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Abstract

Computational pathology is a domain that aims to de-
velop algorithms to automatically analyze large digitized
histopathology images, called whole slide images (WSI).
WSIs are produced scanning thin tissue samples that are
stained to make specific structures visible. They show stain
colour heterogeneity due to different preparation and scan-
ning settings applied across medical centers. Stain colour
heterogeneity is a problem to train convolutional neural net-
works (CNN), the state-of-the-art algorithms for most com-
putational pathology tasks, since CNNs usually underper-
form when tested on images including different stain varia-
tions than those within data used to train the CNN. Despite
several methods that were developed, stain colour hetero-
geneity is still an unsolved challenge that limits the develop-
ment of CNNs that can generalize on data from several med-
ical centers. This paper aims to present a novel method to
train CNNs that better generalize on data including several
colour variations. The method, called H&E-adversarial
CNN, exploits H&E matrix information to learn stain-
invariant features during the training. The method is evalu-
ated on the classification of colon and prostate histopathol-
ogy images, involving eleven heterogeneous datasets, and
compared with five other techniques used to handle stain
colour heterogeneity. H&E-adversarial CNNs show an
improvement in performance compared to the other algo-
rithms, demonstrating that it can help to better deal with
stain colour heterogeneous images.

*niccolo.marini@hevs.ch

1. Introduction

Stain colour heterogeneity remains a critical challenge in
computational pathology [39], despite the increasing num-
ber of methods developed to tackle the problem.

Stain colour heterogeneity is related to the colour varia-
tions of digitized histopathology images [40, 39, 21], called
whole slide images (WSI). WSIs include slices of tissue
samples collected through biopsies or surgical resections
to identify findings that may lead to diseases such as can-
cer [14]. Colour variations are due to the inconsistencies
in sample thickness, tissue preparation and tissue scan-
ning across different medical centers [28, 36, 19, 31, 39].
Tissue preparation involves several procedures, including
tissue staining. The staining involves the application of
chemical reagents on the sample to increase contrast among
structures within the tissue. Frequently, tissues are stained
with the combination of Hematoxylin and Eosin (H&E).
The Hematoxylin stains the cellular nuclei with shades of
blue, while the Eosin stains the cytoplasm and extracellu-
lar structures with shades of pink [40]. The concentrations
of H&E are not standardized, leading to variations of stain-
ing across medical centers. Tissue scanning is the high-
resolution digital acquisition of the image through whole
slide scanners. Several vendors produce whole slide scan-
ners, such as Aperio, 3DHistech, Hamamatsu. Each type
of scanner presents different properties and characteristics,
such as the pshysical temperature [26] (that influence the
stain reagents) or the light acquired by the scanner during
the acquisition, that influence the colour response of the
scanner [40]. Therefore, usually the images coming from
a medical center show specific colours due to the prepara-
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Figure 1. Example of colour variations in histopathology images,
collected from publicly available repositories. The figure includes
examples from colon tissue (above) and prostate tissue (below).

tion and the scanner adopted [38]. Figure 1 shows examples
of stain variations.

Computational pathology is a domain that aims to de-
velop algorithms to automatically analyze WSIs. Convolu-
tional Neural Networks (CNN) are the state-of-the-art algo-
rithm for most of the computational pathology tasks, reach-
ing high performance in tasks such as classification and
segmentation. Stain colour heterogeneity hinders the de-
velopment of CNNs that generalize well on unseen data,
especially when data originate from several medical cen-
ters [39, 41, 31, 19, 21]. CNN training aims to learn rele-
vant features for solving a task despite the stain variations
between the images [15]. However, CNNs usually under-
perform when tested on data with different colour variations
than the ones used to train the network [39], leading to mod-
els that are not effective when using data originating from
several medical centers [31]. This limitation increases the
strain needed to develop models that produce consistent re-
sults and generalize well on heterogeneous data [19], with
significant effects on the algorithms reliability [28].

Stain colour heterogeneity is still an unsolved problem in
computational pathology, despite of the increasing number
of methods developed to train CNNs that generalize bet-
ter on stain heterogeneous data. Methods to tackle stain
variations involve mainly two approaches: approaches us-
ing using (1) the pixel-space and (2) the feature-space [41].

Pixel-space methods include techniques to modify the char-
acteristics of the input images [10, 39, 28], such as colour
normalization and colour augmentation. Colour normal-
ization applies a transformation to the image in order to
match the stain of another image template [10]. Tradi-
tional colour normalization approaches aim to estimate a
colour matrix, that identifies the H&E components of the
image, such as [22, 40, 30]. More recent approaches, such
as [9, 33, 17, 4], involve Generative Adversarial Networks
(GAN) to normalize the images, learning to match differ-
ent stain distributions. Colour augmentation applies a ran-
dom perturbation to the image in order to have several stain
variations during training, working on the matrix that de-
scribes H&E components of the image or on the bright-
ness and contrast of the image [39]. Among these two
techniques, colour augmentation has shown to often reach
higher performance [39]. However, the augmentation re-
quires to tune the transformation parameters to avoid using
artefacts to train the network, since the perturbation is often
random. Feature-space methods include techniques, such
as domain-adversarial networks [28, 31, 15, 21], that force
the CNN to learn domain-invariant features during the train-
ing. Domain-adversarial networks work under the assump-
tion that images coming from the same domain (such as
the medical center, the patient or the tissue) share the same
staining. The CNNs, in parallel to the main task, learn fea-
tures that are invariant to the domain where the image orig-
inates from [13] and as a consequence invariant to the stain
variations. Domain-adversarial networks have often shown
higher performance when compared with colour augmenta-
tion, such as in [28, 21]. However, the definition of domain
can be too strict, e.g. in the case where each patient is con-
sidered a domain [15], or too broad, e.g. in the case where
each medical center is considered a domain [28, 21]. In the
first case, images from different patients can have the same
stain; in the latter case, images coming from the same med-
ical center can include different stains.

This paper aims to describe a novel integrated method to
train CNNs that better generalize on data including images
with colour variations that are different from the ones used
for training. The method is based on a multi-task CNN,
referred as H&E-Adversarial Network (H&E-AN). H&E-
AN includes two output branches: the first one classifies
histopathology images, while the second one predicts H&E
matrices linked to the images. H&E-AN training involves
the optimization of a loss function including two terms,
in order to learn discriminative and stain-invariant features
through the adversarial optimization, similar to the one pre-
sented in domain-adversarial CNNs [13, 28, 21, 15]. The
adversarial optimization goes in the opposite gradient di-
rection that minimizes the patch-classifier loss (to learn dis-
criminative features respect to the classes) and in the posi-
tive direction of the gradient for the H&E features, to max-
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imize the H&E-regressor loss.
The H&E-AN CNN is evaluated on colon and prostate

cancer WSI classification, comparing it with other algo-
rithms developed to alleviate stain colour heterogeneity.
Colon cancer is the fourth most commonly diagnosed can-
cer in the world [3]. Colon cancer diagnosis involves the
detection of malignant glands and small agglomerations of
cells [11], called polyps, on the colon border. Prostate can-
cer (PCa) is the second most frequent cancer in the male
population worldwide [29]. Prostate cancer is diagnosed
using the Gleason grading system [6] that involves the de-
tection and the estimation of malignant glands in order to
estimate the aggressiveness of cancer. The comparison is
made testing the methods on data originating from sev-
eral unseen medical centers, to assess the CNN capability
to generalize on images including stain variations. H&E-
AN CNN reaches higher performance in classifying both
prostate and colon images, compared with other methods
to handle histopathology stain variability, showing that the
method can help better deal with stain colour heterogeneous
images.

2. Methods
The paper proposes H&E-AN CNN method that exploits

the information related to H&E of the WSIs during the
training of a CNN in WSI patch classification, to learn stain-
invariant features. The information related to the H&E com-
position used to stain the image is a matrix M including the
RGB components of each reagent.

M =
(
HR HG HB

ER EG EB

)
For each of the patches, the H&E components are evalu-

ated using the method proposed by Macenko et al. [22], for
each patch in the training set. Each element of the matrix
includes values ranging from 0 to 1. The CNN is a multi-
task network f(θCNN , X) →(Y,M) with trainable param-
eters θCNN , that aims to predict the classes Y and the H&E
components M from the input patches X . The CNN in-
cludes three main components: a convolutional layer block
(ConvL), a classifier (Cl) and a regressor (r). The con-
volutional layers are a function f(θConvL, xi) →feat with
trainable parameters θConvL that produces a feature vec-
tor feati from an input patch xi. The classifier is a func-
tion f(θCl, feati) →y′i with trainable parameters θCl that
makes class predictions y′i from feati. The regressor is
a function f(θr, feati) →m′

i with trainable parameters θr
that predicts the H&E matrix component m′

i from feati.
The training of the network aims to learn features that

1) reach high performance in patches classification and 2)
do not take into account the stain variations of the training
samples. Therefore, the CNN must learn a feature represen-
tation f(θConvL) of the input data that is discriminative and
stain-invariant [12, 28]. The training of the CNN involves

the optimization of θConvL, θCl and θr. For the training,
the loss function Loss involves two terms: LossCl, that
measures the error in classification task and Lossr, that
measures the error in the regression task. The losses are
described as follows (where LCl and Lr are a measure of
discrepancy:

LossCl = (
1

N

N∑
n=1

LCl(f(θConvL, θCl, xi), yi) (1)

Lossr = (
1

N

N∑
n=1

Lr(f(θConvL, θr, xi),mi) (2)

Loss = LossCl + λ ∗ Lossr (3)

The equations show that both the classifier and the re-
gressor share the same set of features θConvL, that should
be both discriminative with respect to the classes and stain-
invariance. The mechanism to have discriminative features
is to minimize the LossCl (using Cross-Entropy as LossCl)
term of the loss function. The mechanism to obtain stain-
invariant features is to maximize the Lossr (using squared
L2-Loss as Lossr) of the loss function, as proposed in
domain-adversarial networks [13, 21, 28, 31, 15]. While
the minimization of regression loss function would lead to
learn the features to discriminate among stain variations, its
maximization leads to learn stain-invariant features, so that
the stain variations are indistinguishable for the model. The
squared L2-Loss function is chosen considering that the M
space does not include outliers that can hinder the regres-
sion, since the values in M range from 0 to 1. Regression
term maximization is achieved by modifying the CNN, in-
cluding a layer that reverses the gradients (through the mul-
tiplication of the gradient with a negative scalar λ) during
the backpropagation and leave them unchanged during the
forward propagation [12]. The network iterative stochastic
gradient mechanism for respectively θConvL, θCl, θr (µ is
the learning rate) is described as follows:

θConvL ← θConvL − µ(
∂Li

Cl

∂θConvL
− λ

∂Li
r

∂θConvL
) (4)

θCl ← θCl − µ(
∂Li

Cl

∂θCl
) (5)

θr ← θr − λµ(
∂Li

r

∂θr
) (6)

The CNN architecture is shown in Figure 2.

3. Experiments
Datasets The method is trained and evaluated on highly-
heterogeneous histopathological images, including colon
and prostate tissue. In both partitions, the images origi-
nate from several medical sources, guaranteeing high het-
erogeneity in terms of stain and allowing to evaluate the
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Figure 2. Overview of the H&E-adversarial CNN and of the training schema. The network includes three main components: convolutional
layers ConvL, that produce discriminative and stain-invariant features, the classifier Cl (purple) that predicts the class for the patches and
the regressor r (blue) that predicts the H&E matrix component of the patches. The training involves the optimization of two loss functions:
the minimization of LossCl for the classifier and the maximization of Lossr for the regressor. The latter term of the loss function is
maximized through a gradient reverse layer, that applies a negative scalar to the gradients during the backpropagation. This schema aims
to obtain discriminative (thanks to the classifier) and stain-invariant (thanks to the regressor) features.

Table 1. Composition of the colon dataset. The colon dataset orig-
inates from seven medical sources and it is annotated with three
classes: Cancer, Dysplasia and Normal. Data originating from
hospitals (AOEC and Radbouducm) are used to train, validate and
as internal test set for the CNN. Data originating from publicly
available repositories are used as external test set to evaluate the
capability of the CNN to generalize on stain heterogeneous data.

Medical Source Cancer Dysplasia Normal Total
AOEC 6158 23312 3853 33323
Training 4059 13170 3402 20631
Validation 844 4005 78 4927
Testing 1255 6137 373 7765
Radboudumc 4430 3542 1998 9970
Training 2995 2498 1304 6797
Validation 643 707 365 1715
Testing 792 337 329 1458
Internal Testing data 2047 6474 702 9970
AIDA 7881 3296 31859 43036
GlaS 450 0 210 660
CRC 1507 0 1144 2651
UNITOPATHO 0 18064 3487 21551
CAMEL 0 15757 12030 27787
External Testing data 9838 37117 48730 95685

capability of the CNN to generalize on images with unseen
stain variations. Image heterogeneity is shown in Figure 1
and Figure 3. As a basic overview, Figure 3 shows the
distribution of the patches according to their H&E compo-
nents. The components, highlighted with a different colour
to identify the dataset where they originate from, are pro-

Table 2. Composition of the prostate dataset. The prostate dataset
originates from four medical sources and it is annotated with four
classes: Benign, Gleason Pattern 3 (GP3), Gleason pattern 4 (GP4)
and Gleason pattern 5 (GP5). The TMAZ and Sicapv2 datasets
are used to train, validate and as internal test set for the CNN.
Gleason challenge and DiagSet datasets are used as external test
set, to evaluate the capability of the CNN to generalize on stain
heterogeneous data.

Medical Source Benign GP3 GP4 GP5 Total
TMAZ 3487 8946 7424 3610 23467
Training 2010 5992 4472 2766 15240

Validation 1350 1352 831 457 4927
Testing 127 1602 2121 387 4237
Sicapv2 11069 10784 2979 2767 27599
Training 9432 6499 2250 2011 20192

Validation 604 819 302 210 1935
Testing 1033 3466 427 546 5472

Internal Testing Data 1160 5068 2548 933 9709
Gleason Challenge 1080 2431 3649 100 7260

Diagset 8783 1243 4334 696 15056
External Testing Data 9863 3674 7983 796 22316

jected on a bidimensional space using the Principal Com-
ponent Analysis (PCA) [16].

The colon partition includes images collected from seven
medical sources. The images are WSIs (private dataset from
Azienda Ospedaliera per le Emergenze e Urgenze Canniz-
zaro, AOEC, private dataset from Radboudumc, Analytic
Imaging Diagnostics Arena [37], AIDA) and small cropped
sections of WSIs (Gland Segmentation in Colon Histol-
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Colon dataset

Prostate dataset

Figure 3. Stain heterogeneity across datasets. The Figure shows
the H&E components of the patches for colon (upper part) and the
prostate (lower part) datasets. The components are projected in a
bidimensional space through PCA analysis. Each dot is a patch,
highlighted with a different colour according to the source dataset.

ogy Images Challenge [35], GlaS, ColoRectal Cancer Tis-
sue Phenotyping [2], CRC, UNITOPATHO [5], CAMEL
dataset [43]). The WSIs are pixel-wise annotated by pathol-
ogists, while the cropped sections are annotated at section
level. Among all the annotations available, the classes cho-
sen to test the method are cancer, dysplasia and normal

tissue. AOEC and Radboudumc private datasets originate
from two hospitals and are used to train, validate and test
the method, as internal testing data. The other five datasets
originate from publicly available repositories and are used
as external test data. Table 1 summarizes the colon partition
composition.

The prostate partition includes images collected from
four publicly available datasets. The images are Tis-
sue Micro Arrays (TMAs) (The Tissue Micro Aarray
Zurich [1], TMAZ, and Gleason Challenge [27, 18]) and
WSIs (Sicapv2 [34] and DiagSet [20]). The images are
pixel-wise annotated by pathologists, with benign, Gleason
Pattern 3 (GP3), Gleason Pattern 4 (GP4) and Gleason Pat-
tern 5 as classes. TMAZ and Sicapv2 and are used to train,
validate and test the method, as internal testing data. Glea-
son Challenge and DiagSet are are used as external test data.
Table 2 summarizes the prostate partition composition.

Pre-processing The image-preprocessing involves WSI
splitting into patches and the extraction of the patches com-
ing from tissue regions, for both colon and prostate. The
patches are 224x224 pixels in size, in order to facilitate the
input for the CNN. The colon dataset includes WSIs and
cropped sections of WSIs. The WSIs come with a tissue
mask, including pixel-wise annotations. WSIs are split into
a grid of patches at magnification 10x. The grid is built
based on the highest magnification level available Mm, with
patches of ps in size. Afterwards, grid patches are resized
to 224x224, using the following equation, as shown in [24]:

224 : 10 = ps : Mm (7)

The cropped sections come without a tissue mask, but being
small images, the section’s label is assigned to the tissue. In
order to avoid the extraction of patches from background re-
gions, a tissue mask is generated using the method proposed
by [32]. Patches are randomly extracted, with a variable
number depending on the size of the images, to avoid strong
overlap of the patches: 20 from CRC, 2 from GlaS, 5 from
UNITO and CAMEL. The numbers are chosen considering
the amount of pixels included in each of the datasets.

The prostate dataset includes pixel-wise annotated
TMAs and WSIs. The patches are extracted with a size
of 750x750 pixels from magnification 40x and resized to
224x224, as shown in [1, 23]. In TMAs (TMAZ and Glea-
son Challenge), 30 patches are randomly extracted from
each core. In WSIs (Sicavp2 and Diagset), the images are
split into a grid of patches from the highest magnification
level available, as shown for colon WSIs, using the follow-
ing equation:

750 : 40 = ps : Mm (8)

Comparison with other methods The method proposed
in this paper is compared with other methods developed
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to train CNNs that generalize on data with high stain het-
erogeneity. All the methods are evaluated using quadratic
weighted Cohen’s Kappa score (κ-score) [25] as metric and
the Wilcoxon Rank-Sum test [42] is applied to check if the
improvement obtained by the H&E-AN is statistically sig-
nificant. The comparison involves six methods: a CNN
trained without any augmentation or normalization of the
images, a CNN trained using a stain normalization method,
a CNN trained using stain normalization through a Stain-
GAN, a CNN trained using colour augmentation methods,
a CNN trained using stain augmentation, a CNN trained us-
ing a domain-adversarial network. For each method, the
performance is evaluated on the internal test set, on the ex-
ternal test and on their combination. The stain normaliza-
tion method is the one proposed by Macenko et al. [22].
For each type of tissue, a target image is randomly selected
so that the stains of all the images in training and testing
sets matches the target image’s stain. The StainGAN net-
work is the one proposed by Shaban et al. [33], to normal-
ize images from different domains. In this case, the Stain-
GAN is pre-trained to normalize images through the train-
ing datasets, for colon and prostate. Afterwards, the net-
work is used to normalize images during CNN training. The
stain augmentation method involves the perturbation of the
colours within the images [39]. The parameters involved
in the random perturbation are the brightness, hue, satura-
tion. The stain augmentation method involves the perturba-
tion of the H&E matrix [39]. Two parameters are involved:
a random constant σ1 (multiplied to the H&E matrix) that
scales the colour intensity and a random constant σ2 (added
to the H&E matrix * σ1 product) that increase or reduce the
colour intensity. The domain-adversarial CNN is the one
proposed by Otalora et al. [28]. The network is a multi-
task CNN, that predicts the patches and predicts the domain
where they originate from. As described for the StainGAN
implementation, the domain-adversarial CNN is trained us-
ing data from two domains.

The κ-score is a metric that measures the reliability be-
tween annotations, commonly used in histopathology to as-
sess the pathologists’ performance in the evaluation of im-
ages. In this case, the annotations are the predictions made
by the CNN and the ground truth made by pathologists. The
optimal value of the κ-score is 1, which means a complete
agreement between the annotations, while a κ-score equal
-1 means a complete disagreement between the annotations.
κ-score equal 0 means random agreement, as the measure
is normalized with respect to agreement by chance.

The Wilcoxon Rank-Sum test is used to assess if two
probabilistic populations have the same distribution (null
hypothesis). The null hypothesis is tested positive when the
p-value > 0.05, while it is tested negative (or rejected) when
the p-value < 0.05. In this case, the comparison is made be-
tween the H&E-AN and the method that reaches the highest

performance among the six other methods evaluated. If the
null hypothesis is tested negative, the improvement is sta-
tistically significant.

Experimental parameters The proposed H&E-
adversarial CNN and the methods used for comparison are
implemented on the same backbone architecture and are
trained multiple times, adopting the same strategy to set
the hyper-parameters and to face the class imbalance. The
backbone architecture is a DenseNet121 (pre-trained on
ImageNet). The network produces a feature vector of size
1024 for each input patch. An intermediate fully connected
layer with 128 nodes is inserted between the classifier and
the output of the classifier. For each method, the CNN is
trained ten times (average and standard deviation of the
models are reported) to limit the non-deterministic effect of
the stochastic gradient descent used to optimize the model.
CNN hyper-parameters are chosen after the evaluation of
a grid search algorithm [8]. Grid search aims to find an
optimal configuration for the CNN hyperparameters. In
this case, the optimal configuration is the one that allows
the CNN to have the lowest loss function on the validation
partition. The hyper-parameters involved in the grid search
are the optimizer (Adam), the learning rate (10−3), the
decay rate (10−4), the number of epochs (15 epochs with
an early stop mechanism used to stop the training if the
validation loss function has not decreased for more than
five epochs), the number of nodes within the intermediate
fully-connected layers (128), σ1 and σ2 for the stain
augmentation algorithm (both 0.2), the λ parameter for the
domain-adversarial CNN and for H&E-AN (respectively
0.5 and 1). Moreover, the grid search algorithm is adopted
to identify the shifts for colour algorithm: in the colon
data the hue shift is limited to be between -15 and 8, the
saturation shift between -20 and 10 and the brightness shift
between -8 and 8, while in prostate data the hue shift is lim-
ited to be between -9 and 9, the saturation shift is limited to
be between -25 and 25 and the brightness shift is limited to
be between -10 and 10. The effects of class imbalance are
handled adopting a class-wise data augmentation method,
involving three operations: rotations, flipping and colour
augmentation. Data augmentation is implemented with the
Albumentations library [7].

4. Results
The H&E-AN outperforms the CNNs trained using other

methods, demonstrating the capability to better alleviate
stain heterogeneity in colon and prostate histopathology im-
age classification.

The evaluation on colon data involves the classification
of cancer, dysplasia and normal glands on the internal test
set (including AOEC and Radboudumc test partitions), the
external test set (including AIDA, GlaS, CRC, UNITO and
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Table 3. Overview of the CNN results on the colon test partitions, assessed with the κ-score for each of the methods tested. The results that
are statistically significant (compared with the method reaching the highest performance among the ones used as comparison) are reported
with an asterisk (*).

Method Internal Test Set External Test Set Test Set
no augmentation 0.644 ± 0.037 0.424 ± 0.074 0.453 ± 0.075
stain normalization [22] 0.650 ± 0.036 0.492 ± 0.037 0.510 ± 0.034
StainGAN [33] 0.474 ± 0.062 0.463 ± 0.053 0.487 ± 0.051
colour augmentation 0.636 ± 0.032 0.488 ± 0.049 0.518 ± 0.046
stain augmentation 0.655 ± 0.033 0.498 ± 0.041 0.515 ± 0.034
domain adversarial [28] 0.621 ± 0.044 0.497 ± 0.039 0.513 ± 0.046
Our Method 0.661 ± 0.030 0.532 ± 0.038* 0.556 ± 0.040*

Table 4. Overview of the CNN results on the prostate test partitions, assessed with the κ-score for each of the methods tested. The results
that are statistically significant (compared with the method reaching highest performance among the ones used as comparison) are reported
with an asterisk (*).

Method Internal Test Set External Test Set Test Set
no augmentation 0.712 ± 0.026 0.052 ± 0.099 0.142 ± 0.081
stain normalization [22] 0.679 ± 0.066 0.271 ± 0.101 0.336 ± 0.078
StainGAN [33] 0.633 ± 0.065 0.244 ± 0.113 0.344 ± 0.080
colour augmentation 0.714 ± 0.044 0.418 ± 0.043 0.476 ± 0.040
stain augmentation 0.687 ± 0.040 0.312 ± 0.104 0.298 ± 0.086
domain adversarial [28] 0.670 ± 0.071 0.390 ± 0.110 0.449 ± 0.098
Our Method 0.725 ± 0.035 0.474 ± 0.066* 0.532 ± 0.057*

CAMEL datasets) and the cumulative test set, including the
combination of the internal and external test sets. The H&E-
AN outperforms the other methods in each of the colon test
sets. While in the internal test set the performance of the
method is comparable with the ones of the other methods,
on both the external and cumulative test sets the H&E-AN
method obtains statistically significant improvements over
the other methods. The CNN reaches respectively a κ-
score = 0.532±0.038 (higher than the best among the other
methods used for the comparison, the CNN trained with
stain augmentation on the external test set) and κ-score =
0.556 ± 0.040 (higher than the best among the other meth-
ods used for the comparison, the CNN trained with stain
augmentation on the cumulative test set).

The evaluation on prostate involves the classification of
benign, Gleason pattern 3 (GP3), Gleason pattern 4 (GP4)
and Gleason pattern 5 (GP5) on the internal test set (includ-
ing the TMAZ and Sicapv2 test partitions), the external test
set (including Gleason Challenge and DiagSet datasets) and
the cumulative test set, including the combination of the in-
ternal and external test sets. The H&E-AN outperforms the
other methods in each of the prostate test sets. While on the
internal test set the performance of the method is compara-
ble with the ones of the other methods, in both the external
and cumulative test sets H&E-AN the method obtains sta-
tistically significant improvements over the other methods.
The CNN reaches respectively a κ-score = 0.474 ± 0.066
(higher than the best among the other methods used for the
comparison, colour augmentation, on the external test set)

and κ-score = 0.532 ± 0.057 (higher than the best among
the other methods used for the comparison, colour augmen-
tation, on the cumulative test set).

5. Discussion

The results show that the H&E-AN obtains higher per-
formance compared with the other methods proposed in
scientific literature to train CNNs that generalize on stain
heterogeneous data, learning a stain-invariant feature repre-
sentation. The H&E-AN reaches the highest performance
in both colon and prostate image classification, considering
both the internal and the external test set. The result sug-
gests that the model generalizes better on datasets including
heterogeneous stain variations. This fact can be explained
considering the training mechanism of the multi-task net-
work. During the training, the loss functions measuring the
error in classification is minimized, while the loss function
measuring the error in the regression of the H&E matrix is
maximized. This loss function encourages the CNN to learn
features that are determinant for the classification (through
the minimization of classifier loss) and that are not depen-
dent on the stain variations (through maximization of the
regressor). Domain-adversarial CNNs inspire the mecha-
nism. However, domain-adversarial CNNs rely on the do-
main concept, which may be fuzzy considering that images
from the same domain may have different stain variations
or that images from different domains may share the same
stain variations. On the other hand, the regression of the
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Figure 4. Stain-invariant feature representation of the images. The figure shows the distribution learnt by the CNN for the colon patches
(left) and prostate (right), projecting the features in a bidimensional space through the PCA algorithm. The features are invariant to the
stain, since it is possible to identify regions including a structure, such as glands, where several stain variations are present. The patches are
highlighted with colour corresponding to the predicted class. In the colon subfigure: red is cancer, green is dysplasia, blue means normal
glands. In prostate: red is benign, green is Gleason pattern 3, blue is Gleason pattern 4, yellow is Gleason pattern 5.

H&E matrix allows the model to directly learn features in-
variant to the stain instead of features invariant to the do-
main. The internal test set (including data coming from
the same repository used to train the CNNs) and the exter-
nal one (including data coming from unseen repositories)
are heterogeneous. This fact can be seen looking at Fig-
ure 3, which shows the patch distribution highlighting the
dataset source and considering the results reached by the
CNN trained without any normalization or augmentation.
Without keeping into account data heterogeneity, the CNN
reaches good performance on the internal test set, where the
stain variations are similar to the ones within the training
set. However, the CNN underperforms (on prostate data the
model can be considered as a random classifier) when tested
on the external test set, including different stain variations.

The fact that the H&E-AN reaches the highest perfor-
mance on the external data can be explained with the fact
that the CNN learns stain-invariant features during the train-
ing, as shown in Figure 4. The Figure shows the feature
representation of the H&E-AN, for both colon and prostate
images. The features (from ConvL block) of each patch
are projected on a bidimensional space, using the PCA al-
gorithm. Within the distribution, it is possible to identify
regions including similar structures, such as healthy glands
in colon (bottom right) or malignant glands infiltrated with
cells in prostate (top left). Those regions includes patches

with different stain variations, that are positioned in the
same zone.

6. Conclusions
This paper introduces a novel H&E-AN to train CNNs

that better generalize on stain heterogeneous data. The
method exploits the H&E information of the images to learn
stain invariant-features. The method involves a multi-task
CNN, including a classifier (to predict patch classes) and a
regressor (to predict the H&E matrix). The H&E-AN out-
performs other methods considered in the comparison, in-
cluding colour normalization, StainGAN, colour augmen-
tation and domain-adversarial CNN, demonstrating its use-
fulness to handle stain variability in digital pathology im-
ages. We plan to test H&E-AN on other tasks (such as
segmentation) and other datasets, evaluating the possibility
to combine the method with other techniques and expand-
ing the comparison to other methods. The code with the
H&E-AN implementation is publicly available on Github
(https://github.com/ilmaro8/HE adversarial CNN).
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