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A B S T R A C T   

With the advent of the digital age, data storage continues to grow rapidly, especially with the development of 
internet data centers. The environmental impact of this technological revolution has become a problem. As the 
cost of digital recordings decreases, the amount of unnecessary data stored increases. This paper presents a new 
algorithm for compressing digital data series, which uses a local measure of relevance based on statistical 
characteristics. This compression produces non-uniform sampling with a density dependent on the relevance of 
the data, hence the adaptive feature of the algorithm. It works without any additional input and allows to build a 
data tree with progressive compression. Such a structure can feed multiscale analysis tools as well as selective 
memory release solutions for efficient archive management. Tests were carried out on two ideal noise-free signals 
as well as two real-world applications, namely compression of electrocardiograms retrieved from the PhysioNet 
database and compression of remote measurements provided by the constellation of ESA’s Swarm satellites. Non- 
sparse type signals have been chosen in order to investigate compression performances in unfavorable condi
tions. Despite this, the number of samples has been reduced by more than half while maintaining the relevant 
characteristics of the signals. By reconstructing uniform samplings of the ideal noise-free signals, a measure of 
the compression error is obtained. Comparing the Fourier transforms of the original and the reconstructed sig
nals, we further allow for future comparative analysis taking into account the ratio between the bandwidth and 
the sampling frequency of the original signal.   

1. Introduction 

The ability to record information has always been a key factor in the 
development of civilizations, as it makes the transfer of knowledge more 
reliable. The appearance of writing in the 4th millennium BC [1] was a 
big breakthrough, but data sharing was still hampered by the lengthy 
and burdensome nature of the reproduction of handwritten data. Thus, 
the invention of the printing press by Gutenberg during the Renaissance 
is recognized as a major technological advance that accelerated the 
development of humanity [2]. Nowadays, some authors consider that 
the digital turn of society will have a comparable or even greater impact 
[3,4]. The transition to the digital age has indeed put an end to the in
formation sharing issue by establishing an ease of recording, exchange 
and processing of data in quantities that seem unlimited, in particular 
due to the fall in the prices of electronic mass memories in the recent 
decades [5]. However, this technological revolution has a major impact 
on global warming [6]. Data centers already account for more than 2 % 
of global energy consumption [7] and this will increase considerably in 
the coming years [8]. Today, the climate change demands more efficient 

technologies in the IT market. To meet the ever-growing need for data, a 
field of computational theories and tools such as Knowledge Discovery 
in Databases (KDD) has aroused primary interest in recent years. Data 
compression algorithms techniques have been developed to reduce the 
original data without losing the meaning of the information. These 
techniques allow to boost the productivity of analysts by facilitating 
search and visualization in databases. Large investments have been 
made in Big Data, but most of the data collected remains unused. To
day’s data analysis tools fail to provide fluidity when it comes to Big 
Data, and user productivity decreases. The environmental issue requires 
to reduce data waste at source. 

In the glaring example of current data acquisition systems (DAQ), the 
classical sampling techniques usually use a constant frequency, which 
results in a huge waste of data because the signals in real applications 
are often irregular. For example, monitoring systems that in the majority 
of cases measure sparse or chaotic signals consume a great deal of energy 
due to the need to adjust a constant sample rate in the acquisition chain. 
Indeed, in order not to miss any event, this constant sampling frequency 
must be set to its maximum. This generates a large data stream, but of 
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little useful value because nothing special happens most of the time. One 
of the strategies is the initially specified detection criteria with the 
problem transposed to an event detection algorithm. Artificial intelli
gence (AI) offers automatic learning functions for this purpose. How
ever, the cost of maintenance is a major downside related to AI that 
arises for the customer. Through machine learning, each case becomes 
indeed unique and the search for the causes of a malfunction can become 
extremely long. 

In this work, we propose to overcome this problem by developing a 
self-adapting frequency sampler that records data in a tree structure 
allowing rapid exploration and analysis of Big Data. This study con
tributes to improving the efficiency of processes in the field of serial data 
management by addressing challenges related to the cost of storage and 
their access in memory. This research framework integrates the wasting 
issue regarding the monitoring systems set at constant sampling 
frequencies. 

1.1. Objective of the work 

The purpose of this study is to provide an algorithmic solution for a 
responsible consumption and production of serial digital data. We pro
pose an implementation of a new digital data compression algorithm, in 
order to establish an architecture of a data acquisition system with an 
adaptative frequency for the recording of data in a multiscale tree. We 
offer, in the future, rapid analysis of very large amounts of data as well 
as a tool for visualization and exploration in the context of Data Ana
lytics. In a perspective to reduce costs and overconsumption of energy, 
this work guarantees a first step to converge towards a global and 
optimal solution in the evolutionary search for robust and reliable so
lutions for data compression and self-adaptive sampling. 

1.2. Organization of the paper 

The rest of this work is organized as follows. The next section 2 
presents an overview of the state of the art regarding the development of 
compression techniques in the context of Big Data, positioning our 
contribution in the broader field of Data Analytics. A detailed descrip
tion of our algorithm’s working principles is provided in section 3. 
Section 4 proposes the formulation of the algorithmic characteristics as 
well as the evaluation of the metrics obtained. Section 5 analyzes the 
results of the tests performed, first on two ideal signals, then on two case 
studies. Finally, the whole work is concluded in section 6, together with 
the potential future research directions. 

2. Literature review 

2.1. Related work 

Among the various aspects of the problematic, the most considerable 
challenges are related to data analysis. In their article [9], Espinosa et al. 
listed the new issues and challenges for the future of Big Data in the field 
of Data Analytics. Thus, a valuable skill to develop is the ability to 
facilitate the research within databases. To achieve this, computer tools 
like Knowledge Discovery in Databases (KDD) has emerged, whose 
principles and techniques practices were recently introduced by Bhatia 
in his work [10]. It encompasses the methods that map Big Data into 
more compact, more abstract, or more useful forms to enhance analysis 
[11,12]. At the heart of KDD is the data mining process, including the 
application of data analysis and the discovery of algorithms mentioned 
for example by Ganasan in his article [13] whose role is to provide a 
definition of models from the data. Recently, Menaga and Saravanan 
[14] have targeted the major disciplines involved in the procedure as 
being machine learning, AI and statistics. Many applications are 
emerging in various fields: in the field of healthcare where it improves 
the prediction of many diseases and helps physicians in the diagnosis 
[15–17], in climate change studies [18], in education systems [19,20], 

in management [21], in market analysis [22,23], in sports data analysis 
[24,25], in scientific research [26,27] and many more [28–30]. 

In this context, compression techniques have appeared at least since 
Claude Shannon established in 1948 the foundations of information 
theory [31]. By defining the extent to which information can be 
removed from the original data without losing its core meaning, data 
compression algorithms can then be developed. In his book [32], Sayood 
explains that compression algorithms can be categorized as either loss
less or lossy. The trade-off is that generally a lossy compression will be 
able to compress more than a lossless one. In their article [33], Khan 
et al. evaluated lossy algorithms as a better alternative if losing some 
information is acceptable in order to enhance the compression. The body 
of work in Ref. [34] explored several types of algorithms. They are often 
based on operators such as the fast Fourier transform [35,36], the 
discrete cosine transform [37] or the discrete wavelet transform [38]. In 
their work [39], Sharma et al. provide near-lossless compression tech
niques to remove data redundancy, in which the difference between the 
reconstructed and original signals is guaranteed not to exceed a 
user-defined value. 

Another aspect of the problem concerns exploration in a database. A 
multi-scale or multi-level approach can be an effective modeling 
methodology. A tree structure is a powerful tool for organizing multiple 
data objects in terms of hierarchical relationships. For example, the 
Ref. [40,41] propose hierarchical data applications models. This type of 
structure features notably a quick and efficient gathering of data. It can 
feed a multiscale graphical tool, helping to find patterns of different 
characteristic scales, hence leading to coarse-grained modeling like for 
example in molecular biology [42–44] or in biomedical engineering [45, 
46]. 

To date, some systems generate a very large amount data, for 
instance monitoring applications that require continuous acquisition in 
order to spot unpredictable events, in the field of radar signal processing 
[47,48] or in the field of medical surveillance [49–51]. The problem 
addressed here is the management of the sampling frequency. The au
thors of the body of work in Refs. [48,52] have explored some appli
cations where the activity is irregular, and where it is possible to observe 
a sparse representation of the monitoring signals where all segments of 
the signal do not necessarily contain the same amount of information. As 
Wang et al. point out in their article [53], this random and non-periodic 
component in time is a central problem in the research for an effective 
way to save the costs for data storage. In the example of sparse signals 
containing sudden bursts of oscillations, they show long and flat parts 
while waiting for the next event to occur. With a constant sampling rate, 
a large amount of data is generated on this flat part whose only meaning 
is that nothing in the sampling bandwidth has happened. In classical 
acquisition systems, while a constant and high sampling rate is required 
for rapidly varying pulses at the time of all new events, no sampling 
would be necessary between them if the waiting time was known. 
Moreover, the bandwidth of the signal must be known to apply the 
Nyquist-Shannon sampling theorem [54,55], thus ensuring a correct 
reconstruction. But this may require restrictive assumptions in the case 
of aperiodic or sparse signals, as mentioned by Jiao et al. in their work 
[56]. To overcome this problem, time-frequency domain analysis can be 
used to show how the frequency content of the signal changes over time. 
The most common tool used for this is probably the wavelet transform 
[57]. However, there are several functional decomposition techniques, 
some of which are highlighted and compared by the authors of Ref. [58]. 
Thus, the user in this methodology must make an appropriate choice of 
scales and basis of functional decomposition among a large number of 
possibilities. The method proposed in this publication removes these 
constraints, facilitating the applications. 

2.2. Contributions 

This paper introduces a new digital data compression algorithm. Our 
approach is hybrid and versatile, because its software level can be 
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classified in the event-based sampling category but no special data 
acquisition hardware is needed. Compression is lossy, although it shares 
some similarities with near-lossless compression since the user can 
control the degree of compression. Also, as mentioned earlier, regular 
sampling of sparse signal generates a lot of unnecessary data. Uniform 
sampling is then seen a posteriori as a penalizing constraint. In contrast, 
our algorithm essentially performs non-uniform downsampling which 
results in a uniform distribution of relevance. 

Thereby, our first contribution is the implementation of a structured 
data tree with a level-by-level progression of compression, allowing data 
management directly at several scales and the progressive reduction of 
archive files. We present its process principle in section 3.1. At the 
current stage of development, only one-dimensional signals can be 
processed. The second contribution is a statistical approach based on a 
local standard deviation for the implementation of the non-uniform 
sampling during compression, meaning no machine learning or AI 
techniques are used. Non-uniform or self-adaptive sampling is imple
mented thanks to the central parameter of the local standard deviation 
which measures the relevance of the sample and which is very resilient 
to noise. This adaptive compression technique also exploits the quality 
index parameter calculated from the data. This functionality is exposed 
in section 3.2. 

To our knowledge, the work presented in this research is a further 
attempt at near-lossless hybrid compression through non-uniform sam
pling, maximizing energy efficiency as well as data analyst productivity 
and avoiding the previously mentioned AI drawbacks. Several keys of 
the characteristics and metrics to measure the algorithm performances 
are evaluated by simulation experiments in section 4, including 
compression ratio, relative mean error of a compressed level, space- 
saving, compression gain, signal-to-noise ratio, maximum absolute 
distortion, signal segmentation, local sample rate and mean number of 
children per node. Finally, we present the results of the tests of our 
compression algorithm on the signals provided by uniform sampling. 
Two tests with real world signals were carried out using a threshold 
determined with the heuristic method: a normal ECG for a human at rest 
extracted from the Physionet database and a signal measurement pro
vided by the satellites of a European Space Agency test mission. 

3. Algorithm breakdown 

3.1. Tree structure data compression 

The compression of digital data series aims not only to save memory 
space, but also to filter out less relevant or unnecessary information such 
as the measurement noise. Hence, the algorithm acts as a low pass filter 
aiming to facilitate the exploitation of Big Data. 

Fig. 1 schematizes the proposed compression tree process. This tree 
structure reduces data storage when the original sampling is uniform. 

Arguably, non-uniform sampling introduces additional data storage 
because timestamps are no longer computable from just two real 
numbers: the sampling rate and the first timestamp. These two data are 
usually stored in double-precision floating-point format so that the 
resulting series has sufficient resolution. In our case, storing all time
stamps is also not mandatory if the tree is saved, storing the number of 
children of each node. Each timestamp can indeed be calculated from 
the tree with the same precision since the constant sampling rate of the 
original signal and its first timestamp are recorded. The number of 
children can be stored in integer format, which uses only a small amount 
of memory. 

Therefore, we consider the set of points S = {(t1; y1),…, (tN; yN)} be 
the N samples of the digital input signal, and Sc = {(tc1; yc1),…, (tcM; ycM)

} be the M samples of the output signal, with M < N. To initiate the 
compression, a first segment of the input signal is taken, containing only 
the first two samples Sn = {(t1; y1), (t2; y2)} Its standard deviation σ is 
compared to a predefined cutoff threshold σth. If σ < σth, then the next 
sample, (t3; y3), is appended to Sn and the process of comparison is 
repeated as well as the appending (cf. Equation (1)) until the threshold 
crossing. In this case, the segment is cut off from the signal and its 
centroid (tc1; yc1) (cf. Equations (2) and (3)) is appended to the com
pressed sampling, which is its only point for the moment. Then a new 
segment is opened that initially contains only the next two points from 
the original sampling. The whole process is repeated until the end, as in 
Fig. 1 showing an arbitrary item (tck; yck) of the compressed sampling. 

Sn ={(tn1; yn1),…, (tn2; yn2)} (1)  

yn =
1

n2 − n1 + 1
∑n2

i=n1

yi (2)  

tn =
1

n2 − n1 + 1
∑n2

i=n1

ti (3)  

σn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n2 − n1 + 1

∑n2

i=n1

(

yi − yn

)2
√
√
√
√ (4) 

The comparison with the threshold as well as the resulting actions 
can be implemented in a simple standard logic operation. (assuming 
n2 ∕= N or N − 1): 

σn ≥ σth⇒

⎧
⎪⎨

⎪⎩

tck = tn
yck = yn
Sn =

{(
tn2+1; yn2+1

)
,
(
tn2+2; yn2+2

)} (5)  

σn < σth⇒Sn =Sn ∪
{(

tn2+1; yn2+1
)}

(6) 

However, the standard deviation does not take into account a 

Fig. 1. Diagram of the compression process, showing the affiliation between nodes (the samples of current segment) and their children (the nodes of the lower level 
that are merged). The current segment is extended until its standard deviation exceeds the cutoff threshold σth. 
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possible ramp in the segment considered, Sn. A refinement is therefore 
obtained by considering the signal rate of change in average value over 
the segment. This is achieved by replacing the mean value yn in Equation 
(4) by the linear regression model ŷni calculated as follows: 

ŷni = anti + bn n1 ≤ i ≤ n2 (7)  

an =

∑n2
i=n1

(

tiyi − yntn

)

∑n2
i=n1

(

t2
i − t2

n

) (8)  

bn = yn − antn (9) 

So equation (4) becomes: 

σn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n2 − n1 + 1

∑n2

i=n1

(

yi − ŷni

)2
√
√
√
√ (10) 

Some computational time can be saved by excluding segments of 
only two samples from the refinement, as there would then be no de
viation from linear regression. 

3.2. Adaptive resampling 

The compression algorithm is applicable on non-uniform sampling 
(variable sampling rate), so that iteration can be performed to build a 
tree data structure where each level further compacts the initial signal. 

Fig. 2 shows two iterations applied on a wave packet, that spaces the 
sampling points according to the signal variation. They are distributed 
so that the sampling focuses on the most curved parts. In this regard, the 
measure of relevance is related to the deviation from a straight line. 
Signal derivatives have been proposed as a suitable attribute, but have 
the considerable drawback of amplifying measurement noise, as 
Algabroun explains in his article [59]. In the design of our algorithm, we 
apply an alternative based on the standard deviation (cf. Equation (10)), 
therefore very noise-resilient, as mentioned before. 

Thenceforth, an important question to discuss is how to set the 
threshold value σth. As mentioned earlier, it can be freely defined by the 
user. This is a useful feature if he can access the application specifica
tions. For instance, a threshold proportional to the noise level at the 
output of the measurement chain would certainly be a good approach in 
the case of measurement data. In cases where no sufficient specification 
is available or cannot be obtained, a default solution is formulated now, 
allowing a value to be assigned to σth only from the input signal. This 
method is therefore qualified as adaptive. 

Taking advantage of some metrics of the tree compression algorithm 

Fig. 2. A uniform sample (below) with 2 compressions shifted upward (center and top).  

Fig. 3. ECG taken from the PhysioNet database [60]. The original number of samples is 1250 (sampling rate is 200 Hz).  
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presented in the next section 4.1 – namely CRk and εk
r - an arbitrary 

function Qk(σth) is defined and will serve as a quality factor for a given 
level k and a given σth (referring to Equations (14) and (16)): 

Qk(σth)=
1

CRk(σth)εk
r(σth)

(11) 

Ideally, the algorithm should grant a low compression ratio as well as 
a low error. This leads to a high value of Qk, which allows to find the 
value of σth inducing a maximum of Qk. To this end, let S0 = {(t0

1 ; y0
1),… 

, (t0
N0
; y0

N0
)} be the signal to be compressed. First, all possible values of 

the standard deviation are calculated as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0
1 =

[
y0

1 y0
2

]
σ1 = std

(
Y0

1

)

Y0
2 =

[
y0

1 y0
2 y0

3

]
σ2 = std

(
Y0

2

)

…

Y0
N0 − 1 =

[
y0

1 y0
2…y0

N0

]
σN0 − 1 = std

(
Y0

N0 − 1

)

(12) 

By doing so, we can delimit the domain of variation of σth: 

σmin =min
(
σ1, σ2, …, σN0

)
and σmax =max

(
σ1, σ2, …, σN0

)
(13) 

Then, the compression ratio CRk(σth), relative mean error εk
r (σth) and 

quality index Qk(σth) are calculated for a series of threshold values 
scanning the interval. [σmin,σmax].

In addition, for monitoring systems which are predominantly inac
tive and where an event can occur after a long period of time, our al
gorithm provides a limit to the number of points per segment N. Indeed, 
without this delimitation, the number of points in the current segment 
could grow infinitely. When an event occurs, the algorithm could no 
longer react since the division by a too large number would impose a 
standard deviation threshold tending towards 0. The limit of N could be 
configured according to the hardware specifications, i.e. its memory 
buffer register. In this study, it is fixed to the cardinal of the input signal 
(no delimitation). 

4. Metrics and characteristics evaluation 

In this section, we visualize the metrics and characteristics per
formed by the algorithm using as an example the electrocardiogram 
(ECG) signal shown in Fig. 3. In section 4.1, Figs. 5 and 6 show an 
overview of metrics obtained with the normalized threshold σth/σmax on 
the x-axis, facilitating the analysis of a compression level or of the tree as 
a whole. 

Fig. 4. Relative mean error ek
R of the ECG signal of Fig. 3, cf. Equation (16).  

Fig. 5. Q1, ε1
R , and CR1 of level 1 compression of the ECG signal of Fig. 3 versus the normalized standard deviation threshold (σth /σmax). The black dot indicates the 

chosen local maximum of Q1. (The curve Q1 has been truncated for readability.). 
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4.1. Algorithm metrics 

The Figs. 5 and 6 show a number of key metrics for evaluating the 
performance of our data compression algorithm. The analysis of each 
measure were calculated from the definitions that follow.  

(i) Compression ratio: 

For a level k, the compression ratio plotted above in Fig. 5 is defined 
as the following ratio 

CRk =
Sk

S0 (14)  

with 

Sk = Number of samples at the current level  

S0 = Number of original samples (level 0)

(ii) Relative mean error of a compressed level: 

Using linear interpolation of the compressed level k, an error mea
sure εk with respect to the original signal (level 0) is defined: 

εk
i = yk

i − y0
i ; 1 ≤ i ≤ N. (15) 

Then taking the average of the absolute value of εk and dividing by 
the mean absolute value of level 0, a relative mean error εk

R illustrated in 
Fig. 5 is furthermore defined: 

εk
R =

∑N
i=1

⃒
⃒εk

i

⃒
⃒

∑N
i=1|y0

i |
(16) 

Note that the case of a zero denominator is excluded because the 
whole signal would then be zero. It is also noteworthy that the relative 
mean error does not always increase from one compression level to the 
upper next, as can be seen in Fig. 4. 

In Fig. 5, it is noteworthy that Q1 rises significantly when σth/ σmax 

approaches 1. CR1 converges towards low values on the right end of the 
x-axis and ε1

R decreases, which leads to the highest value of Q1 overall. 
Hence, following the absolute maximum value of Q1 is not a suitable 
option as the number of levels in the tree would be too low. Instead, we 
chose the first local maximum found by gradually increasing the 
threshold from σmin, making a heuristic trade-off between the error and 
the ratio of compression. The threshold value corresponding to Q1 is 

hence used for compression. 
For all the signals tested so far (cf. section 5), Q1 is an increasing 

function of the threshold at the lower bound of the variation domain 
with at least one local maximum. We therefore believe that this heuristic 
has wide applicability. In the case of the ECG signal of Fig. 3, it results in 
a normalized threshold value of 0.075, which leads to a compression 
ratio of 12.4 % and a value of 0.0305 for ε1

R which are decent results for 
such data. 

In Fig. 6, we analyze the correlation between metrics like the space 
saved by the algorithm, its compression gain, the signal-to-noise ratio as 
well as the maximum absolute distortion between the original signal and 
the compressed signal of level 1. By still considering the same local 
maximum of Q1 0.075 obtained in Fig. 5, the algorithm performs as 
follows. The space-saving SS1 increases significantly as it approaches the 
local maximum of Q1 that we have chosen, before quickly reaching a 
plateau close to 100 %. The maximum absolute distortion shows also a 
plateau over the same interval. As this space-saving index is just the 
complement to 1 of the compression ratio CR1 measured previously, the 
result is again satisfactory. Also, as is the case with space-saving, the 
compression gain CG1

dB and the signal-to-noise ratio SNR1
dB both show 

quite similar overall behavior, with a greater sensitivity for the first 
metric. Both seem to be correlated with each other. This result is rele
vant since the algorithm, as it compresses the data, reduces the noise 
level at the output of the measurement chain. 

An important observation to make, in the case of this ECG signal, 
concerns the second phase of the test, on the right of the chosen local 
maximum of Q1, 0.075 (cf. Fig. 5). All metrics present there a stationary 
phase. Hence, we believe that it would be quite advisable to stop the 
adaptive process after finding the first local maximum of Q1. Of course, 
all the data are presented for general analysis. These metrics are 
calculated with the following definitions:  

(i) Space-saving: 

Conventionally, the space-saving is given by the relation with the 
compression [61]. That’s why, in our case, we choose to define it, for a 
compression level k, as: 

SSk = 1 − CRk = 1 −
Sk

S0 (17) 

Naturally, this measure of our algorithm could be the subject of 
further study. At this stage, we do not go into details on this aspect 
because it would require an overly ambitious extension of this work. 

Fig. 6. SS1, CG1
dB, SNR1

dB, and MAD1 (cf. Equations (17)–(20)) of level 1 compression of the ECG signal of Fig. 3 versus the same normalized threshold as in Fig. 5 
(The curve of CG1

dB has been truncated for readability). 
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Fig. 7. Segmentation of the ECG signal of Fig. 3. Each vertical band (two tone grey background) contains only one sample of the downsampling, plotted in red. The 
level below is also plotted in blue. One can see the width of the segments is larger between the pulses, meaning a lot more points are condensed in these 
time intervals. 

Fig. 8. Local sampling rate of level 1 compression of the ECG signal of Fig. 3.  

Fig. 9. Mean number of children per node Nk
c and relative compression rate CRk

r of the ECG signal of Fig. 3 (cf. Equations (22) and (23)).  

P. Daniel et al.                                                                                                                                                                                                                                  



Array 12 (2021) 100076

8

(ii) Compression gain: 

Still for a level k, the compression gain in decibels is defined as the 
following: 

CGk
dB = 20log 10

Sk

S0 (18)    

(iii) Signal-to-noise: 

The signal-to-noise ratio standard definition is conventionally indi
cated by the relativeness of denoised signal corresponding to original 
signal [62]. Here, we use the relative average error established above as 
a measure of the signal background noise. Thus, the signal to-noise ratio 
in decibels, for a current level k, is defined as: 

SNk
dB = 10log 10

S0

εk
R

(19)    

(iv) Maximum absolute distortion: 

The local distortion measure is frequently used to quantify the error 
between the original signal and the reconstructed signal [63,64]. In this 
way, for a level k, the local maximum absolute distortion (or peak 
distortion) is defined by (cf. Equation (15)): 

MADk =max
( ⃒
⃒εk

i

⃒
⃒
)

(20)  

4.2. Algorithm characteristics 

The graphics below (cf. Figs. 7–9) illustrate some characteristics 
performed by the algorithm still in the case of the electrocardiogram 
(ECG) signal example shown in Fig. 3.  

(i) Segmentation of the signal: 

The plot function of the Fig. 7 presents the segmentation throughout 
the ECG signal by colored vertical bands. To avoid gaps, the smaller 
boundary is placed in the middle between the first child of the current 
segment and the last child of the previous segment, and the greater 
boundary in the middle between the last child of the current segment 
and the first child of the next segment.  

(ii) Local sampling frequency 

The local sampling frequency parameter is suitable for monitoring signal 
segmentation. For an arbitrary level k composed of the time vector tk =

[tk
1, tk

2, …, tk
N], the vector fk = [fk

2 , fk
3 ,…, fk

N] is constructed: 

f k
i+1 =

1
Δtk =

1
tk
1+1 − tk

i
[Hz] 1 ≤ i ≤ N − 1 (21) 

In order to match vector lengths, an additional element fk
1 equal to fk

2 
is arbitrarily inserted at the beginning of the frequency vector. As ex
pected, the sampling rate periodically peaks with the heart pulses, 
reaching an upper limit of 100 Hz, which is half the original sampling 
rate (cf. Fig. 8). This limit matches the minimum compression ratio of 
50 % since each node has at least two children, for it takes at least two 
values to calculate a standard deviation.  

(iii) Mean number of children per node: 

This parameter is suitable for measuring the compression of one level. It 
is defined as Nk

c in Equation (22) for an arbitrary level k composed of N 
nodes, with Nk

ci being the number of children of the node i. 

Nk
c =

1
N

∑N

i=1
Nk

ci
(22) 

Moreover, by dividing by the total number of nodes of the level just 
below, therefore the level k-1, we obtain a general indicator of 
compression, allowing for example to compare the compression be
tween different levels. This parameter is called the relative compression 
rate CRk

r (cf. Equation (23)). 

CRk
r =

Nk
c

Number of samples of the previous level
(23) 

In Fig. 9, we can notice Nk
c drops to about 2 after level 1, reducing 

interest in the tree. This may be due to taking the same threshold value 
(σth) to build each level. The issue can be overcome by varying the 
threshold from one level to another, for example by reapplying the 
adaptive method described in section 3.2. 

5. Tests, simulation analysis and results 

We perform compression tests with adaptive resampling on signals 
provided by uniform sampling. This section starts by testing with ideal 
signals, i.e. whose continuous-time Fourier transform have an analytical 
expression, hence allowing to set its bandwidth (denoted fBW). By 
reconstructing the compressed signal in uniform sampling, the Fast 
Fourier Transform (FFT) can be calculated and compared to the original 

Fig. 10. Comparison of a damped sine wave with its reconstruction from level 1 compression. CR1 = 36%.
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Fourier transform. The sampling frequency, denoted fs, is fixed at 20 
times fBW in reference to a practical engineering rule [65]. Two tests 
with real world signals are also performed: a normal ECG for a human at 
rest extracted from the Physionet database [60] and a signal measure
ment provided by the satellites of the European Space Agency’s Swarm 
mission [66]. All these signals have been chosen so as not to contain any 
straight portion because we want to test the compression under unfa
vorable conditions, in order to obtain the low limits of its performance. 

5.1. Tests with ideal signals 

The two ideal noise-free signals used for testing are chosen from the 
most common in engineering and physics. The compression is limited to 
level 1. The signal is reconstructed by cubic spline interpolation in a 
uniform sampling with the level 0 rate (fs). The amplitude of the FFT is 
then calculated to make a comparison between the two levels 0 and 1. 
The continuous time Fourier transforms are used to set the signal 
bandwidth fBW. The number of samples is fixed at 500.  

(1) The first ideal signal is a sine wave with exponential damping: 
y1(t) = e(− αt)sin(ω0t) ; α = 2u− 1 ; ω0 = 20π rad/u ; fBW =

15.53 u− 1 ; fs = 310.6 u− 1 , with u an arbitrary unit of time. The 
Laplace transform of y1(t) is found in Ref. [67]. fBW is computed 
with the software Matlab (‘bandwidth’ command). The peak 

value in the spectrum of the oscillations after reconstruction is 
slightly lower (cf. Fig. 11), but the result is very satisfactory. The 
error is even better bounded than in the case of a pure sine wave 
(2% against 3.5%). 

The reconstruction is very close to the original sampling, so much 
that they can hardly be distinguished in Fig. 10. The difference remains 
less than 0.5 % over the whole sampling, in absolute value.  

(2) The second ideal signal is a Gaussian wave packet y2(t) =

1
σ
̅̅̅̅
2π

√ exp

(

−
(t− t0)2

2σ2

)

sin(ω0(t − t0)); ω0 = 20 π rad/u ; σ = 0.3 ;

t0 = 1.0396 u ; fBW = 12 u− 1; fs = 240 u− 1 

An analytical expression for the Fourier transform of Gaussian 
waves is given in Ref. [68]. Its modulus is computed for y2(t) to 
find fBW (cf. Fig. 12). fBW is around 12 u− 1, which brings the 
sampling rate to 240 u− 1.

After reconstruction, only a small disturbance can be observed, in the 
interval [0–3] of the adimensional time (cf. Fig. 13). This segment of 
signal was condensed into a single sample during compression, and 
reconstruction by the cubic spline technique produced this artifact 

Fig. 11. Above: magnitude of the frequency spectrum of the damped sine wave of Fig. 10. Below: difference in FFT magnitudes between levels 1 and 0.  

Fig. 12. Magnitude of the analytical Fourier transform of a Gaussian pulse [68].  
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Fig. 14. Above: magnitude of the frequency spectrum of the Gaussian pulse of Fig. 13. Below: difference in FFT magnitudes between the level 1 and 0.  

Fig. 15. Main features looked for in an ECG [69].  

Fig. 13. Comparison of a Gaussian pulse with its reconstruction from level 1 compression. CR1 
= 40 %.  
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wave. 
The spectrum of the reconstructed signal is very close to the original 

(cf. Fig. 14, above). We magnified by a thousand to observe the 

difference between the two spectra (cf. Fig. 14, below). The hill at the 
adimensional peak frequency of about 0.3 is due to the above mentioned 
artifact of reconstruction. In the whole spectrum, the error is less than 1 

Fig. 16. ECG example 1, large scale view.  

Fig. 17. Two-beat portion of ECG example 1.  

Fig. 18. ECG example 2, large scale view.  
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%, in absolute value. Therefore, we can say that the compression gives a 
solid result. 

Considering the fidelity of the reconstructed signals, the compression 
ratios (CR1) reached are quite good (35, 36 and 40%), considering the 
absence of straight portions. However, as shown with y2(t) (cf. Fig. 13), 
the reconstruction method can be improved. The spline reconstruction 
technique was chosen because it generates a continuous and differen
tiable function, avoiding the high frequency noise that would appear in 
the case of linear interpolation for example. The search for a recon
struction technique better suited to our compression algorithm is part of 
our future prospects. 

5.2. Electrocardiogram (ECG) data from PhysioNet 

ECG samples retrieved from the PhysioNet [60] database have been 
compressed. When faced with such ECG signals, the most important is to 
recognize the main medical features on it to make a diagnosis: the P and 
T waves, and the QRS complex (cf. Fig. 15). These will be the first to be 
compromised or to disappear if the compression is too strong. We 
consider two signals from normal human heart beats at rest, testing 
whether compressed level 1 exhibits the main characteristics of a normal 
ECG. The figures from Figs. (16)–(19) show the results. 

As these figures show, compression ratios of less than 46 % are 

obtained at level 1 and the conservation of the QRS complex as well as P 
and T waves in the reconstructed signal is indisputable. However, one 
drawback to note is the reduction in R-peaks. This is because the 
resampling rate cannot exceed half of the original one. The consequence 
is however limited thanks to the reconstruction. The mean relative error 
in the peak values between levels 0 and 1 lies in the ranges [11,50] % for 
the example 1 and [5,40] % for the example 2. The peak R values in the 
reconstructed signal are significantly closer to the original than in the 
compressed signal (cf. Figs. 16 and 18): the error is halved. 

5.3. Data from swarm satellites (ESA) 

The Swarm mission was initiated by the European Space Agency 
(ESA) in November 2013 with the launching of three identical satellites 
capturing the fluctuations of the Earth’s magnetic field. An extract of 
this data is shown in Fig. 20 with the signal after compression and after 
reconstruction. Level 1 compression ratio (CR1) is better than 36 %. The 
reconstruction shows a solid result. 

6. Conclusion and future research prospects 

Assigning relevance to the samples of a record is certainly the key 
point in designing our progressive lossy data compression algorithm. 

Fig. 19. Two-beat portion of ECG example 2.  

Fig. 20. ESA Swarm mission measurement data on Earth’s magnetic field as a function of latitude. The [-5◦, − 4◦] interval is zoomed in to show small fluctuations in 
the original signal, that the compression smooths. 
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Considering one-dimensional digital signals, we have developed an al
gorithm that cuts the signal into segments and replaces them with their 
linear regressions. The segmentation is carried out with respect to the 
variance of the deviation from the local regression. The segments are 
dynamically delimited by comparing the standard deviation to a pre
defined threshold value. In assigning relevance this way, we therefore 
assert that the relevance is evenly distributed in the compressed signal, 
thus optimizing the compression for a given threshold. Obviously, the 
compression performance depends on the input signal. The more 
straight portions it contains, the stronger the compression. In setting the 
threshold value, the user can adjust the compression ratio. This is 
especially useful with recordings containing long latencies such as 
sparse type signals, which are typical of monitoring systems. For an 
appropriate filtering in the case of measurement data, this setting can be 
linked, for example, to the noise of the measurement chain or its un
certainty. In order to maximize the applicability of the algorithm, we 
have also introduced a heuristic for adaptive threshold determination, 
which does not require any input in addition to the signal. This work 
opens a unique approach, where the sampling rate adaptation is gov
erned so to produce a sampling of uniform relevance, serving as base 
level of the tree data structure. 

Tests using this heuristic are performed on two ideal noise-free sig
nals as well as two signals from the real world extracted from two sci
entific databases of different fields (medicine and space). These signals 
are chosen not to be sparse type in order to investigate compression 
performance in unfavorable conditions. Despite this, we obtain 
compression ratios of less than 50 % at level 1 while maintaining the 
relevant characteristics of the signal (less than 46 % for the ECG signals 
and 36 % for the satellites measurements). By reconstructing uniform 
samplings of the ideal noise free signals from their compressions, a 
measure of the compression error is obtained. Comparing the Fourier 
transforms of the original and the reconstructed signals, we further 
allow for future comparative analysis with other compression methods 
taking into account the ratio between the bandwidth and the sampling 
frequency of the original signal. The compression can be applied to any 
sampling, uniform or not. It can be thus applied recursively, so to build a 
tree data structure. This optional output can feed multiscale analysis 
tools, helping to find models of different characteristic scales. Data tree 
can open a powerful avenue for data visualization and exploration. In 
archive management, when it is necessary to free memory space, it al
lows moreover a progressive memory release, where the less relevant 
components are removed first, unlike a sudden erasure file by file as is 
the case today. 

Other developments of the algorithm are in perspective, including in 
particular the extension to multidimensional signals, for an application 
in the field of video broadcasting for example. An extension to data 
acquisition systems with auto-adaptative sampling rate is also in pros
pect since an adaptive sampling frequency would certainly be a major 
advance in the field of low energy embedded systems. 

The authors would like to thank Dr Benvenuti Juan Francisco, who 
provided advice regarding compression tests performed on ECGs 
retrieved from the PhysioNet database. He introduced us to the main 
medical features a doctor would look for in an ECG to make a diagnosis. 
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their main medical implications were retained. 
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