels are com-
pared to the benchmark optimizations. For stochastic optimiza-
tion, K is chosen to be equal to 100 and 1− ε is chosen to be
equal to 0.85 for CC optimization. The planned real/reactive
power and flexibility for the benchmark optimizations and the
proposed DRCC optimization with confidence levels of 0.75
and 0.90 are depicted in Figs. 6, 7, 8, and 9, respectively. By
comparing the results, we arrive at the following conclusion:
• Because of the nature of formulation, the result of DRCC

is more conservative. We obtain a less conservative solu-
tion by lowering the confidence level, i.e., 1 − ε.

• As distributed resources for upward real power flexibility
are limited, increasing confidence level in the DRCC
reduces upward real power flexibility significantly.

• More downward flexibility of real power is planned in
the case of stochastic optimization compared to others.

• Despite the computational burden and increment of the
required data, increasing the number of scenarios results
in a more conservative dispatch plan.

In Fig. 10, the objective function of ADN’s operator for
different confidence levels and the benchmark models are
compared. According to the results, the objective function does
not decrease significantly with increasing confidence level.
The objectives of stochastic and CC optimization, on the other
hand, are higher at the expense of non-robustness against
uncertainties and computational burden. Note that the dispatch
plans based on stochastic and CC optimization are not robust
against out-of-sample scenarios with varying PDFs.

The computational time of DRCC for different confidence
levels is between 2 to 3 minutes due to the decrement of
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Fig. 6: Real/reactive power and flexibility for stochastic
optimization.

Fig. 7: Real/reactive power and flexibility for CC optimization
with 1 − ε = 0.85.

the number of variables/constraints, whereas the solver needs
more than 30 minutes to calculate the dispatch plan based on
stochastic optimization when K = 100. The time required to
solve the stochastic optimization grows exponentially with K,
and the problem is unsolvable for large values of K13.

D. Out-of-Sample Analysis

Using Monte-Carlo simulation, we generate 200 out-of-
sample scenarios (instances of ζ)for the stochastic, CC,
and proposed DRCC formulations. We dispatch distributed
resources for each time-step and for every out-of-sample
scenario. The number of time-steps in a scenario where
real/reactive power is deviated from the dispatch and requested
flexibility by the external network’s operator is then obtained.
The deviation probability box diagram is shown in Fig. 11.

13In this case study, the stochastic optimization problem is unsolvable for
K > 300.

Fig. 8: Real/reactive power and flexibility for DRCC optimization
with 1 − ε = 0.75.

Fig. 9: Real/reactive power and flexibility for DRCC optimization
with 1 − ε = 0.90.

As one can see, the stochastic and CC optimization prob-
lems have higher deviation probability. By increasing the
confidence level, we obtain better quality in regards to the
deviation probability at the cost of objective decrement.

E. Actual Operation

The DRCC dispatch plan with a confidence level of 0.90
is used to validate the proposed dispatch plan’s performance
in operation. The real data of the end-user’s consumption and
PV production on November 28th, 2018 are used. Additionally,
the flexibility request of the external network’s operator is
simulated. As shown in Fig. 12, the ADN’s operator generally
realizes the requested flexibility signal, with the exception of
a few time-steps at 03:00 and 09:30.

The BES systems mitigate a large portion of the real/reactive
power variations at the PCC. The SoE of two BES systems at
buses 2 and 5 is shown in Fig. 13. The SoE of BES systems
for the actual operation differs from the dispatch plan, but its
feasibility has been preserved.



RAYATI et al.: DRCC OPTIMIZATION FOR PROVIDING FLEXIBILITY IN AN ADN 9

Stochastic, K= 100

CC, 1− ε= 0.75

CC, 1− ε= 0.85

DRCC, 1− ε= 0.75

DRCC, 1− ε= 0.85

DRCC, 1− ε= 0.90

DRCC, 1− ε= 0.95

0.00

0.25

0.50

0.75

1.00

1.25

objective ($)

1e8

Fig. 10: Comparison of different optimizations in the objective.

Stochastic, K= 100

CC, 1− ε= 0.75

CC, 1− ε= 0.85

DRCC, 1− ε= 0.75

DRCC, 1− ε= 0.85

DRCC, 1− ε= 0.90

DRCC, 1− ε= 0.95
0 5 10 15 20

Deviation probability (%)

Fig. 11: Comparison of different optimizations in regards to the
deviation probabilities in out-of-sample scenarios.

VI. Conclusion and FutureWork

The resources within an ADN are dispatched to plan
real/reactive power and flexibility while maintaining security
and providing high-quality flexibility. To this end, a DRCC-
based optimization problem is presented. The objective value
of the ADN’s operator is increased at the expense of less
robustness against uncertainties by adjusting the confidence
level of the chance constraints. As a result, the ADN’s operator
is free to defy the request of the external network’s operator.

A case study compares the effectiveness of the proposed
dispatch plan to the ones based on stochastic and CC opti-
mization problems. When no data are available, the uncertain
parameters can have any PDF. Furthermore, the computational
complexity of the proposed formulation is significantly lower
compared to the stochastic optimization. Finally, the obtained
solution is more robust against the uncertainty.

In future work, smart home participation, transformers tap
position change, and ADN’s reconfiguration may be incor-
porated into the proposed optimization problem via binary

Fig. 12: Planned, requested, and actual real/reactive power and
flexibility at the PCC of ADN with 1 − ε = 0.90.

02:00 06:00 10:00 14:00 18:00 22:00
0

10
20
30
40

e 1
t (

kW
h)

planned actual

02:00 06:00 10:00 14:00 18:00 22:00
time

0

100

200

300

e 2
t (

kW
h)

planned actual

Fig. 13: Planned and actual SoE of BES systems.

variables. Benders’ decomposition algorithm can solve the
resulting optimization problem. The proposed model imple-
mentation in a laboratory test environment is feasible. To this
end, the environment of an adaptable ADN must be designed
such that the PV and BES systems accept control signals from
a central unit.

Appendix A
Nomenclature

The main notations are defined in the following. Other
symbols are defined as needed throughout the text.

A. Indices and Superscripts

n Index of buses.
i Index of PV systems.
s Index of BES systems.
t Index of time-steps.
k Index of scenarios.
up(n) Upstream bus of bus n.
PF Power flow.
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PV Photovoltaic system.
BES Battery energy storage system.
DM End-users’ consumption.
PL Planned value.
RE Requested magnitude.
net Net power.
↑, ↓ Upward and downward flexibility.
C Charging.
D Discharging.

B. Sets

N Set of buses.
T Set of time-steps.
K Set of scenarios.
In Set of PV systems of bus n.
Sn Set of BES systems of bus n.
D Ambiguity set.

C. Variables

vnt Voltage square of bus n.
lnt Square of the current flowing in the central eleme-

nt of line n’s model.
pnt Real power flow entering bus n from the bottom.
qnt Reactive power flow entering bus n from the bott-

om.
v(up)

nt Voltage square of bus “up(n)”.
p(up)

nt Real power flow entering bus n from the top.
q(up)

nt Reactive power flow entering bus n from the top.
p(DM)

nt Real power consumption of bus n.
q(DM)

nt Reactive power consumption of bus n.
p(PV)

it Real power production of PV system i.
q(PV)

it Reactive power production of PV system i.
p(BS )

st Real power production of BES system s.
q(BS )

st Reactive power production of BES system s.
p(net)

nt Net real power injection to bus n.
q(net)

nt Net reactive power injection to bus n.
est SoE of BES system s.
p(PL)

t Planned real power at the PCC.
q(PL)

t Planned reactive power at the PCC.
r(p↑)

t Planned upward real power flexibility.
r(p↓)

t Planned downward real power flexibility.
r(q↑)

t Planned upward reactive power flexibility.
r(q↓)

t Planned downward reactive power flexibility.
p(RE)

t Requested real power in real-time.
q(RE)

t Requested reactive power in real-time.

D. Parameters

N Numbers of buses.
In Numbers of PV systems of bus n.
S s Numbers of BES systems of bus n.
T Numbers of time-steps.
K Numbers of scenarios.
Z Numbers of uncertain parameters.
unn′ A binary parameter unn′ , in which unn′ = 1 if n′ =

up(n) and unn′ = 0 otherwise.

rn Resistance of line n.
xn Reactance of line n.
2 · bn Shunt impedance of line n.
1 − ε Confidence level.
δ Maximum allowable deviation from the requested

real/reactive power.
η(C)

s Charging efficiency of BES system s.
η(D)

s Discharging efficiency of BES system s.
∆t Time-step duration.

E. Vectors and Matrices

m Mean forecast vector.
ζ Forecast error vector.
Σ Covariance matrix of forecast error vector.
z Vector of variables independent of uncertainties.
w(ζ) Control vector of distributed resources.
y(ζ) State vector of distributed resources and ADN.
y, y Maximum and minimum range of the state vector.
λ Price vector.
ζ, ζ Upper-bound and lower-bound of forecast error vector.
Ω

(PF)
nt Equality constraints of power flow.

Γ
(PF)
nt Inequality constraints of power flow.

y(PF)
nt State vector of the ADN.

Ω
(BS )
s Equality constraints of BES system s.

Γ
(BS )
s Inequality constraints of BES system s.

w(BS )
s Control vector of BES system s.

y(BS )
s State variables vector of BES system s.

Γ
(PV)
it Inequality constraints of PV system i.

w(PV)
it Control vector of PV system i.

Appendix B
Details of Power Flow Constraints

For all buses n ∈ N and time-steps t ∈ T of a given radial
ADN, the detailed power flow constraints Ω

(PF)
nt

(
y(PF)

nt (ζ)
)

and
hard security constraints Γ

(PF)
nt

(
y(PF)

nt (ζ)
)

are presented in the
following. It is worth mentioning that all variables must be
functions of ζ and all constraints must be satisfied for all
instances of ζ that are dropped here for the sake of brevity.

p(up)
nt = rn · lnt − p(net)

nt +
∑
n′∈N

unn′ · p
(up)
n′t , (40)

q(up)
nt = xn · lnt − q(net)

nt +
∑
n′∈N

unn′ · q
(up)
n′t −

(
vnt + v(up)

nt

)
· bn, (41)

v(up)
nt = vnt + 2

(
rn · p

(up)
nt + xn · (q

(up)
nt + v(up)

nt · bn)
)

−
(
r2

n + x2
n

)
· lnt, (42)

lnt · v
(up)
nt ≥

(
p(up)

nt

)2
+

(
q(up)

nt

)2
, (43)

p̂(up)
nt = −p(net)

nt +
∑
n′∈N

unn′ · p̂
(up)
n′t , (44)

q̂(up)
nt = −q(net)

nt +
∑
n′∈N

unn′ · q̂
(up)
n′t −

(
v(up)

nt + vnt

)
· bn, (45)

v(up)
nt = vnt + 2

(
rn · p̂

(up)
nt + xn · (q̂

(up)
nt + v(up)

nt · bn)
)
, (46)

p(up)
nt = rn · lnt − p(net)

nt +
∑
n′∈N

unn′ · p
(up)
n′t , (47)
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q(up)
nt = xn · lnt − q(net)

nt +
∑
n′∈N

unn′ · q
(up)
n′t −

(
vnt + v(up)

nt

)
· bn, (48)

lnt · vnt ≥ max{ p̂2
nt, p2

nt} + max{(q̂nt − vnt · bn)2, (qnt − vnt · bn)2},
(49)

lnt · v
(up)
nt ≥ max{( p̂(up)

nt )2, (p(up)
nt )2}

+ max{(q̂(up)
nt + v(up)

nt · bn)2, (q(up)
nt + v(up)

nt · bn)2}, (50)

pnt = −p(net)
nt +

∑
n′∈N

unn′ · p
(up)
n′t , (51)

qnt = −q(net)
nt +

∑
n′∈N

unn′ · q
(up)
n′t , (52)

p̂nt = −p(net)
nt +

∑
n′∈N

unn′ · p̂
(up)
n′t , (53)

q̂nt = −q(net)
nt +

∑
n′∈N

unn′ · q̂
(up)
n′t , (54)

l(max)
n · vnt ≥ max{ p̂nt, pnt}

2 + max{q̂nt, qnt}
2, (55)

l(max)
n · v(up)

nt ≥ max{ p̂(up)
nt , p(up)

nt }
2 + max{q̂(up)

nt , q(up)
nt }

2, (56)

v(min)
n ≤ |vnt | ≤ v(max)

n , (57)

where parameter l(max)
n is the maximum permissible value of

current square for line n; parameters v(min)
n and v(max)

n are the
minimum and maximum permissible magnitudes of voltage
square of bus n. Here, the state vector y(PF)

nt (ζ) also includes the
auxiliary variables p̂(up)

nt (ζ), q̂(up)
nt (ζ), p(up)

nt (ζ), q(up)
nt (ζ), p̂nt(ζ),

q̂nt(ζ), pnt(ζ), qnt(ζ), vnt(ζ), v(up)
nt (ζ), and lnt(ζ);

Appendix C
Details of PV Systems’ Constraints

In the following, the detailed inequality constraints
Γ

(PV)
it

(
w(PV)

it (ζ)
)

of a PV system i ∈ In at time-step t ∈
T are given. As proven in [30], the converter’s voltage
constraint of a PV system is shown with a circle at the
center of −3(v(net,PV)

i )2/x(PV)
i in the Q-axis and a radius of

3v(net,PV)
i v(con,PV)

i /x(PV)
i .

(
p(PV)

it

)2
+

q(PV)
it +

3 · (v(net,PV)
i )2

x(PV)
i

2

≤

3 · v(net,PV)
i · v(con,PV)

i

x(PV)
i

2

,

(58)

where v(net,PV)
i , v(con,PV)

i , and x(PV)
i are the ADN’s voltage, con-

verter’s voltage, and Thevenin reactance from the viewpoint
of the PV system, respectively.

The converter’s current constraint of a PV system i ∈ In at
time-step t ∈ T is a circle with the radius of S (PV,max)

i as,(
p(PV)

it

)2
+

(
q(PV)

it

)2
≤

(
S (PV,max)

i

)2
. (59)

Finally, the constraint due to the available solar irradiance
and the positive generation constraint of a PV system i ∈ In

at time-step t ∈ T is also considered.

0 ≤ p(PV)
it ≤ p(PV,max)

it . (60)

Note that all variables in (58)-(60) must be functions of ζ
and (58)-(60) must be satisfied for all instances of ζ that are
dropped here for the sake of brevity.

Appendix D
Details of BES Systems’ Constraints

For each BES s ∈ Sn, the detailed equality con-
straints Ω

(BS )
s

(
w(BS )

s (ζ), y(BS )
s (ζ)

)
and inequality constraints

Γ
(BS )
s

(
w(BS )

s (ζ), y(BS )
s (ζ)

)
are presented in this section. It is

worth mentioning that all variables must be functions of ζ
and all constraints must be satisfied for all instances of ζ that
are dropped here for the sake of brevity.

es(t+1) = est +

 p(BS ,D)
st

η(D)
s

+ η(C)
s ·

(BS ,C)
st

 · ∆t,∀t ∈ T − {T }, (61)

0 ≤ p(BS ,C)
st , ∀t ∈ T , (62)

0 ≥ p(BS ,D)
st , ∀t ∈ T , (63)

p(BS )
st = p(BS ,C)

st + p(BS ,D)
st , ∀t ∈ T , (64)

(p(BS )
st )2 + (q(BS )

st )2 ≤ (S (BS ,max)
s )2, ∀t ∈ T , (65)

e(min)
s ≤ est ≤ e(max)

s , ∀t ∈ T , (66)

ẽs(t+1) = ẽst +
(
p(BS ,D)

st + p(BS ,C)
st

)
· ∆t, ∀t ∈ T − {T }, (67)

e(min)
s ≤ ẽst ≤ e(max)

s , ∀t ∈ T , (68)

where y(BS )
s (ζ) =

(
p(BS ,D)

st (ζ), p(BS ,C)
st (ζ), ẽst(ζ), est(ζ)

)
t∈T

is the
vector of state variables; parameters e(min)

s and e(max)
s are the

minimum and maximum permissible ranges of SoE; parameter
S (BS ,max)

s is the maximum apparent power flowing from the
converter of BES system s ∈ Sn.

Note that the constraints (67)-(68) and the auxiliary variable
ẽst are added to the BES systems’ model to prevent the
usage of BES systems as unreal demand (e.g., charging and
discharging at the same time) [31]. Thus, the proposed model
is exact since it does not allow for simultaneous charging and
discharging of the BES systems.

Appendix E
Process of Approximating the Chance Constraints

In this section, the process of approximation of (8)-(9) with
second-order conic constraints (24)-(33) is explained. We start
with (8)-(9) to find the functions p0t(ζ) and q0t(ζ) based on
the linear decision rule (18) and linear approximation of state
vector y(ζ) around ŷ in (21). The functions p0t(ζ) and q0t(ζ)
are elements of the state vector; thus, using vectors h(p)

t and
h(q)

t are defined such that

p0t(ζ) = (h(p)
t )> · y(ζ), (69)

q0t(ζ) = (h(q)
t )> · y(ζ). (70)

By replacing (21) in (69)-(70), we have:

p0t(ζ) = (h(p)
t )> · (ŷ − B · ŵ) + (h(p)

t )> · (A − B · α) · ζ, (71)

q0t(ζ) = (h(q)
t )> · (ŷ − B · ŵ) + (h(q)

t )> · (A − B · α) · ζ. (72)

The functions p(RE)
t (ζ) and q(RE)

t (ζ) are reformulated as
below by defining the matrices R(p)

t and R(q)
t properly.

p(RE)
t (ζ) = ζ

(RE,p↓)
t · r(p↓)

t + ζ
(RE,p↑)
t · r(p↑)

t = R(p)
t · z · M

(p)
t · ζ,

(73)

q(RE)
t (ζ) = ζ

(RE,q↓)
t · r(q↓)

t + ζ
(RE,q↑)
t · r(q↑)

t = R(q)
t · z · M

(q)
t · ζ.

(74)
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By substituting p0t(ζ), q0t(ζ), p(RE)
t (ζ), and q(RE)

t (ζ) in (8)-
(9) with (71)-(74), we obtain the following two-sided distri-
butionally robust chance constraints.

inf
D∈D
D

[∣∣∣∣b(p)
t (x) +

(
a(p)

t (x)
)>
· ζ

∣∣∣∣ ≤ δ] ≥ 1 − ε, ∀t ∈ T , (75)

inf
D∈D
D

[∣∣∣∣b(q)
t (x) +

(
a(q)

t (x)
)>
· ζ

∣∣∣∣ ≤ δ] ≥ 1 − ε, ∀t ∈ T , (76)

where

a(p)
t (x) =

(
R(p)

t · z · M
(p)
t − (h(p)

t )> · (A − B · α)
)>
, (77)

b(p)
t (x) = p(PL)

t − (h(p)
t )> · (ŷ − B · ŵ), (78)

a(q)
t (x) =

(
R(q)

t · z · M
(q)
t − (h(q)

t )> · (A − B · α)
)>
, (79)

b(q)
t (x) = q(PL)

t − (h(q)
t )> · (ŷ − B · ŵ), (80)

and x = (ŷ, ŵ, z,α).
Note that the ambiguity set D is a subset of the following

set.

C := {D ∈ Ψ(D) : ED(ζ) = 0, ED(ζ · ζ>) = Σ}, (81)

Because D ⊆ C, the left-hand-sides (LHSs) of (75)-(76) are
greater than or equal to the LHSs of (82)-(83), respectively.
Furthermore, the right-hand-sides (RHSs) of (75)-(76) are
constant and equal to the RHSs of (82)-(83). Therefore, if we
establish the following constraints, the original ones (75)-(76)
also will be satisfied in a conservative manner. We approximate
our original chance constraints with the following ones.

inf
D∈C
D

[∣∣∣∣b(p)
t (x) +

(
a(p)

t (x)
)>
· ζ

∣∣∣∣ ≤ δ] ≥ 1 − ε, ∀t ∈ T , (82)

inf
D∈C
D

[∣∣∣∣b(q)
t (x) +

(
a(q)

t (x)
)>
· ζ

∣∣∣∣ ≤ δ] ≥ 1 − ε, ∀t ∈ T , (83)

Each (82) and (83) is equivalent to the two-sided distribu-
tionally robust chance constraints introduced in equation (4)
of [25]. Using Theorem II of [25], the exact reformulation for
(82) and (83) is as follows:

γ
(p)
t +

(
a(p)

t (x)
)>
· Σ ·

(
a(p)

t (x)
)
≤ ε ·

(
δ − θ

(p)
t

)
,∀t ∈ T , (84)∣∣∣∣b(p)

t (x)
∣∣∣∣ ≤ γ(p)

t + θ
(p)
t , ∀t ∈ T , (85)

0 ≤ θ(p)
t ≤ δ, ∀t ∈ T , (86)

0 ≤ γ(p)
t , ∀t ∈ T , (87)

γ
(q)
t +

(
a(q)

t (x)
)>
· Σ ·

(
a(q)

t (x)
)
≤ ε ·

(
δ − θ

(q)
t

)
, ∀t ∈ T , (88)∣∣∣∣b(q)

t (x)
∣∣∣∣ ≤ γ(q)

t + θ
(q)
t , ∀t ∈ T , (89)

0 ≤ θ(q)
t ≤ δ, ∀t ∈ T , (90)

0 ≤ γ(q)
t , ∀t ∈ T , (91)

where γ(p)
t , γ(q)

t , θ(p)
t , and θ

(q)
t are the auxiliary variables. The

resulting constraints (84)-(91) are equivalent to (24)-(33). Note
that the feasible space given by the proposed reformulation is
subset or equal to the feasible space given by (75) and (76).

Appendix F
Linear Equivalents ofWorst-Case Constraints

For each row m, the constraints (36)-(37) must be satisfied.
The linear equivalent of row m of (36) is explained in this

section. Other rows’ constraints, as well as (37), can be
rewritten using the same methodology.

We define the matrices C(pos) and C(neg) as follows:

C(pos) := pos(A − α · B), (92)

C(neg) := neg(A − α · B), (93)

where the function pos(·) gives 1 for each element of the
input matrix if it is positive and otherwise 0, and the function
neg(·) := 1 − pos(·).

Then, because the function inside maximizer (36) is affine
with respect to ζ, the result of maximization for row m is as
below.

ŷm − Bm · ŵ + C(pos)
m · ζ − C(neg)

m · ζ ≤ ym, (94)

where C(pos)
m and C(neg)

m are the row m of the matrices C(pos)

and C(neg), respectively.
It is worth mentioning that the sign of each element of

(A − α · B) appears to be influenced by the value of α. The
signs are fixed for any value of α due to (19)-(20) and the
range of A and B for ADNs.

Appendix G
Chance Constraints with Gaussian PDF

By assuming Gaussian PDF for uncertainties, with a same
method as Appendix D of [27], the chance constraints (75)-
(76) are rewritten as follows:

b(p)
t (x) + Φ−1(1 − ε) ·

√(
a(p)

t (x)
)>
· Σ ·

(
a(p)

t (x)
)
≤ δ, ∀t ∈ T ,

(95)

−b(p)
t (x) + Φ−1(1 − ε) ·

√(
a(p)

t (x)
)>
· Σ ·

(
a(p)

t (x)
)
≤ δ,∀t ∈ T ,

(96)

b(q)
t (x) + Φ−1(1 − ε) ·

√(
a(q)

t (x)
)>
· Σ ·

(
a(q)

t (x)
)
≤ δ, ∀t ∈ T ,

(97)

− b(q)
t (x) + Φ−1(1 − ε) ·

√(
a(q)

t (x)
)>
· Σ ·

(
a(q)

t (x)
)
≤ δ,∀t ∈ T ,

(98)

where Φ−1(1 − ε) is the inverse cumulative distribution of
Gaussian PDF.

By replacing the constraints (24)-(31) in the problem (22)
with (95)-(98), the final problem based on CC is as follows:

max
Ξ

objective = (5) (99)

subject to: (35) − (37), (95) − (98). (100)

Appendix H
Dispatch Plan based on Stochastic Optimization

For stochastic optimization, the original formulation is as
follows:

max
Ξ1

objective = (5) (101)

subject to: (8) − (16), (102)

where Ξ1 is the set of decision variables that is the union of
the variables in the vectors z, w(ζ), and y(ζ).
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Here, a stochastic optimization based on second-order conic
program is generated. Note that the DRCC formulation does
not make any assumptions about the PDFs of the uncertain
parameters. A randomized sampling approach, on the other
hand, is required for stochastic optimization using historical
data or an assumption of the PDFs of the uncertainties.
Furthermore, the chance constraints in (8)-(9) are considered
for all operation scenarios in stochastic optimization. Here, we
assume Gaussian PDF for all uncertain parameters to generate
the scenarios in stochastic optimization.

The chance constraints would be satisfied if the number
of scenarios, i.e., K, is chosen large enough. The minimum
number of scenarios for establishing different confidence levels
is determined based on the results of [36].

By clustering the samples of historical data, we obtain a set
of scenarios K = {1, 2, . . . ,K}. Then, the optimization problem
for obtaining the dispatch plan is as follows:

max
Ξ(S T )

objective = (5) (103)

subject to:

p(net)
ntk =

∑
i∈In

p(PV)
itk +

∑
s∈Sn

p(BS )
stk − p(DM)

ntk ,∀n, t, k, (104)

q(net)
ntk =

∑
i∈In

q(PV)
itk +

∑
s∈Sn

q(BS )
stk − q(DM)

ntk ,∀n, t, k, (105)

p(up)
ntk = rn · lntk − p(net)

ntk +
∑
n′∈N

unn′ · p
(up)
n′t ,∀n, t, k, (106)

q(up)
ntk = xn · lntk − q(net)

ntk +
∑
n′∈N

unn′ · q
(up)
n′t −

(
vntk + v(up)

ntk

)
· bn,

∀n, t, k, (107)

v(up)
ntk = vntk + 2 ·

(
rn · p

(up)
ntk + xn · (q

(up)
ntk + v(up)

ntk bn)
)
−

(
r2

n + x2
n

)
· lntk,

∀n, t, k, (108)

lntkv(up)
ntk ≥

(
p(up)

ntk

)2
+

(
q(up)

ntk

)2
,∀n, t, k, (109)

p̂(up)
ntk = −p(net)

ntk +
∑
n′∈N

unn′ · p̂
(up)
n′t ,∀n, t, k, (110)

q̂(up)
ntk = −q(net)

ntk +
∑
n′∈N

unn′ · q̂
(up)
n′t −

(
v(up)

ntk + vntk

)
· bn,∀n, t, k,

(111)

v(up)
ntk = vntk + 2 ·

(
rn · p̂

(up)
ntk + xn · (q̂

(up)
ntk + v(up)

ntk · bn)
)
,∀n, t, k,

(112)

p(up)
ntk = rn · lntk − p(net)

ntk +
∑
n′∈N

unn′ · p
(up)
n′t ,∀n, t, k, (113)

q(up)
ntk = xn · lntk − q(net)

ntk +
∑
n′∈N

unn′ · q
(up)
n′t −

(
vntk + v(up)

ntk

)
· bn,

∀n, t, k, (114)

lntkvntk ≥ max{ p̂2
ntk, p2

ntk}

+ max{(q̂ntk − vntk · bn)2, (qntk − vntk · bn)2},∀n, t, k, (115)

lntkv(up)
ntk ≥ max{( p̂(up)

ntk )2, (p(up)
ntk )2}

+ max{(q̂(up)
ntk + v(up)

ntk · bn)2, (q(up)
ntk + v(up)

ntk · bn)2},∀n, t, k, (116)

pntk = −p(net)
ntk +

∑
n′∈N

unn′ · p
(up)
n′t ,∀n, t, k, (117)

qntk = −q(net)
ntk +

∑
n′∈N

unn′ · q
(up)
n′t ,∀n, t, k, (118)

p̂ntk = −p(net)
ntk +

∑
n′∈N

unn′ · p̂
(up)
n′t ,∀n, t, k, (119)

q̂ntk = −q(net)
ntk +

∑
tn′∈N

unn′ · q̂
(up)
n′t ,∀n, t, k, (120)

l(max)
n · vntk ≥ max{ p̂ntk, pntk}

2 + max{q̂ntk, qntk}
2,∀n, t, k, (121)

l(max)
n · v(up)

ntk ≥ max{ p̂(up)
ntk , p(up)

ntk }
2 + max{q̂(up)

ntk , q
(up)
ntk }

2,∀n, t, k,
(122)

v(min)
n ≤ |vntk | ≤ v(max)

n ,∀n, t, k, (123)

es(t+1)k = estk +

 p(BS ,D)
stk

η(D)
s

+ η(C)
s · p

(BS ,C)
stk

 · ∆t,∀s, t, k, (124)

0 ≤ p(BS ,C)
stk ,∀s, t, k, (125)

0 ≥ p(BS ,D)
stk ,∀s, t, k, (126)

p(BS )
stk = p(BS ,C)

stk + p(BS ,D)
stk ,∀s, t, k, (127)

(p(BS )
stk )2 + (q(BS )

stk )2 ≤ (S (BS ,max)
s )2,∀s, t, k, (128)

e(min)
s ≤ estk ≤ e(max)

s ,∀s, t, k, (129)

ẽs(t+1)k = ẽstk +
(
p(BS ,D)

stk + p(BS ,C)
stk

)
· ∆t,∀s, t, k, (130)

e(min)
s ≤ ẽstk ≤ e(max)

s ,∀s, t, k, (131)(
p(PV)

itk

)2
+

q(PV)
itk +

3 · (v(net,PV)
i )2

x(PV)
i

2

≤

3 · v(net,PV)
i · v(con,PV)

i

x(PV)
i

2

,

∀i, t, k, (132)(
p(PV)

itk

)2
+

(
q(PV)

itk

)2
≤

(
S (PV,max)

i

)2
,∀i, t, k, (133)

0 ≤ p(PV)
itk ≤ p(PV,max)

itk ,∀i, t, k, (134)∣∣∣p(PL)
t + p(RE)

tk − p0tk

∣∣∣ ≤ δ,∀t, k, (135)∣∣∣q(PL)
t + q(RE)

tk − q0tk

∣∣∣ ≤ δ,∀t, k. (136)
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