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Determining the number of stable phase-locked solutions for locally coupled Kuramoto models
is a long-standing mathematical problem with important implications in biology, condensed
matter physics and electrical engineering among others. We investigate Kuramoto models on
networks with various topologies and show that different phase-locked solutions are related to
one another by loop currents. The latter take only discrete values, as they are characterized by
topological winding numbers. This result is generically valid for any network, and also applies
beyond the Kuramoto model, as long as the coupling between oscillators is antisymmetric in
the oscillators’ coordinates. Motivated by these results we further investigate loop currents
in Kuramoto-like models. We consider loop currents in nonoriented n-node cycle networks
with nearest-neighbor coupling. Amplifying on earlier works, we give an algebraic upper bound
N ≤ 2 Int[n/4] + 1 for the number N of different, linearly stable phase-locked solutions. We
show that the number of different stable solutions monotonically decreases as the coupling
strength is decreased. Furthermore stable solutions with a single angle difference exceeding
π/2 emerge as the coupling constant K is reduced, as smooth continuations of solutions with
all angle differences smaller than π/2 at higher K. In a cycle network with nearest-neighbor
coupling we further show that phase-locked solutions with two or more angle differences larger
than π/2 are all linearly unstable. We point out similarities between loop currents and vortices
in superfluids and superconductors as well as persistent currents in superconducting rings and
two-dimensional Josephson junction arrays.

PACS numbers: 05,45.-a, 05.45.Xt, 84.70.+p
Keywords: Kuramoto model, multistability, winding numbers, loop flows

I. INTRODUCTION

From large colonies of fireflies flashing in unison to single-frequency electric power grids covering areas
as large as entire continents, from human brain waves to arrays of submicronic Josephson junctions,
there are many, disparate systems that exhibit collective synchrony1. Following early works, most
notably by Winfree2, a window towards a quantitative, mathematical understanding of collective
synchrony was opened by Kuramoto3 who proposed a model of coupled oscillators defined by the
following set of nonlinear differential equations

θ̇i = Pi −
n
∑

j=1

Kij sin(θi − θj) , i = 1, . . . n . (1.1)

The model describes the dynamics of a set of n one-dimensional oscillators with angular coordinates θi
and natural frequencies Pi under the influence of a coupling that is periodic in their angle differences.

http://arxiv.org/abs/1512.04266v2
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The Kuramoto model has become a standard model for investigating the transition to synchrony in
coupled dynamical systems4–6.
The beauty of the Kuramoto model is that it is sufficiently simple to allow for analytical treatments

of the emergence of synchrony in coupled oscillators systems, while retaining most of the essence of
this complex problem. As a matter of fact, Kuramoto observed early on that for constant all-to-all
coupling, Kij ≡ K/n, an analytically solvable mean-field solution becomes exact in the large n limit.

A coherent, synchronous state {θ(0)i } emerges for K > Kc in the form of a solution to Eq. (1.1) with

θ̇
(0)
i − θ̇

(0)
j = 0, for at least a finite fraction of pairs of oscillators (i, j). The critical coupling strength

Kc depends on the distribution g(P ) of natural frequencies Pi, and phase-locking with θ̇
(0)
i − θ̇

(0)
j = 0,

for all i, j, can be achieved if g(P ) has compact support7,8.
Most physical systems exhibiting synchrony consist however in collections of subsystems with short-

range coupling. The problem becomes much more complicated for Kuramoto models defined on such
complex networks with reduced node degree because the mean-field approach no longer applies. Phase-

locked solutions {θ(0)i } to Eq. (1.1) are determined by

Pi =

n
∑

j=1

Kij sin(θ
(0)
i − θ

(0)
j ) , (1.2)

i.e. by a set of n nonlinear algebraic equations which, in principle, accept more than one solution. For

instance new solutions to Eq. (1.2) can be obtained from known solutions by substituting θ
(0)
i −θ

(0)
j →

π − (θ
(0)
i − θ(0)j ) for some or all (i, j). This can lead, in principle, to an exponential number ∝ 2n of

solutions, however, many of them are not dynamically stable in the sense given by Eq. (1.1). It has
in particular been shown that there is a single stable solution above the transition to synchrony for
all-to-all couplings9,10 and for identical oscillators (Pi = P̄ , for all i) on networks with sufficiently large
node degree11.
To be physically relevant, a solution of Eq. (1.2) needs to be robust against any small perturbation.

Thus, the truly important question is ”how many linearly stable phase-locked solutions to the Kuramoto
problem are there ?” This question dates back at least to the work of Korsak12 in the context of the
power flow problem (dealing in particular with conditions for operational synchrony in the electric
power grid)13, which is closely related to the Kuramoto model. As a matter of fact, it turns out (see
below in Section IIA) that for high voltages, a first approximation is to neglect ohmic losses, in which
case AC electric power transport between the nodes of a power grid is governed by Eq. (1.2), with
Pi being the power injected (Pi > 0) or extracted (Pi < 0) at node i. Korsak provided a simple
example of a network where different, linearly stable solutions exist that differ by some circulating
loop current. Similar works have dealt with that problem since then, motivated by issues of voltage
and phase stability that are central to the stable, synchronous operation of electric power grids. Most,
if not all of these investigations are however restricted to numerical investigations on small networks.
The literature on the subject is rather large and we refer the interested reader to Refs. 14 and 15
for more information. Bounds for the number of different stable solutions were first constructed in
the spirit of the argument given after Eq. (1.2). In this way, Refs. 16 and 17 gave an exponential
upper bound for the number of power flow solutions, as did Ref. 18 for the phase-locked solutions of
the Kuramoto model. Ref. 18 observed numerically, however, that the number of stable solutions is
much smaller than 2n. Below we show that a much better, algebraic upper bound is obtained when
considering that quantized loop currents differentiate between different stable solutions.
To the best of our knowledge, the characterization of loop flows with topological winding numbers

has been first made by Janssens and Kamagate19, though Lüders (in a referee discussion at the end
of Ref. 12) and Ermentrout7 already point to it. Topological winding numbers emerge from the
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consistency requirement that summing angle differences along any cycle in a network must give an
integer multiple of 2π. Below we illustrate how this leads to loop currents that can take only discrete
values. Similar considerations in a different physical context lead to the quantization of circulation
around vortices in a superfluid20,21 or a type-II superconductor22 and to the quantization of persistent
currents in superconducting rings23,24 and rings of Josephson junctions25. That such a similarity
exists is not a surprise, given that each term on the right-hand-side of Eq. (1.2) gives the Josephson

current between two superconductors with order parameter ψi,j = n
1/2
s exp iθ

(0)
i,j coupled by a tunnel

junction of transparency Tij = ~Kij/8ens. More surprising, however, is that investigations on small
cycle networks with injections and consumptions show that loop currents persist even in networks with
ohmic dissipation12,26.
Using winding numbers, Rogge and Aeyels27 obtained an algebraic upper bound N ≤ 2 Int[n/4]+ 1

for the number of stable solutions with any angle difference in a Kuramoto model on a n-node ring with
unidirectional nearest-neighbor couplings. The same upper bound has been calculated by Ochab and
Góra28 in a nonoriented n-node Kuramoto ring with nearest-neighbor coupling, under the condition
that all angle differences are smaller than π/2. This upper bound is reached when the coupling strength
goes to infinity, equivalently corresponding to Pi = 0, for all i in Eqs. (1.1) and (1.2), i.e. to identical
oscillators. This alternatively gives the number of stable states for Josephson junction rings in the
classical regime, neglecting Coulomb interaction effects24,25. Different solutions for the Kuramoto
model where investigated semi-analytically in Ref. 29 and classified according to two integers, q (the
winding number mentioned above) and l (the number of angle differences larger than π/2) in Ref. 30.
In a somewhat different but related direction of investigation, Wiley et al.31 investigated the size of the
basin of attraction for synchronous solutions with different q in a cycle network of identical oscillators
and found that it gets smaller at higher q.
Below we show that two different solutions to Eq. (1.2) on any network differ only by loop currents.

This provides additional motivation for investigating loop currents as it rigorously connects them
to multiple stable solutions to Eq. (1.2). We thus investigate single-loop networks and show that
the algebraic upper bound of Rogge and Aeyels27 and Ochab and Góra28 is generically valid for
the Kuramoto model on a nonoriented cycle with nearest-neighbor interactions. We furthermore
demonstrate that, for such networks, at most one angle difference can exceed π/2. Stable solutions
are in particular restricted to only l = 0 or l = 1 in the classification scheme of Ref. 30. We show that
the number of stable solutions decreases monotonically as the coupling strength is reduced, and that
solutions with l = 1 emerge continuously at lower coupling from solutions with l = 0.

The manuscript is organized as follows: Section II states the initial concepts and defines the model
considered. Loop flows and their link with multiple solutions to the power flow equations are discussed
in Section III. Section IV gives a complete study of the multiple stable solutions to the power flow
equations on a cycle network. Conclusions are given in Section V.

II. DEFINITIONS AND FUNDAMENTAL CONCEPTS

We are interested in a class of problems represented by at least three important physical systems.
We have already defined the Kuramoto model in Eq. (1.1), for which more details can be found in
review articles4–6. We have briefly mentioned vortices in superfluids and superconductors, as well as
Josephson junction arrays, where circulating supercurrents are given by laws similar to Eq. (1.2) and
for which a rather vast literature, including review articles, also exists32–34. These problems are well
documented in the physics literature and we therefore do not discuss them further. Electric power
grids are less known in physics and we start with a brief introduction to this third class of problems,
emphasizing its connection with the Kuramoto model of Eq. (1.1).
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A. Power Flow and Swing Equations

Power grids are AC electric networks. They can be modeled as graphs with n nodes where each node
i = 1, ..., n injects (consumes) a power Pi > 0 (Pi < 0). The edges of the graph represent electrical
lines with a complex admittance Y = G + iB. Power grids span different voltage levels separated
by transformers which, to a good approximation, conserve power but neither current nor voltage.
Additionally, the control variables are the injected and consumed powers, therefore the equations
governing the behavior of the system are expressed in terms of electric powers and not currents.
Considering a generating power plant, the balance between the source (mechanical, thermal, chemical
or nuclear) power, the transmitted (electric) power and the losses leads to the swing equations13

θ̇i = Pi −
n
∑

j=1

|Vi| |Vj | [Gij cos(θi − θj) +Bij sin(θi − θj)] , i = 1, . . . n , (2.1)

where θi is the angle between the currents Ii = |Ii| exp(iωt) and the voltages Vi = |Vi| exp(iωt+iθi) (in
a frame rotating with the frequency ω/2π = 50 or 60 Hz of the grid), θi−θj is taken in

(

−π, π
]

and G

and B are the conductance and susceptance matrices respectively13. In Eq. (2.1), we already consider
a simplified version of the swing equations, where we neglected the inertia of the (rotating) generators.
We did that since our main interest is to determine whether a solution is stable or not, which is not
influenced by the presence of an inertia term (note that the inertia influences stability time scales13).
In most of our discussion we make a second approximation and consider networks of purely susceptive
lines with Gij = 0. This is a leading order approximation in the small parameter Gij/Bij < 0.1 valid
for very high voltage networks. With this approximation, lines have no ohmic losses and all nodes are
at the same voltage. For the sake of simplicity, we will also consider lines with identical capacities and
set K := |Vi||Vj |Bij , on all edges 〈ij〉. With all these approximations, Eq. (2.1) leads to an equation
similar to Eq. (1.1),

θ̇i = Pi −K
∑

j∼i

sin(θi − θj) , i = 1, . . . n , (2.2)

where the sum is taken over nodes j connected to node i (j ∼ i) and phase-locked solutions are
governed by the power flow equations, which reduce to the form of Eq. (1.2),

Pi = K
∑

j∼i

sin(θi − θj) , i = 1, . . . n . (2.3)

Electric power grids are balanced in steady-state, meaning that power injections exactly compensate
power consumptions, i.e.

∑

i

Pi = 0 .

Additionally, injected and consumed powers are confined to a compact support, Pi ∈ [Pmin, Pmax]
which is necessary for the existence of phase-locked synchronous solutions7,8.
We note finally that the quantity Pij := K sin(θi−θj) represents the power flow along line 〈ij〉, from

site i to site j, so that Eq. (2.3) can be rewritten as

Pi =
∑

j∼i

Pij , (2.4)
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which is Kirchhoff’s currents law. Below we often use the power flow terminology and in particular
we discuss loop flows to describe circulating flows around closed cycles that do not distribute power to
consuming nodes. Eq. (2.3) only depends on angle differences, thus any solution is defined up to an
homogeneous displacement of all angles. This gauge invariance allows to arbitrarily define a reference
node whose angle is set to zero. All other angles are then determined with respect to that reference
angle.

B. Stability

The swing equations, Eq. (2.2), govern the system’s dynamics and allow to determine the linear
stability of solutions of Eq. (2.3). Under small perturbations about such a phase-locked solution,

θ
(0)
i → θ

(0)
i + δθi, the linearized dynamics reads

δθ̇i = −
∑

j∼i

K cos(θ
(0)
i − θ

(0)
j )(δθi − δθj) , i = 1, . . . n . (2.5)

The linear stability of the solution {θ(0)i } is therefore determined by the spectrum of the stability matrix

M({θ(0)i }),

Mij :=







K cos(θ
(0)
i − θ

(0)
j ) , if i 6= j ,

−
∑

k∼i

K cos(θ
(0)
i − θ

(0)
k ) , if i = j , (2.6)

which depends on the angles at the phase-locked solution. The eigenvalues of M({θ(0)i }) are called
Lyapunov exponents. Because

∑

j Mji =
∑

j Mij = 0, for all i, the constant vector is an eigenvector of
M with eigenvalue λ1 = 0. This follows from the above mentioned gauge invariance, where only angle
differences between oscillators matter. Furthermore, as M is real symmetric, all its eigenvalues are

real. Thus the synchronous state is stable ifM({θ(0)i }) is negative semidefinite and unstable otherwise.
In other words, the synchronous solution remains stable as long as the largest nonvanishing eigenvalue

λ2 of M({θ(0)i }) remains negative.

To the best of our knowledge, it was first mentioned in Ref. 35 that as long as all angle differences
are in

[

− π/2, π/2
]

, Gershgorin’s circle theorem36 guarantees that M is negative semi-definite. Then

all Lyapunov exponents are non-positive, which implies that any solution of Eq. (2.3) with θ
(0)
i −θ

(0)
j ∈

[

−π/2, π/2
]

on each of the graph’s edges is linearly stable. The same theorem allows to conclude that

if |θ(0)i − θ(0)j | > π/2 on all edges, the solution is linearly unstable. Recent works have investigated

solutions with a single angle difference larger than π/2 in a Kuramoto model on a cycle network29,30.
However, little is known analytically if some of the angle differences are smaller and some are larger
than π/2, except on cycle networks with unidirectional nearest-neighbor coupling27. Below we fill this
gap and show that at most one angle difference is bigger than π/2 and that a stable solution with
one angle difference exceeding π/2 comes from a solution at larger K with all angle differences smaller
than π/2.
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III. LOOP FLOWS AND WINDING NUMBER

In this section we show that different solutions of Eq. (2.3) for any network differ only by circulating
loop flows. This rigorous result, which appeared in slightly different form in Ref. 37, sheds light
on the common wisdom that Eq. (2.3) may have multiple stable solutions for networks with closed
cycles12,19,27,31. Before we discuss this theorem, we recall some definitions from graph theory which
we will use.

Definition III.1. A graph G = (VG, EG) is a set of vertices VG with a set of edges EG, each of which
is a pair of connected vertices. If i, j ∈ VG, the edge connecting i to j is 〈ij〉 ∈ EG.

Definition III.2. A path from vertex i to vertex j in a graph G is a sequence S ⊂ EG of edges

S = {〈ii1〉, 〈i1i2〉, ..., 〈iℓj〉} .

Definition III.3. A graph is connected if for any two vertices i, j ∈ VG there exists a path from i to
j.

Definition III.4. A cycle in a graph is a path from a vertex i to itself going at most once through
any edge.

Definition III.5. A tree is a connected graph with no cycle. Given a graph G = (VG, EG), a span-

ning tree T of G is a tree such that VT = VG and ET ⊂ EG.

Remarks. (i) It can be shown inductively that a tree with n vertices has exactly n− 1 edges.

(ii) On a tree-network, there is a unique flow distribution satisfying Kirchhoff’s current law.

In what follows, we use the terms network and grid to denote physical objects, whose mathematical
representations will be referred to as graphs. Additionally, we introduce the concept of loop flows, which
are constant power flows circulating clockwise or anticlockwise around a cycle in a network. Strictly
speaking, loop flows can be univocally defined only when power is neither injected nor consumed in
the network. With finite power injections and consumptions, loop flows can be defined only relatively,
as flow differences from a reference solution, in the spirit of the upcoming theorem.

Let G be a graph and OG an arbitrary orientation of this graph, which means that we define
positive and negative directions for every edge of G in the following way. For each edge 〈ij〉 we call the
vertex i the source of the edge and j its target. Consider the real vector space I ≃ R

m of flows on the
m edges of a graph G. The components {Iℓ} of a flow vector I ∈ I describe the intensity of the flow
on the ℓth edge of G, with Iℓ > 0 if the direction of the flow agrees with the orientation of this edge
given by OG, and Iℓ < 0 otherwise. The canonical basis of I is the set of flow vectors Jℓ, ℓ = 1, ...,m,
with unit flow on edge ℓ and zero flow on all other edges. Given a vector of power injections and
consumptions at every node,

P = (P1, ..., Pn) ∈ (1, ..., 1)⊥ ⊂ R
n ,

a flow vector I ∈ I satisfies Kirchhoff’s current law Pi =
∑

j∼i Pij if

Pi =
∑

ℓ

AiℓIℓ i = 1, ..., n , (3.1)
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where we introduced the incidence matrix A of G,

Aiℓ :=







1 , if node i is the source of edge ℓ ,
−1 if node i is the target of edge ℓ ,
0 , otherwise .

We are now ready to formulate and prove our theorem.

Theorem III.6. Let G = (VG, EG) be a connected graph with |VG| = n sites and |EG| = m edges. Let
P ∈ (1, ..., 1)⊥ be a vector of power injections and consumptions at each node. Then two distributions
of flows on G represented by flow vectors I′ and I

′′ ∈ I satisfying Kirchhoff’s currents law, Eq. (2.4),
differ by a combination of loop flows on the different cycles of G.

Remark. In particular, Theorem III.6 implies that the flow distributions of two different solutions of
Eq. (2.3) differ by a collection of loop flows. This result already appeared in slightly different form in
the Supporting Information of Ref. 37.

Proof. If m = n− 1, then G is a tree and the flows on the lines are uniquely determined, which agrees
with the statement because G has no cycle. Therefore, from now on we assume m ≥ n. Let T be a
spanning tree of G and let us number the edges of T from 1 to n− 1 and the edges of G \ T from n to
m. Let I◦ := I

′ − I
′′ be the difference between the two flow vectors. Then, for any i we have

∑

ℓ

AiℓI
◦
ℓ =

∑

ℓ

Aiℓ(I
′
ℓ − I ′′ℓ ) = Pi − Pi = 0 ,

from which we conclude that I
◦ is a solution of Eq. (3.1) with P = 0. What we need to show is

therefore that any solution I of the system of equations

∑

ℓ

AiℓIℓ = 0 , i = 1, ..., n , (3.2)

is a combination of loop flows. To do this we write Eq. (3.2) in matricial form,

AI = 0 . (3.3)

By definition, the set of solutions of Eq. (3.3) is the kernel of A, which is a subspace of I.
In algebraic graph theory, ker(A) is referred to as the cycle space and it is a standard result38

that any element in ker(A) is a linear combination of unitary flows along the cycles of the network
considered. This completes the proof.

Remark. Theorem III.6 is not restricted to the power flow problem. It generically applies to any
system of coupled oscillators with antisymmetric coupling, in particular to the Kuramoto model on any
network.

Indexing the nodes along one such cycle, we write Pi,i+1 for the power flow from node i to node
i + 1, with indices taken modulo n. Theorem III.6 states in particular that multiple solutions to
Eq. (2.3) can appear only when there are closed cycles in the network.
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Alternatively, any flow {Pi,i+1} on a cycle can be written as the sum of a reference solution,
characterized by its flows {P ∗

i,i+1}, and a loop flow of intensity Kε, circulating around the cycle (see
Fig. 1),

Pi,i+1 = P ∗
i,i+1 +Kε .

We call ε ∈
[

− 1, 1
]

the loop flow parameter. It is only defined with respect to a reference solution,
which is conveniently constructed from the Pi’s as

P ∗
i,i+1 :=

i
∑

j=1

Pj , i = 1, ..., n .

Note that the reference solution depends on node numbering and any other flow distribution satisfying
Kirchhoff’s power balance can be taken as reference solution.

As angle differences ∆ij := θi− θj are taken modulo 2π in the interval (−π, π], their sum over the
cycle gives an integer multiple of 2π. This brings us to the definition of the winding number.

Definition III.7. For a given solution of the power flow Eq. (2.3) on the cycle, we define its winding

number as the integer

q := (2π)
−1

n
∑

i=1

∆i,i+1 ∈ Z . (3.4)

The winding number characterizes a solution and is related to the loop flow. Unlike the latter,
however, it is uniquely defined. Eq. (3.4) quantizes the loop flow, i.e. it can take only discrete values.

FIG. 1. Cycle network of length n. The nodes inject/consume a power Pi, while a power Pij is transmitted
along the edge 〈ij〉. Edges correspond to lines with capacity K (loop flow problem), to couplings of strength K
(Kuramoto problem) or to tunnel barriers of transparency ~K/8ens (Josephson junction problem). A loop flow
of intensity Kε is circulating around the cycle, where ε ∈ [−1, 1].
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IV. THE NUMBER OF STABLE SOLUTIONS

Theorem III.6 connects the existence of multiple solutions to Eq. (2.3) to the presence of cycles
traveled by quantized loop flows. The number of solutions is thus related to the number of acceptable,
discrete loop flows. In the remainder of this manuscript, we focus on this problem in single-cycle
graphs.

We first treat the case K → ∞, where stable solutions necessarily have all angle differences in
[−π/2, π/2]. We then consider the situation for finite K, where we show that the number of stable
solutions decreases with K, that the angle difference along some of the lines can exceed π/2, but that
it can happen on a single line at most.

A. Angle differences and sum of angle differences

A solution is fully characterized by the angle differences along the lines. These can be written as
functions of the loop flow parameter ε,

Pi,i+1 = P ∗
i,i+1 +Kε = K sin(∆i,i+1) =⇒ ∆i,i+1 = ai(ε) , (4.1)

where there are two possible choices for each ai,

ai(ε) =

{

arcsin
(

ε+ P ∗
i,i+1/K

)

=⇒ ∆i,i+1 ∈ [−π/2, π/2] ,
π − arcsin

(

ε+ P ∗
i,i+1/K

)

=⇒ ∆i,i+1 ∈ (−π,−π/2) ∪ (π/2, π] .
(4.2)

Since the power transmitted along any link is bounded by K, we obtain bounds on ε,

−K ≤ Pi,i+1 ≤ K ⇐⇒ −1− P ∗
i,i+1/K ≤ ε ≤ 1− P ∗

i,i+1/K , i = 1, ..., n .

Thus ε ∈
[

εmin, εmax

]

, with

εmin := max
1≤i≤n

{

−1− P ∗
i,i+1/K

}

= −1− P ∗
min/K , (4.3a)

and

εmax := min
1≤i≤n

{

1− P ∗
i,i+1/K

}

= 1− P ∗
max/K , (4.3b)

where P ∗
min := mini P

∗
i,i+1 and P ∗

max := maxi P
∗
i,i+1. Note that as soon as the Pi’s are not all equal to

zero, P ∗
min 6= P ∗

max. We add an appropriate constant to the reference flow to make sure that P ∗
min 6= 0

and P ∗
max 6= 0, which will facilitate our discussion without restricting its generality.

As seen in Section II B, a solution is stable if all angle differences belong to the interval
[

−π/2, π/2
]

.
In this situation, we can write the sum of angle differences around the cycle as a function of the
parameter ε,

A0(K, ε) :=

n
∑

i=1

∆i,i+1 =

n
∑

i=1

arcsin
(

ε+ P ∗
i,i+1/K

)

. (4.4)

As the arcsine is continuous and increasing, the function A0 is also continuous and increasing with
respect to ε. Thus for fixed K0, the function A0(K0, ε) defines a one-to-one correspondence between
the intervals

[

εmin(K0), εmax(K0)
]

←→
[

A0(K0, εmin(K0)),A0(K0, εmax(K0))
]

.
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The sum of angle differences around the cycle has to be a multiple of 2π, thus defining εq such that
A0(K0, εq) = 2πq and

∆i,i+1 = arcsin
(

εq + P ∗
i,i+1/K0

)

, i = 1, ..., N ,

gives a stable solution of Eq. (2.3).
Therefore, the number of solutions with |∆i,i+1| < π/2 for all i is straightforwardly given by

the number of q’s such that A0(K0, εq) = 2πq. Previous works have treated this case28, however
allowing |∆i,i+1| > π/2 renders the problem much more complicated. It has so far been solved only for
unidirectional coupling27. Our strategy for incorporating solutions with |∆i,i+1| > π/2 is to first treat
K →∞, where we show that |∆i,i+1| < π/2, for all i, for stable solutions. The number of solutions is
then easy to compute. Second, we generalize the study to finite K and see that the number of solutions
obtained for K →∞ is an upper bound on the number of solutions for any finite K.

B. Infinite capacity

The case K → ∞ is equivalent to the identical oscillators case with Pi = 0, for all i. In this limit,
the bounds on ε are

lim
K→∞

εmax(K) = 1 , lim
K→∞

εmin(K) = −1 ,

and thus

lim
K→∞

A0(K, εmin(K)) = −nπ/2 , lim
K→∞

A0(K, εmax(K)) = nπ/2 .

An εq is associated to each integer multiple of 2π in
[

−nπ/2, nπ/2
]

corresponding to a stable solution
of Eq. (2.3). There are N = 2 Int[n/4] + 1 such integers. This is illustrated in Fig. 2.

Theorem IV.1. For K →∞, any stable solution of the power flow Eq. (2.3) on a cycle network has
all angle differences in

[

− π/2, π/2
]

. Furthermore all angle differences are equal to 2πq/n, where q is
the winding number of the solution.

Remarks. (i) The principal minors of a matrix A are the determinants of the square submatrices
of A with the same row and column indices. Sylvester’s criterion states that a matrix is positive
semi-definite if and only if all its principal minors are non-negative36.

(ii) The result of Theorem IV.1 was already known for unidirectional coupling27. Here we extend
this result to bidirectional interactions. Furthermore, our approach allows to relate the finite K
situation to the infinite K situation.

Proof. The power flow along line 〈i, i+ 1〉 is

Pi,i+1 = K sin(∆i,i+1) = P ∗
i,i+1 +Kε ,

where {P ∗
i,i+1} is a reference solution constructed from finite powers. Thus when K →∞, the sine of

the angle difference along every line of the cycle tends to the same value,

lim
K→∞

sin(∆i,i+1) = ε .
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This implies that the angle difference along each line of the network belongs to the set {arcsin(ε), π −
arcsin(ε)} and thus the cosine of the angle differences along all the lines takes the same absolute value
with either positive or negative sign. First of all, if all angle differences are arcsin(ε), the stability
matrix defined in Eq. (2.6) is easily expressed as

M = Kc













−2 1 1

1 −2 . . .
. . .

. . . 1
1 1 −2













,

where c := cos(arcsin(ε)) =
√
1− ε2. This matrix is negative semi-definite and has only non-positive

eigenvalues by Gershgorin’s circle theorem36. Thus the solution is stable. Now, if all angle differences
are π − arcsin(ε), then all cosines are negative and the stability matrix is obviously positive semi-
definite. The solution is then unstable. Let us now consider the mixed case where at least one angle
difference is arcsin(ε) and one is π − arcsin(ε). In this case, there exists at least one node i such that
∆i−1,i = arcsin(ε) and ∆i,i+1 = π − arcsin(ε) and the corresponding stability matrix has the form

M ′ = Kc





















. . .
. . .

. . . x 1 0
1 0 −1
0 −1 y

. . .
. . .

. . .





















. (4.5)

FIG. 2. Plot of A0(K, ε) as a function of ε (red), for a cycle network of length n = 9, with K → ∞. Horizontal
dashed lines correspond to A0 = 2πq with q values indicated. Each intersection of the red line with a blue
dashed line gives a stable solution of Eq. (2.3).
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The principal minor of −M ′ with row and column indices {i, i+ 1} is
∣

∣

∣

∣

0 +1
+1 −y

∣

∣

∣

∣

= −1 ,

which, by Sylvester’s criterion36, implies that M ′ is not negative semi-definite. In other words, M ′

has at least one positive eigenvalue and thus the solution is unstable. From this we conclude that the
stable solutions for sufficiently large K all have angle differences in

[

− π/2, π/2
]

. They are captured
by finding the intersections of A0(K, ε) with integer multiples of 2π as illustrated in Fig. 2.

Let q be the winding number of a stable solution for K → ∞. As all angle differences have the
same value ∆ ∈

[

− π/2, π/2
]

, we have

2πq =

n
∑

i=1

∆i,i+1 = n∆ =⇒ ∆ = 2πq/n .

The corresponding angles are θi = −2πqi/n, taken in the interval
(

− π, π
]

.

C. Finite capacity

We now consider finite values for K and Pi’s not all equal to zero. We first show that the number of
solutions to the power flow Eq. (2.3) with all angle differences in

[

−π/2, π/2
]

decreases withK. Second,

we show that for finiteK, there exist stable solutions with one angle difference in
(

−π,−π/2
)

∪
(

π/2, π
]

,

and we relate them to solutions at larger K with all angle differences in
[

− π/2, π/2
]

. This gives an

analytical confirmation of the numerical observations of Tilles et al.29, and of Roy and Lahiri30.

Proposition IV.2. For a one-cycle network with n nodes, if K decreases, then A0(K, εmin) increases
and A0(K, εmax) decreases.

Proof. From Eqs. (4.3b) and (4.4) the derivative of A0 with respect to K reads

dA0(K, εmin)

dK
=

∑′

[

1−
(

−1 +
P ∗
i,i+1 − P ∗

min

K

)2
]− 1

2 P ∗
min − P ∗

i,i+1

K2
,

where Σ′ indicates that the sum is taken over indices j such that P ∗
j,j+1 > P ∗

min. This sum is obviously
non-positive. In the same way it is easily seen that

dA0(K, εmax)

dK
≥ 0 .

Proposition IV.2 implies that as K decreases, the interval of values of A0 gets smaller and contains
fewer and fewer multiples of 2π. We show now that for finite capacities, the stable solutions are
directly related to the stable solutions for K → ∞, even if some of them have angle differences in
(

− π,−π/2
)

∪
(

π/2, π
]

. First we define

Aj(K, ε) :=
∑

i6=j

arcsin
(

ε+ P ∗
i,i+1/K

)

+ π − arcsin
(

ε+ P ∗
j,j+1/K

)

, j = 1, ..., n .
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The function A0 is the sum of angle differences all taken in the interval
[

−π/2, π/2
]

and for j = 1, ..., n,

the function Aj is this sum with one angle difference, the jth, taken in
(

− π,−π/2
)

∪
(

π/2, π
]

. We
also introduce the following notation

ci := cos(∆i,i+1) .

The sign of ci depends on our choice for ∆i,i+1,

ci =







cos
[

arcsin
(

ε+ P ∗
i,i+1/K

)]

=
√

1−
(

ε+ P ∗
i,i+1/K

)2
,

cos
[

π − arcsin
(

ε+ P ∗
i,i+1/K

)]

= −
√

1−
(

ε+ P ∗
i,i+1/K

)2
.

The domain D, in the (K, ε)-plane, where the functions Aj are defined, is such that each arcsine is
well-defined,

D = {(K, ε) : ε+ P ∗
min/K ≥ −1, ε+ P ∗

max/K ≤ 1} . (4.6)

By definition, in the interior of D, the ci’s are nonzero. Let us define the upper and lower boundaries
of D,

D1 := {(K, ε) : ε+ P ∗
max/K = 1} ,

D0 := {(K, ε) : ε+ P ∗
min/K = −1} . (4.7)

We next denote by j0 and j1 the indices such that P ∗
j0,j0+1 = P ∗

min and P ∗
j1,j1+1 = P ∗

max respectively.
Note that for (K, ε) ∈ D1 [resp. (K, ε) ∈ D0], the functions A0(K, ε) and Aj1(K, ε) [resp. Aj0(K, ε)]
have the same value.

Remark. It is possible that multiple lines carry the same maximal or minimal power. In this case
these indices are not uniquely defined, but we are free to choose any j0 and j1 satisfying P ∗

j0,j0+1 = P ∗
min

and P ∗
j1,j1+1 = P ∗

max.

For any choice of ai’s in Eq. (4.2), any point (K, ε) ∈ D such that
∑

i ai = 2πq is a solution (not
necessarily stable) of Eq. (2.3). Hence we now study the 2πq-level sets of Aj , for q ∈ Z and j = 0, ..., n.
Note first that as Aj is smooth in the interior of the domain D for any j, the Implicit Function
Theorem39 implies that its level sets are level curves. For any K0, we call S(K0) ⊂

[

εmin, εmax

]

the
set of ε-values corresponding to stable solutions of the power flow Eq. (2.3), i.e. such that there exists
a choice of {ai} in Eq. (4.2) for which

∑

i

ai(K0, ε) = 2πq, q ∈ Z .

Let N (K0) := |S(K0)| be its cardinality. The main results of this section are the following theorem on
the properties of N (K) and its corollary.

Theorem IV.3. The number of stable solutions of the power flow equations, N (K) is a monotonically
increasing function of K.

Corollary IV.4. The value

N∞ := lim
K→∞

N (K) = 2 Int[n/4] + 1 ,

is an upper bound on the number of stable solutions of Eq. (2.3) on a cycle network, independently of
K and {Pi}.
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The proof of Theorem IV.3 relies on five lemmas. A major ingredient of the proof is that the
functions Aj(K, ε), for j = 1, ..., n, have no critical points. This fact and Lemma IV.7 give precise
informations about the shape of the level curves of Aj .

Lemma IV.5. For j ∈ {1, ..., n}, the function Aj has no critical point in the interior of D.

Proof. For j ∈ {1, ..., n}, we have

∂Aj

∂ε
=

∑

k

c−1
k .

Assume first that at some point (K, ε) in the interior of D, ∂Aj/∂ε = 0, then

∂Aj

∂ε
= 0 ⇐⇒

∑

k

c−1
k = 0 ⇐⇒

∑

k 6=j

c−1
k = −c−1

j ⇐⇒
∑

k 6=j

−cj/ck = 1 . (4.8)

Recall that as we chose

∆j,j+1 = π − arcsin
(

ε+ P ∗
j,j+1/K

)

,

we have cj < 0. It is then easy to check that for any k 6= j

0 < −cj/ck < 1 =⇒ 0 < −cj < ck

=⇒
√

1−
(

ε+ P ∗
j,j+1/K

)2
<

√

1−
(

ε+ P ∗
k,k+1/K

)2

=⇒
(

ε+ P ∗
j,j+1/K

)2
>

(

ε+ P ∗
k,k+1/K

)2
.

There are now two possible cases :

1. if ε+ P ∗
j,j+1/K > 0, then

ε+ P ∗
j,j+1/K > ε+ P ∗

k,k+1/K ⇐⇒ P ∗
j,j+1 > P ∗

k,k+1 , ∀k 6= j

=⇒ P ∗
j,j+1 = P ∗

max ;

2. if ε+ P ∗
j,j+1/K < 0, then

ε+ P ∗
j,j+1/K < ε+ P ∗

k,k+1/K ⇐⇒ P ∗
j,j+1 < P ∗

k,k+1 , ∀k 6= j

=⇒ P ∗
j,j+1 = P ∗

min .

Thus if j /∈ {j0, j1}, Eq. (4.8) cannot hold and Aj has no critical point in D. Let now j ∈ {j0, j1} and
assume that

∂Aj

∂ε
=

∑

k

c−1
k = 0 .
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We calculate

∂Aj

∂K
=

∑

k 6=j

∂

∂K
arcsin

(

ε+ P ∗
k,k+1/K

)

+
∂

∂K

[

π − arcsin
(

ε+ P ∗
j,j+1/K

)]

= −
∑

k 6=j

c−1
k P ∗

k,k+1/K
2 − c−1

j P ∗
j,j+1/K

2

= −
∑

k 6=j

c−1
k P ∗

k,k+1/K
2 +

∑

k 6=j

c−1
k P ∗

j,j+1/K
2

=
∑

k 6=j

(

P ∗
j,j+1 − P ∗

k,k+1

)

/
(

K2ck
)

,

which is non zero as every term is non-negative (resp. non-positive) if j = j1 (resp. j = j0). Thus the
partial derivatives of Aj are never simultaneously zero implying that Aj has no critical point in the
domain D.

Corollary IV.6. For any j ∈ {1, ..., n}, the level sets of Aj are continuous lines that: i) cannot end
in the interior of D, ii) are not closed and iii) have no trifurcation.

Proof. Any of these situations would imply at least one critical point.

Lemma IV.7. Let L ∈ R. If there exist K0 ∈ R such that Aj1 (K0, εmax(K0)) = L, then there is a
single level curve of Aj1 = L starting at (K0, εmax(K0)). The same holds for level curves of Aj0 = L
starting at (K0, εmin(K0)).

Remark. This lemma means that the red curve in Fig. 3 is unique.

Proof. We prove the first statement, the proof of the second one being similar. We first recall that

∂Aj1

∂K
=

[

1−
(

ε+
P ∗
max

K

)2
]− 1

2

P ∗
max

K2
−

∑

k 6=j1

[

1−
(

ε+
P ∗
k,k+1

K

)2
]− 1

2 P ∗
k,k+1

K2
. (4.9)

Consider now a small interval around K0, I0 =
[

K0 − δ0,K0 + δ0
]

. For any K ∈ I0, there is a

ξK > 0 such that for all ε ∈
(

εmax(K)− ξK , εmax(K)
)

, the first term in the right-hand-side of Eq. (4.9)
dominates, and the partial derivative ∂Aj1/∂K has the same sign as P ∗

max, which we chose non-zero
above (see discussion below Eq. (4.3b)). Thus setting

ξ∗ := min
K∈I0
{ξK} ,

allows us to define a neighborhood U ⊂ D of (K0, εmax(K0)),

U := {(K, ε) : |K −K0| < δ0 , 0 ≤ εmax(K)− ε < ξ∗} ,

where the partial derivative ∂Aj1/∂K always has the same non-zero sign. This neighborhood is
sketched in Fig. 3. But if there is more than one level curve starting at (K0, εmax(K0)) and since
Aj1 is not constant, this partial derivative has to change sign in any neighborhood of (K0, εmax(K0)),
which leads to a contradiction. There is therefore at most one such level curve.
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We next investigate how the linear stability of the solutions to the power flow Eq. (2.3) varies
along the level curves Aj = 2πq. The two following lemmas show that the only functions leading to
stable solutions are A0, Aj0 and Aj1 .

Lemma IV.8. For any choice of ai’s, the stability matrix M has a second null eigenvalue λ2 (see
Section II B) if and only if

∑

k

c−1
k = 0 .

Proof. Consider the charateristic polynomial of the stability matrix M ,

χ(M) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−c1 − cn − λ c1 · · · 0 · · · cn

c1 −c1 − c2 − λ c2
...

... c2
. . .

. . . 0

0
. . .

...
... cn−1

cn · · · 0 · · · cn−1 −cn−1 − cn − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

FIG. 3. Sketch of the level curve Aj = 0 (red curve) and of the neighborhood U of (K0, εmax(K0)) where the
partial derivative of Aj with respect to K always has the same non-zero sign. The neighborhood U is bounded
above by the boundary of the domain D, left and right by the bounds of the interval I0 and is of height ξ∗.
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Adding all rows to the first one it can be written χ(M) = det
(

M̃(λ)
)

with

M̃(λ) =

























−λ · · · · · · −λ
c1 −c1 − c2 − λ c2

...
... c2

. . .
. . . 0

0
. . .

...
... cn−1

cn · · · 0 · · · cn−1 −cn−1 − cn − λ

























.

Expanding the determinant along the first row we obtain

χ(M) = (−λ)
n
∑

i=1

(−1)i−1 det
(

[M̃(λ)]1i

)

=: (−λ)Q(λ) ,

(4.10)

where det
(

[A]ij

)

stands for the (i, j)-cofactor of A. One eigenvalue obviously vanishes and a second

eigenvalue, λ2, is zero if and only if Q(0) = 0.

We show now that for i = 2, ..., n,

det
(

[M̃(0)]1,i

)

= − det
(

[M̃(0)]1,i−1

)

.

Let Ck denote the kth column of matrix M̃(0) with the first row removed. We write

det
(

[M̃(0)]1i

)

=

∣

∣

∣

∣

∣

C1 · · · Ci−2 Ci−1 Ci+1 · · · Cn
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

C1 · · · Ci−2

∑

j 6=i

Cj Ci+1 · · · Cn

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

C1 · · · Ci−2 − Ci Ci+1 · · · Cn
∣

∣

∣

∣

∣

= − det
(

[M̃(0)]1,i−1

)

,

where at the second line we used that the determinant is not changed by adding a linear combination
of columns to any column, and at the third line, we used the fact that the sum of the elements of any
row is zero. We conclude that

det
(

[M̃(0)]1i

)

= (−1)i−1 det
(

[M̃(0)]11

)

. (4.11)
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Thus to calculate Q(0) we only have to compute det
(

[M̃(0)]11

)

. Since [M̃(0)]11 is tridiagonal we

compute its LU -factorization using Thomas algorithm40,

[M̃(0)]11 =













−c1 − c2 c2

c2 −c2 − c3
. . .

. . .
. . . cn−1

cn−1 −cn−1 − cn













=











1 0
c2/β1 1

. . .
. . .

0 cn−1/βn−2 1











·

















β1 c2 0

β2
. . .
. . . cn−1

0 βn−1

















,

where

βi :=

{

−(c1 + c2) , if i = 1 ,
−(ci + ci+1 + c2i /βi−1) , if i 6= 1 .

This factorization is only valid for non-singular matrices, but by continuity it can be computed ar-
bitrarily close to points where the determinant vanishes. Computing the determinant of the matrix
[M̃(0)]11 then reduces to computing the product of the βi’s.

Let us define

µi :=















1 , if i = 0 ,
i+1
∑

j=1

i+1
∏

k=1
k 6=j

ck , if i = 1, ..., n . (4.12)

In Appendix A, we prove by induction that µi−1 ·βi = −µi, for all i = 1, ..., n. This allows to compute

the determinant of [M̃(0)]11,

det
(

[M̃(0)]11

)

=

n−1
∏

i=1

βi = (−1)n−1µn−1

µ0
= (−1)n−1

n
∑

j=1

n
∏

k=1
k 6=j

ck = (−1)n−1
n
∏

j=1

cj ·
n
∑

k=1

c−1
k , (4.13)

where the last equality holds as long as all ck’s are nonzero, which is true in the interior of D.
Finally, combining Eqs. (4.10), (4.11) and (4.13) we have

Q(0) = (−1)n−1n

n
∏

j=1

cj

n
∑

k=1

c−1
k ,

and thus

λ2 = 0 ⇐⇒ Q(0) = 0 ⇐⇒
n
∑

k=1

c−1
k = 0 . (4.14)



19

Lemma IV.9. For a given value L ∈ R and j ∈ {j0, j1}, there is at most one point where
∑

k c
−1
k = 0

along a connected component of the level curve Aj = L.

Remark. From Lemma IV.5 we already know that if j /∈ {j0, j1},
∑

k c
−1
k is never zero.

Proof. We already know that

∑

k

c−1
k =

∂Aj

∂ε
.

Hence the sum
∑

k c
−1
k equals zero if and only if the level curve of Aj is parallel to the ε axis. Let us

now differentiate the sum
∑

k c
−1
k with respect to ε at such a point, to see how it varies along the level

curve of Aj . Using the fact that c−1
j = −∑

k 6=j c
−1
k we have

∂

∂ε

n
∑

k=1

c−1
k =

∑

k 6=j

∂

∂ε

[

1−
(

ε+ P ∗
k,k+1/K

)2
]− 1

2 − ∂

∂ε

[

1−
(

ε+ P ∗
j,j+1/K

)2
]− 1

2

=
∑

k 6=j

[

1−
(

ε+ P ∗
k,k+1/K

)2
]− 3

2

[

1−
(

ε+ P ∗
j,j+1/K

)2
]−1

×
[

1 +
(

ε+ P ∗
j,j+1/K

)

(

ε+ P ∗
k,k+1/K

)](

P ∗
k,k+1 − P ∗

j,j+1

)

/K .

The only term in the last expression that is not necessarily positive is
(

P ∗
k,k+1 − P ∗

j,j+1

)

/K. But

if j = j0 (resp. j = j1), this term is always positive (resp. negative) for k 6= j, and consequently
the whole sum is positive (resp. negative). Thus, following a connected component of the level curve
Aj = L, whenever

∑

k c
−1
k hits zero, its derivative always has the same sign, therefore, by continuity,

it cannot cross zero more than once. This completes the proof.

The proof of Theorem IV.3 finally relies on Taylor’s Lemma 2.111, which we recall here.

Lemma IV.10 (Taylor11). Let {θ(0)i } be any stable solution of the power flow Eq. (2.3) on any network.
Then for any non-empty node subset S,

∑

〈ij〉 :
i∈S,j /∈S

cos(∆
(0)
ij ) ≥ 0 .

In other words, if we can partition the nodes of the network in two sets S and Sc, such that the
sum of cosines of the angle differences on all the lines between these two sets is smaller than 0, then
the solution is unstable. In our case of a cycle network, if the angle differences on two lines are larger
than π/2 or less than −π/2, removing these two lines splits the network in two parts, S and Sc, such
that

∑

〈ij〉 :
i∈S,j /∈S

cos(∆
(0)
ij ) < 0 ,

and the solution is unstable. We conclude that there is at most a single |∆i,i+1| > π/2. We are now
ready to prove Theorem IV.3.
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Remark. Instead of Taylor’s Lemma 2.1, we could use the necessary condition for stability of Ref. 41,

that if {θ(0)i } is a stable solution of the power flow Eq. (2.3), then there exists a spanning tree T of the
network such that for all edges e ∈ ET ,

cos(∆(0)
e ) ≥ 0 .

Taylor’s lemma seems to be slightly more general. As a matter of fact, it is an easy exercise to construct
an example of a weighted graph containing a positively weighted spanning tree, but such that there exists
a non-empty node subset S with

∑

〈ij〉 :
i∈S,j /∈S

cos(∆
(0)
ij ) < 0 ,

In this case, Taylor’s Lemma 2.1 implies instability, while Ref. 41 does not.

Proof of Theorem IV.3. Since for any K0, A0(K0, ε) is an increasing function of ε, we know that for
any integer q ∈

[

− n/4, n/4
]

, the level set of A0 = 2πq is a single level curve. Furthermore, any point
on such a level curve corresponds to a stable solution of the power flow Eq. (2.3). Starting from large
values of K and following this level curve while decreasing K, Corollary IV.6 implies that it meets the
boundary of D at some point. Assume that it meets the upper boundary D1 at X = (K∗, ε∗) as shown
on Fig. 4 (the case of the lower boundary D0 is treated in the same way, interchanging j1 and j0 in
what follows). We know that A0(K

∗, ε∗) = Aj1(K
∗, ε∗). As Aj1 is monotonous on D1 and smooth in

the interior of the domain D, there is a level curve of Aj1 = 2πq starting at X (the red line in Fig. 4),
and by Lemma IV.7, it is unique. Furthermore, at this point, the corresponding solution is stable.

According to Corollary IV.6, the level curve of Aj1 either meets the boundary of D or goes to
K → ∞. First, it cannot meet D1 because the value of Aj1 is strictly increasing with K on D1 and
the level curve cannot be closed by Corollary IV.6. Second, if it goes to K → ∞, we know from
Section IVB that for K large enough, the solution is unstable. Third, if it meets D0, Lemma IV.10
implies that at this point, the corresponding solution is unstable, because at this point, |∆j1,j1+1| > π/2
and |∆j0,j0+1| = π/2. Thus along the level curve considered, the eigenvalue λ2 has to change sign.
Following Lemmas IV.8 and IV.9, this happens only once, at point Y shown on Fig. 4 where the level
curve changes direction with respect to K.

Assume now that there is another connected component of the level set of Aj1 = 2πq. From
Corollary IV.6 it cannot be closed and by monotonicity of Aj1 along D1 and Lemma IV.7, it cannot
meet the upper boundary D1. Thus the corresponding solutions are unstable at both ends of this level
curve and as, by Lemmas IV.8 and IV.9, λ2 changes sign at most once along a level curve, then the
corresponding solutions are unstable all along this level curve.

We conclude that the number of ε values corresponding to stable solutions of the power flow
equations increases with K, because a solution appears at point Y and exists for any larger K.

Remark. If there are two indices i1 and i2 such that P ∗
i1,i1+1 = P ∗

i2,i2+1 = P ∗
min (the same works with

P ∗
max), then

∑

k c
−1
k > 0 for ai2 ∈

(

− π,−π/2
)

∪
(

π/2, π
]

and all other ai’s in
[

− π/2, π/2
]

, because
ci1 = −ci2 and then

∑

k

c−1
k =

∑

k 6=i1,i2

c−1
k > 0 .

Hence, inside D, λ2 never changes sign along the level curves of Ai1 and Ai2 . This result together with
the fact that for K → ∞ the solutions corresponding to the level curves Ai1 and Ai2 are known to be
unstable implies that such solutions remain unstable also for finite values of K. Which implies that, in
this case, no solution having one angle difference outside the interval [−π/2, π/2] can be locally stable.
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To summarize, we showed that while decreasing K, N (K) also decreases, and that any stable
solution of Eq. (2.3) for finite K is a continuation of a solution for K → ∞. We also showed that
for finite K, stable solutions have at most one angle difference outside [−π/2, π/2], and that such
solutions are continuations of solutions with all angle differences in [−π/2, π/2]. Fig. 5 illustrates the
whole situation. The domain D is bounded above by the curve D1 and below by D0. The blue lines are
the 2πq-level curves of A0 for q ∈ {−1, 0, 1}, i.e. any point on a blue curve gives a pair of values (K, ε)
corresponding to a stable solution of Eq. (2.3) with all angle differenes in [−π/2, π/2]. The red dashed
lines and the green dash-dotted line are the 2πq-level curves of Aj1 and Aj0 respectively. The points on
the red dashed curves correspond to solutions (not necessarily stable) where the angle difference on the
line carrying P ∗

max is in (−π,−π/2)∪(π/2, π] and the points on the green dash-dotted curve correspond
to solutions where the angle difference along the line carrying P ∗

min is in (−π,−π/2) ∪ (π/2, π]. Any
blue line meets either a red dashed line on D1 (a zoom-in of this is depicted in Fig. 4) or green dash-
dotted line on D0. While increasing K, stable solutions appear on the level curves of Aj1 and Aj0

(at point Y in Fig. 4), thus with one angle difference larger than π/2 (or less than −π/2). This angle
difference then enters [−π/2, π/2] while K increases. This happens at point X in Fig. 4. Then the
stable solution persists for any larger K along the corresponding level curve of A0.

V. CONCLUSION

We have investigated the multiplicity of stable stationary solutions to the Kuramoto model. For
any network, Theorem III.6 shows that any two different solutions of Eqs. (1.2) and (2.3) differ by a

FIG. 4. Level curves A0(ε,K) = 2πq (blue line) and Aj1 (ε,K) = 2πq (dashed red line). Both functions are
undefined above the boundary D1 (black line). The corresponding solutions are stable (λ2 < 0) along the blue
curve and between points X and Y on the dashed red curve, and unstable (λ2 > 0) along the dashed red curve,
from Y to K → ∞.
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combination of circulating flows around the cycles of the network. We showed that these loop flows are
quantized and labelled by a topological winding number. In the particular case of single-cycle networks,
we then derived an upper bound on the number of stable solutions of the power flow Eq. (2.3),

N ≤ 2 Int [n/4] + 1 ,

which is algebraic in n, the length of the cycle. It significantly improves the exponential bounds
obtained if Refs. 17 and 18. Our result generalizes the bounds obtained by Ochab and Góra28, dealing
in particular with angle differences larger than π/2, and extends the results of Rogge and Aeyles27 to
bidirectional couplings.

FIG. 5. Level curves A0 = 2πq (blue), Aj1 = 2πq (dashed red) and Aj0 = 2πq (dash-dotted green), for different
q-values, in the (K, ε)-plane. The level curves of A0 and Aj1 meet on the upper boundary D1 of the domain D
defined in Eq. (4.6), and the level curves of A0 and Aj0 meet on the lower boundary D0. The two boundaries
D0 and D1 meet at Kc = (P ∗

max − P ∗

min)/2. A zoom-in of the region where the level curves A0 = 2π and
Aj1 = 2π meet is depicted in Fig. 4
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As parallel results, we obtained some sharp conditions for the solutions on a cycle network with
some angle differences in

(

− π,−π/2
)

∪
(

π/2, π
]

to be stable. We showed that at most one angle
difference can be larger than π/2 in a stable solution and it can only be the case on the most loaded
line. Moreover, any stable solution with an angle difference larger than π/2 can be directly connected
to a solution with all angle differences in [−π/2, π/2] for the same network at larger K.

The quantized loop flows discussed above are highly undesirable in electric power grids. They
transmit power which is never distributed but only generates ohmic losses. A deeper understanding
of loop flows, how they appear and how to make them disappear could greatly help in devising power
grids protected against their emergence. In all likelihood, this would be of great interest for power
grid operators.

Another line of possible future research would be to compare the stability of different solutions.
This could be done in at least two ways, first, comparing the spectra of the stability matrices for
different solutions, second, comparing the volumes of the respective basins of attraction. This second
approach was proposed in Ref. 31. Of particular interest would be to relate these two measures of
stability with winding numbers.

Obviously, the next step in this investigation is to study how our results can be extended to more
general networks with multiple cycles. It is clear that in the case of independent cycles as in Fig. 6a,
the number of stable solutions is bounded by

N = (2 Int [n1/4] + 1) (2 Int [n2/4] + 1) ,

where n1 and n2 are the number of edges in the two cycles respectively. In this case, a loop flow on one
of the cycles does not influence the loop flow on the other cycle. The problem becomes more intricate
when we have to deal with cycles sharing edges, where the loop flows add, Fig. 6b. Here the flow on
one of the cycles limits the loop flow on the other cycle because it could saturate the capacity of the
common lines. Work along those lines is in progress.
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(a) (b)

FIG. 6. Two graphs with two cycles. Left: the cycles are independent but connected, the loop flow on one of
them does not influence the loop flow on the other one. Right: the cycles are not independent. Thus having a
loop flow on one of them restricts the possible flows on the other one.
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Appendix A LU-DECOMPOSITION OF THE STABILITY MATRIX

We prove inductively that the diagonal elements βi of the upper triangular matrix of the LU -
factorization of the stability matrix, obtained through Thomas algorithm40, satisfy the relation

µi−1 · βi = −µi ,

where µi’s are defined in Eq. (4.12). For i = 1, we have

µ0 · β1 = 1 · (−c1 − c2)
= −µ1 .

Suppose now that µi−1 · βi = −µi. Let us show that µi · βi+1 = −µi+1.

µi · βi+1 = µi

(

−ci+1 − ci+2 −
c2i+1

βi

)

= −ci+1µi − ci+2µi + c2i+1µi−1

= −ci+1

i+1
∑

j=1

i+1
∏

k=1
k 6=j

ck − ci+2

i+1
∑

j=1

i+1
∏

k=1
k 6=j

ck + c2i+1

i
∑

j=1

i
∏

k=1
k 6=j

ck

= −ci+1






ci+1

i
∑

j=1

i
∏

k=1
k 6=j

ck +

i
∏

k=1

ck






− ci+2

i+1
∑

j=1

i+1
∏

k=1
k 6=j

ck + c2i+1

i
∑

j=1

i
∏

k=1
k 6=j

ck

= −ci+1

i
∏

k=1

ck − ci+2

i+1
∑

j=1

i+1
∏

k=1
k 6=j

ck

= −
i+2
∑

j=1

i+2
∏

k=1
k 6=j

ck

= −µi+1 .
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