
A Hybrid Cache HW/SW Stack for Optimizing
Neural Network Runtime, Power and Endurance

William Andrew Simon∗, Alexandre Levisse∗, Marina Zapater†∗ and David Atienza∗
∗Embedded Systems Laboratory (ESL), Swiss Federal Institute of Technology Lausanne (EPFL)

†University of Applied Sciences Western Switzerland (HEIG-VD / HES-SO)
Email: {william.simon, alexandre.levisse, marina.zapater, david.atienza}@epfl.ch

Abstract—Hybrid caches consisting of both SRAM and emerg-
ing Non-Volatile Random Access Memory (eNVRAM) bitcells
increase cache capacity and reduce power consumption by taking
advantage of eNVRAM’s small area footprint and low leakage
energy. However, they also inherit eNVRAM’s drawbacks, includ-
ing long write latency and limited endurance. To mitigate these
drawbacks, many works propose heuristic strategies to allocate
memory blocks into SRAM or eNVRAM arrays at runtime based
on block content or access pattern. In contrast, this work presents
a HW/SW Stack for Hybrid Caches (SHyCache), consisting
of a hybrid cache architecture and supporting programming
model, reminiscent of those that enable GP-GPU acceleration,
in which application variables can be allocated explicitly to the
eNVRAM cache, eliminating the need for heuristics and reducing
cache access time, power consumption, and area overhead while
maintaining maximal cache utilization efficiency and ease of
programming. SHyCache improves performance for applications
such as neural networks, which contain large numbers of
invariant weight values with high read/write access ratios that
can be explicitly allocated to the eNVRAM array. We simulate
SHyCache on the gem5-X architectural simulator and demon-
strate its utility by benchmarking a range of cache hierarchy
variations using three neural networks, namely, Inception v4,
ResNet-50, and SqueezeNet 1.0. We demonstrate a design space
that can be exploited to optimize performance, power consump-
tion, or endurance, depending on the expected use case of the
architecture, while demonstrating maximum performance gains
of 1.7/1.4/1.3x and power consumption reductions of 5.1/5.2/5.4x,
for Inception/ResNet/SqueezeNet, respectively.

Index Terms—eNVRAM, STT-MRAM, hybrid caches, neural
networks, low-power systems

I. INTRODUCTION

In recent years, Neural Networks (NNs) have gained
popularity for performing a variety of tasks such as image
recognition [1], object detection [2], and natural language
processing [3]. In an effort to enable NNs on as many devices
as possible, many optimizations to reduce NN memory and
compute overhead have been proposed, such as quantization,
pruning, and custom layers [4]–[6]. Even so, the memory
footprint of ”small” NNs often still measure in the order of
MBs [7]; therefore, memory enhancements that exploit the
invariant nature of these weights can continue to improve NN
performance on area restricted devices. In this regard, Figure 1
displays the read access to write access (read/write) ratios of
the memory blocks that account for 98% of total inference-time

Fig. 1: Read/write access ratios in relation to total read accesses.
Weight accesses account for nearly 40% of all reads.

read accesses for the SqueezeNet neural net [6]. As can be seen,
the memory blocks with the highest read/write ratio contain
weight values, as these blocks are only written during line fills
from lower memory levels during inference, never from the
processor. Weight values also account for almost 40% of all
memory accesses performed at runtime. It can be inferred that
improving processor read access to these weight values will
result in overall application performance gain.

In this context, Hybrid Caches (HCs), consisting of SRAM
and emerging Non-Volatile Random Access Memories (eN-
VRAMs), can be used to accelerate NNs. eNVRAM’s low area
footprint and leakage energy enable more efficient execution
of memory intense algorithms by increasing cache capacity
with little area overhead, while simultaneously reducing power
consumption. However, eNVRAMs also incur a high write
energy cost and have limited endurance. It is therefore necessary
to optimize write strategies to avoid unnecessary writes. Many
works have proposed heuristical, predictive placement strategies.
In contrast, a deterministic cache allocation strategy enables
the utilization of eNVRAM allocated variables to choose which
values are written to eNVRAM and avoid unnecessary transfer
between SRAM and eNVRAM, thus providing maximum cache
usage efficiency. In the case of NNs, invariant weight values
are an excellent candidate for eNVRAM storage.

To this end, we present a HW/SW Stack for Hybrid Caches
(SHyCache), consisting of a HC architecture and deterministic

Published in the Proceedings of 28th IFIP/IEEE International 
Conference on Very Large Scale Integration, 5-9 October 2020, 
Salt Lake City, Utah, USA, which should be cited to refer to 
this work.



cache allocation strategy, supported via a programming model
reminiscent of those utilized to enable GP-GPU computation,
illustrated in Figure 2-a. SHyCache enables precise control
over data placement within the cache, and is compatible with
heuristical hybrid cache strategies. Then, we explore the HC
design space by considering various eNVRAM/SRAM HC
ratios, and benchmark SHyCache in the gem5-X [8] architec-
tural simulator, on a range of NNs of varying computational
complexity and memory footprint.

The contributions of this paper are as follows:
• We introduce SHyCache, an HC architecture with a

deterministic allocation strategy allowing for precise data
allocation within an HC. SHyCache’s allocation strategy
is compatible with other hybrid cache allocation strategies.

• We develop a programming model with a C++ support
library allowing easy integration of SHyCache support
into any existing application.

• We implement SHyCache in the gem5-X architectural
simulator and explore the HC design space to optimize
for performance, power, and endurance, demonstrating
performance gains of 1.7/1.4/1.3x and power consumption
reductions of 5.1/5.2/5.4x for the Inception v4, ResNet-50,
and SqueezeNet 1.0 NNs, respectively.

The rest of this paper is organized as follows. Section II
explores related state-of-the-art work. Section III details
SHyCache’s HC architecture. Section IV details SHyCache’s
programming model and support library and discusses tandem
implementation with other allocation strategies. Section V
details our benchmarking methodology, while Section VI
discusses results. Finally, Section VII concludes this work.

II. RELATED WORK

A. Resistive Random Access Memory

Emerging nonvolatile memories, including phase change [9],
resistive [10] and spin-torque transfer [11] memories, have
gained popularity in recent years thanks to their small size,
up to 4x smaller than 6T SRAM cells [12], and low leakage
energy resulting from their nonvolatility. However, eNVRAM
also suffers from long/high-energy write operations, and low
endurance due to the underlying physics of the technology. In
order to efficiently utilize eNVRAM within an architecture,
eNVRAM-specific optimizations must be implemented to mag-
nify their advantages while mitigating or masking drawbacks.

B. Hybrid Cache Design and Allocation Strategies

One implementation of eNVRAM within the memory
hierarchy involves placement alongside standard SRAM cache
arrays, creating a Hybrid Cache (HC) hierarchy, as illustrated
in Figure 2-b. This architecture increases cache capacity while
also reducing power consumption [13]. However, HCs also
inherit eNVRAM’s disadvantages as described above. Further,
a naive HC implementation may magnify these disadvantages,
as the frequency of cache writes, and therefore cache lifetime,
is highly variant depending on the application [14], as well
as reducing performance even while not in use due to slower
access time. Many works have therefore proposed memory

management strategies [15] for allocating blocks in either
SRAM or eNVRAM depending on a variety of factors. The
majority of these strategies are heuristic [14], [16], [17] or
compiler based [18], [19]. In contrast, this work presents
an application driven allocation strategy which obviates the
need for heuristics and takes advantage of cases in which an
application’s data is constant, such as neural networks.

C. Neural Networks

Neural networks are a class of applications that accept inputs
in various forms such as images, text, or audio, process them
through the use of consecutive compute layers, and return an
output, for example, the class of the input. Each hidden layer
consists of one or more ”neurons” of various function. The
two most widely used neuron layers are the fully connected
and convolutional layer. Both layers perform multiply-and-
accumulate operations between the outputs of the previous
layer and an array of previously trained weights. These layers
require a massive number of weight values; the classical
Alexnet neural network utilizes 3.78M weights (144MB for
floating point weights) in its first fully connected layer [1].
Convolutional layers reduce memory footprint by using small
(ex. 3x3) weight kernels that are convolved with the layer input.
While convolutional layers greatly reduce the NN’s memory
footprint, they are generally still large in an absolute sense;
for example, the SE-ResNeXt-50 NN achieves the highest
Top-1 and Top-5% accuracy on the ImageNet-1k database at
a low operational complexity, yet still contains over 10MB
of weights [7]. Managing such large quantities of weights is
imperative for efficient NN execution.

III. HYBRID CACHE ARCHITECTURAL DESIGN

SHyCache’s hybrid cache consists of arrays of two memory
types, one being standard 6T SRAM based memory and the
other a flavor of eNVRAM, as illustrated in Figure 2-b. Each
bitcell array is indexed by a separate tag array. The combined
area of the tag array memory macros is equivalent to a single
tag array of an equivalently sized monolithic cache memory,
plus overhead for tag array periphery. As our data placement
strategy is deterministic, as described in Section IV, only one
data/tag array needs be accessed per read/write, reducing power
consumption in comparison to heuristic strategies that must
check both arrays for the data as its location is not known
beforehand. In regards to cache access latency, it is important
to note that, as only either the SRAM or eNVRAM is accessed,
SHyCache’s allocation strategy does not impact access latency
of programs not utilizing the eNVRAM, i.e. the system kernel,
and thus does not impact standard system performance. This
is not necessarily the case if other heuristic or compiler-based
allocation strategies are implemented alongside SHyCache’s
allocation strategy, as discussed in Section IV-C.

As illustrated in Figure 2-b, we consider HC configurations at
both the L1 and L2 levels. We utilize an inclusive cache policy
for reasons explained in Section VI. The L1 cache utilizes
parallel tag/data access to reduce access time, while the L2
uses sequential tag/data access to reduce power consumption.



Hybrid Cache

Operating System
C++ Support Library

Application

H/W

Backend

Frontend
Core

L1IL1D

L2

Main Mem

H
C

 M
u

x

SRAM
Array

eNVRAM
Array

Hybrid Cache CPU

Tag 1Tag 0

(a) (b)

Fig. 2: SHyCache is a HW/SW stack (a) that enables efficient use of a hybrid cache (b).

using namespace SHyCache;
void loadWeights(string weightsFile, size_t len) s{

// Declare var to be stored to eNVRAM portion of
// cache. Allocation handled by helper library.
float32_nv *weightsPtr = new float32_nv[len];
// Open file containing pre-calculated weights.
ifstream wIn(weightsFile);
// Store weights to previously allocated memory.
wIn.read((char *)weightsPtr,len);
//...Perform inference...
// Clean up
delete weightsPtr;

}

Listing 1: Allocating the hybrid cache is done by allocating the
variable pointer within the memory mapped region reserved
for eNVRAM.

IV. INTEGRATING SHYCACHE’S PROGRAMMING MODEL
INTO NEURAL NETWORK FRAMEWORKS

Several characteristics of NN weights enable NNs to be
accelerated by HCs. The first is that, as previously mentioned,
most NNs that achieve >80% Top-5% accuracy utilize large
amounts (in the order of MBs) of weights. Second, weight
values are calculated at training time and not modified during
inference. Finally, fully connected and convolutional layers re-
sult in spatially local data accesses. These characteristics make
eNVRAM suitable for storing NN weights. High eNVRAM
bitcell density allows more weights to be stored without the
need for eviction, while the long write latency of eNVRAM is
mitigated by the read-only nature of weights.

A. Enabling HC allocation at the Operating System Level

Most previous HC works utilize heuristic strategies to
allocate data either in the SRAM or eNVRAM bitcell arrays
depending on various factors. In contrast, because the location
and value of NN weight values are deterministic, no heuristic
strategy is necessary for weight allocation in SHyCache. This
is accomplished at the system level by reserving a portion of
memory at operating system startup that can be mapped by an
application in the same manner that peripherals can be mapped
and accessed by user applications. When variables allocated to
the memory range reserved for eNVRAM caching are fetched
into the cache hierarchy, an address predecoder analyzes the
MSBs of the incoming address. Addresses within the reserved

memory region will be automatically cached in eNVRAM
array when accessed. Such a strategy does not require any
compiler modification and minimal application modification.
Architectural modifications will depend on the nature of the
architectures virtual-physical memory address translation. If
the reserved memory is virtual, when address translation occurs
the processor can tag the memory access with a bit to indicate
if it is a standard or eNVRAM memory access before passing
the access to the cache hierarchy. If the reserved memory is
physical, or there is no virtual-physical translation, for example
in embedded systems that use tightly coupled memory [20],
the type of memory access will be attained as a byproduct of
the address decoding that occurs during cache access, hence,
no modification to the processor architecture is necessary.

B. Enabling HC allocation at the Application Level

At the application level, the programmer utilizes SHyCache’s
C++ data types to instantiate variables that will be allocated
to the eNVRAM, as seen in the example function in Listing 1.
The support library then facilitates the allocation of variables
to the eNVRAM memory region without further programmer
intervention by allocating the variables to the memory mapped
region described in Section IV-A. Current NN frameworks
such as Tensorflow, Caffe, and the ARM Compute Library
perform several preprocessing stages upon weights before
storing them in their final tensor, after which this tensor is not
modified during inference. Framework extension to support
HCs consists therefore of redirecting the output of the final
preprocessing stage to store weight values in a tensor stored
in the eNVRAM cache, resulting in no extra data movement
overhead. In this work, we extend the ARM Compute Library, a
neural network framework optimized for ARM processors [21],
with SHyCache’s C++ support library, however such extensions
could be applied to any of the aforementioned frameworks
to enable HC support. It should be noted that the use of a
support library obviates the need for any language compiler
modifications, simplifying the deployment process.

C. Co-Implementation with Other Hybrid Cache Allocation
Strategies

One advantage of SHyCache is that it does not preclude
the use of other heuristical [14] or compiler-driven [18] HC



TABLE I: Simulator Parameters
Processor 2GHz, 4 stage pipeline, ARMv8 ISA

in-order core, 7 entry LSQ
NEON 128 bit registers

Co-processor 16 parallel 8-bit operations
L1-I Cache 32kB, 4-way, 2 cycle access
L1-D Cache 32/0kB SRAM, 0/128kB STT-MRAM

4-way, 2 cycle access
L2 Cache 1024/0kB SRAM, 0/4096kB STT-MRAM

mostly-inclusive, 16-way, 20 cycle access
STT-MRAM 50ns [11]Write Time

Memory DDR3 2133MHz, 4GB

allocation strategies. Such strategies can be implemented in
tandem by excluding the memory region utilized by SHyCache
from the data migration scheme. Even a heuristical allocation
strategy with oracle prediction abilities would benefit from
SHyCache, as, in order to maintain fast access times, the tag
array (and data array in the case of simultaneous tag/data
access) of both the SRAM and eNVRAM portions of the
HC cache must be accessed simultaneously, as the location
of the data is unknown prior to access. On the other hand,
SHyCache determines the location of the data at compile time,
and the address decoding process routes data access to only
the portion of cache in which the data is located, reducing
power consumption.

V. EXPERIMENTAL SETUP

To assess SHyCache’s application level performance, we ex-
tend the gem5-X architectural simulator [8] [22] to support HC
caches. We then simulate three NNs of differing computational
complexity and memory footprint, and extract performance,
power, and endurance trends across a range of HC geometries.

A. gem5-X Simulator Parameters and
Hybrid Cache Access Latency Simulation

We emulate an ARMv8 A53 in-order core by calibrating
gem5-X with the simulation parameters illustrated in Table I,
and simulating an Ubuntu 18.04 LTS software environment.
CPU and interconnect power statistics are extracted via the
McPAT power estimation framework [23]. SRAM timing and
power values are extracted from an implemented subarray in
28nm using TSMC’s high performance technology PDK [24].
We draw eNVRAM power values from literature, considering
STT-MRAM [11] for this work, however the allocation strategy
is technology independent. In order to illustrate SHyCache’s
performance and power trends, we extract performance and
power statistics across multiple HC hierarchies, in addition
to SRAM-only baseline simulations. Hybrid cache geometries
are defined by assuming a 4x area ratio between SRAM and
eNVRAM bitcell arrays [12], and then sweeping eNVRAM
capacity between 0-128kB and 0-4096kB for the L1/L2 caches,
respectively, while maintaining an equivalent area footprint.

In order to accurately simulate HC access, SRAM and STT-
MRAM access latency is defined in cycles, as documented in
Table I. This access latency represents the time to access a cache
block through the decoding logic and H-tree, and is pipelined

TABLE II: Neural Network Benchmark Parameters
Benchmark # Parameters Weight Memory

Footprint (MB)
Inception v4 41.1M 156.8
ResNet-50 23.5M 89.6

SqueezeNet v1.0 1.25M 4.76

0.5x 1x 1.5x 2x 1x

0/32

32/24

64/16

96/8

128/0

0/32

32/24

64/16

96/8

128/0

0/32

32/24

64/16

96/8

128/0

0/32

32/24

64/16

96/8

128/0

0/32

32/24

64/16

96/8

128/0

0/32

32/24

64/16

96/8

128/0*

(a) Performance Gain (b) Power ReductionL2(kB) L1(kB) 

2x 3x 4x 5x 6x

SqueezeNet

ResNet

Inception

SqueezeNet

ResNet

Inception

SqueezeNet

ResNet

Inception

*STT-MRAM/SRAM

5.4x

1.7x

1.4x
1.3x

Fig. 3: Performance gain (a) and power reduction (b) across the
L1/L2 design space. HC label format is STT-MRAM/SRAM
Capacity (kB.)

in this implementation, allowing consecutive cache accesses
to overlap without blocking. Additionally, STT-MRAM write
latency includes an additional write time measured in ns,
representing the time taken to write a line of data to STT-
MRAM. During this time, the subarrays being written to cannot
be accessed; therefore, this time is not pipelined and subsequent
accesses to busy subarrays are blocked. As SHyCache is
deterministic in that only the SRAM or eNVRAM portions of
the memory need to be accessed for any given cache block,
this added latency is not present in standard SRAM accesses,
and hence does not impact system performance in cases where
the eNVRAM is not accessed.

B. Neural Network Benchmarks

In order to benchmark SHyCache, we utilize three modern
neural networks of differing sizes, namely, Inception v4 [25],
ResNet-50 [26] and SqueezeNet v1.0 [6], whose parameters are
outlined in Table II. We choose these networks to benchmark
SHyCache under a wide range of network complexities and
memory footprints. All weights and inputs are in floating point,
and input batch sizes are set to one. We use the ARM Compute
Library (ACL) [21] as our software framework. ACL is a graph
dataflow framework, specially designed to optimally utilize the
ARM NEON SIMD co-processor to accelerate neural networks.



VI. EXPERIMENTAL RESULTS AND ANALYSIS

Our experimental results reveal trends in relation to runtime
performance, power consumption, and eNVRAM endurance.

A. Performance Results

To observe SHyCache’s impact on NN runtime, summarized
in Figure 3-a, we perform inference with a batch size of one
for the three neural networks, normalizing the results to pure
SRAM cache hierarchies. The No-L2 portion is normalized
to a pure SRAM cache of 32kB, while all other portions are
normalized to a 32/1024kB L1/L2 pure SRAM cache hierarchy.

As can be seen, runtime acceleration varies widely across
cache geometries. On one hand, if we consider solely the L1
cache in Figure 3-a, we measure performance gains of up to
1.31/1.09/1.03x for Inception/ResNet/SqueezeNet, respectively,
as we increase the STT/SRAM HC ratio up to 64kB/16kB.
However, increasing the size of the STT-MRAM array past
this point degrades performance, as less SRAM cache space
is allocated for the remainder of the application. Generally, a
128kB pure STT-MRAM L1 cache results in a steep decrease in
performance as all memory accesses, including those to memory
with low read/write ratios, are relegated to STT-MRAM. It
should also be noted that performance gain attributable to
L1 STT-MRAM decreases as computational complexity and
memory footprint increases, as the tiny L1 cache becomes
insignificant in comparison to the size of the weights.

On the other hand, if we consider the L2 we find a very
different trend. Increasing the HC ratio consistently improves
performance for all NN benchmarks, up to a pure eNVRAM
array of 4096kB. The larger cache size results in fewer weight
evictions, and the mostly-inclusive cache policy mitigates the
effects of constant L1 evictions. Additionally, having such a
large ratio between L2 and L1 STT-MRAM capacity (64 in the
case of a 64kB L1 and 4096kB L2), reduces the negative effects
of data repetition that results from an inclusive cache policy.
Overall, we achieve maximum possible performance gains
of 1.7/1.4/1.3x for Inception/ResNet/SqueezeNet, respectively,
when normalized against pure SRAM L1/L2 cache hierarchies.

B. Power Results

Next, we consider SHyCache’s implications on power
consumption. Figure 3-b summarizes the results of the HC
design space, from which two trends can be drawn. First,
regardless of the L2 cache, a spike in power reduction is seen
at a 128kB pure SRAM cache. This is because in a pure STT-
MRAM cache the power-hungry SRAM bitcell array is replaced
with a low leakage STT-MRAM bitcell array. A similar, more
pronounced power reduction occurs when replacing the L2
SRAM array entirely with STT-MRAM. Figure 4 provides an
in-depth breakdown of the power consumption of pure SRAM,
pure L1 STT-MRAM, and pure L1/L2 STT-MRAM cache
hierarchies. As can be seen, while L1/L2 STT-MRAM write
power is substantial, eliminating the energy-leaking SRAM
caches provides an excellent reduction in power consumption.
STT-MRAM read energy is on par with SRAM read energy,
and is too low to be visible in Figure 4. Overall, we see

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
o

w
er

 (
W

)

I R S I R S I R S
0/32 128/0 128/0

4096/0

NN
L1(kB)

L2(kB) 0/1024

STT ReadSTT Read

L1 SRAML1 SRAM
L2 SRAML2 SRAM
L1 STT WriteL1 STT Write
L2 STT WriteL2 STT Write

Fig. 4: Power consumption of all-SRAM, SRAM+eNVRAM,
and all-eNVRAM caches for Inception (I), ResNet (R) and
SqueezeNet (S) NNs.

a maximum possible power reduction of 5.1/5.2/5.4x, for
Inception/ResNet/SqueezeNet, respectively.

C. Endurance Results

Lastly, we analyze the number of bitflips that occur within the
STT-MRAM array at different cache geometries. eNVRAM life
expectancy is tied to its endurance with respect to bitcell value
flips, or bitflips. This is measured by counting every 1→0/0→1
flip during writes to the STT-MRAM arrays. As eNVRAM
technologies have significantly lower endurance compared to
CMOS-based memories, it is imperative to consider bitflip
frequency of any architecture utilizing eNVRAM.

Figure 5-a illustrates the STT-MRAM bitflip count at all L1
HC geometries with no L2. Consistent with the performance
results and reasoning presented in Section VI-A, bitflip count
drops for 64 and 96kB STT-MRAM caches, before increasing
again for pure STT-MRAM caches, with the bitflip reduction
more pronounced in the smaller SqueezeNet NN.

Meanwhile, Figure 5-b presents STT-MRAM bitflip count
for all L2 HC geometries with a pure SRAM L1 cache. The
first point of note is that the geometry with the highest bitflip
count is not a pure STT-MRAM cache, but in fact an HC of
512/896kB. This is consistent with the performance drop seen
across all NNs at this geometry in Section VI-A, and is a result
of cache thrashing due to the small cache size in relation to
the number of weights. Bitflip count then drops as the HC
ratio increases and less cache blocks are evicted. Finally, at
a pure STT-MRAM cache, the bitflip count for the smaller
SqueezeNet NN spikes, as the whole application utilizes STT-
MRAM. ResNet and Inception’s larger weight footprints dilute
this effect, as they gain more from keeping weights in-cache.

In this paper, we consider only overall bitflip count, not flip
counts for individual bits. We do observe a drop in average
flip per bit as cache capacity increases; however, this metric
does not account for uneven intra-word flips skewed toward
the LSBs. Many works have explored various eNVRAM wear
reducing and leveling optimizations to alleviate this skew. These
optimizations are out of this paper’s scope, however, and have
not been applied in this work; hence, the numbers demonstrated
here are worst case values, with room for future optimization.



(a)

(b)
InceptionInception ResNetResNet SqueezeNetSqueezeNetInception ResNet SqueezeNet

32/24 64/16 96/8 128/0

Sq
u

e
ez

eN
e

t 
L1

 B
it

 F
lip

s

L1 STT/SRAM Ratio (kB)

512/896 1024/768 2048/512 4096/0 Sq
u

e
ez

eN
e

t 
L2

 B
it

ce
ll

 F
lip

s

In
ce

p
ti

o
n

/R
es

n
e

t 
L2

 B
it

ce
ll

 F
lip

s

L2 STT/SRAM Ratio (kB)

In
ce

p
ti

o
n

/R
es

n
e

t 
L1

 B
it

ce
ll

 F
lip

s

Fig. 5: STT-MRAM bitcell flips across varying L1 (a) and L2
(b) cache sizes.

D. Optimizing HCs for Performance, Power, or Endurance

As seen in Sections VI-A-C, proper selection of HC geometry
for the L1 and L2 caches depends on the system’s expected
use case. Different geometries optimize either performance,
power, or endurance. For example, performance is maximized
with a 64/16kB L1 HC cache and a pure STT-MRAM 4096kB
L2 cache. However, such a configuration may have a poor
endurance when small NNs are the target application. In
terms of power, a pure STT-MRAM L1 and L2 provides
significant power reduction; however, endurance suffers greatly
from such a configuration. From an endurance perspective,
the highly active L1 cache accounts for nearly half of all
bitflips during inference; a good trade-off between performance,
power, and endurance, therefore, may be a pure SRAM L1
with a 2048/512kB L2 HC cache. This architecture provides
performance and power improvements of 1.6/1.1/1.1x and
1.5/1.5/1.5x, respectively, while incurring the lowest bitflip
count of any architecture.

VII. CONCLUSION

In this work, we presented SHyCache, a hybrid cache with a
deterministic allocation strategy and supporting programming
model designed to improve NN runtime while reducing power
consumption. SHyCache enables NN frameworks to explicitly
allocate weight values to the eNVRAM cache, eliminating data
transitions between SRAM and eNVRAM arrays and providing
maximal cache efficiency. In this work, we explained how
SHyCache can be implemented at the system and application
level and in tandem with other HC allocation strategies, we
have developed a C++ support library allowing implementation
in current applications, and we benchmarked SHyCache
on three neural network applications of varying computa-
tional complexity and memory footprint. Our experimental
results have demonstrated a maximum performance gains of

1.7/1.4/1.3x and power consumption reductions of 5.1/5.2/5.4x,
for our Inception/ResNet/SqueezeNet benchmarks, respectively.
Finally, we have considered the implications of our results
for optimizing an architecture based on expected use case,
and propose a middle-ground solution that provides optimal
trade-off between performance, power, and endurance.

ACKNOWLEDGMENTS

This work has been partially supported by EC H2020
RECIPE project (GA No. 801137), EC H2020 WiPLASH
project (GA No. 863337), ERC Consolidator Grant COM-
PUSAPIEN (GA No. 725657), and by the Swiss NSF ML-Edge
Project (GA No. 200020 182009).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” Commun. ACM, 2017.

[2] S. Ren, K. He et al., “Faster R-CNN: Towards real-time object detection
with region proposal networks,” in NIPS 28, 2015.

[3] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” ICML, 2008.

[4] A. Zhou, A. Yao et al., “Incremental network quantization: Towards
lossless cnns with low-precision weights,” CoRR, 2017.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
CoRR, 2015.

[6] F. N. Iandola, M. W. Moskewicz et al., “Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <0.5mb model size,” CoRR,
2016.

[7] S. Bianco, R. Cadene et al., “Benchmark analysis of representative deep
neural network architectures,” IEEE Access, vol. 6, 2018.

[8] Y. M. Qureshi, W. A. Simon et al., “Gem5-x: A gem5-based system level
simulation framework to optimize many-core platforms,” HPC, 2019.

[9] G. W. Burr, M. J. Brightsky et al., “Recent progress in phase-change
memory technology,” JETCAS, vol. 6, no. 2, pp. 146–162, June 2016.

[10] R. Fackenthal, M. Kitagawa et al., “19.7 a 16gb reram with 200mb/s
write and 1gb/s read in 27nm technology,” in ISSCC, Feb 2014.

[11] Q. Dong, Z. Wang et al., “A 1mb 28nm stt-mram with 2.8ns read access
time at 1.2v vdd using single-cap offset-cancelled sense amplifier and
in-situ self-write-termination,” in ISSCC, Feb 2018.

[12] L. Wei, J. G. Alzate et al., “13.3 a 7mb stt-mram in 22ffl finfet technology
with 4ns read sensing time at 0.9v using write-verify-write scheme and
offset-cancellation sensing technique,” in ISSCC, Feb 2019.

[13] J. Li, C. J. Xue, and Yinlong Xu, “Stt-ram based energy-efficiency hybrid
cache for cmps,” in VLSI-SOC 19, Oct 2011.

[14] Y. Li, Y. Chen, and A. K. Jones, “A software approach for combating
asymmetries of non-volatile memories,” in ISLPED, 2012.

[15] D. Atienza, J. M. Mendias et al., “Systematic dynamic memory
management design methodology for reduced memory footprint,” ACM
TODAES, Apr. 2006.

[16] J. Ahn, S. Yoo, and K. Choi, “Prediction hybrid cache: An energy-efficient
stt-ram cache architecture,” TC, March 2016.

[17] Z. Wang, D. A. Jiménez et al., “Adaptive placement and migration policy
for an stt-ram-based hybrid cache,” in HPCA 20, Feb 2014.

[18] Y.-T. Chen, J. Cong et al., “Static and dynamic co-optimizations for
blocks mapping in hybrid caches,” in ISLPED, 2012, p. 237–242.

[19] Q. Li, J. Li et al., “Compiler-assisted stt-ram-based hybrid cache for
energy efficient embedded systems,” TVLSI, vol. 22, no. 8, Aug 2014.

[20] F. Conti, D. Rossi et al., “Energy-efficient vision on the pulp platform
for ultra-low power parallel computing,” in SiPS, Oct 2014, pp. 1–6.

[21] (2018). [Online]. Available: https://developer.arm.com/technol-
ogies/compute-library

[22] (2019). [Online]. Available: https://github.com/esl-epfl/gem5-X
[23] S. L. Xi, H. Jacobson et al., “Quantifying sources of error in mcpat and

potential impacts on architectural studies,” in HPCA 21, 02 2015.
[24] W. A. Simon, Y. M. Qureshi et al., “An in-cache computing architecture

for edge devices,” TC, 2020.
[25] C. Szegedy, S. Ioffe et al., “Inception-v4, inception-resnet and the

impact of residual connections on learning,” AAAI 31, 2017.
[26] K. He, X. Zhang et al., “Deep residual learning for image recognition,”

in CVPR, June 2016.


