
Journal of Computational and Applied Mathematics 407 (2022) 113997

a

(
b

a
a
E

o
k
a

e
a
p

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

An anisotropic adaptivemethod for the numerical
approximation of orthogonalmaps
Alexandre Caboussat a,∗, Dimitrios Gourzoulidis a,b, Marco Picasso b

Geneva School of Business Administration, University of Applied Sciences and Arts Western Switzerland
HES-SO), 1227 Carouge, Switzerland
Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 10 April 2020
Received in revised form 20 October 2021

MSC:
65N30
65N50
65K10
49M20
35F30

Keywords:
Orthogonal maps
Eikonal equation
Origami
Operator splitting
Anisotropic adaptive mesh refinement

a b s t r a c t

Orthogonal maps are two-dimensional mappings that are solutions of the so-called
origami problem obtained when folding a paper. These mappings are piecewise linear,
and the discontinuities of their gradient form a singular set composed of straight lines
representing the folding edges. The proposed algorithm relies on the minimization of a
variational principle discussed in Caboussat et al. (2019). A splitting algorithm for the
corresponding flow problem derived from the first-order optimality conditions alternates
between local nonlinear problems and linear elliptic variational problems at each time
step. Anisotropic adaptive techniques allow to obtain refined triangulations near the
folding edges while keeping the number of vertices as low as possible. Numerical
experiments validate the accuracy and efficiency of the adaptive method in various
situations. Appropriate convergence properties are exhibited, and solutions with sharp
edges are recovered.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Orthogonal maps are the solutions of the analytical model of paper-folding, also called origami problem [1], in which
paper is folded along creases lines, but neither stretched nor torn. Mathematical aspects of such problems have been
ddressed, e.g., in [1–4]. Numerical methods for related problems have been proposed, e.g., in [5–9], and initially for
ikonal equations, e.g., in [10,11].
Originally, the motivation of this work comes from the works of Dacorogna et al. [2,4] on theoretical aspects of

rthogonal maps, and first order fully nonlinear equations in general [12,13]. The solution being piecewise linear, the
ey aspect is to approximate the discontinuity lines (the so-called singular set), and this has been the reason to introduce
nisotropic adaptive methods.
Besides the original origami application [4], such orthogonal maps formulation is or will be used for some applications,

.g., deformations of prestrained plates [14,15], aerospace engineering [16], cartography [17], differential geometry [18]
nd, to some extend, robotics [19,20]. More recently, it has been applied to several fields of material science, such as 3D
rinting and material composites [21–24] (e.g. for self folding materials).

∗ Corresponding author.
E-mail addresses: alexandre.caboussat@hesge.ch (A. Caboussat), dimitrios.gourzoulidis@hesge.ch, dimitrios.gourzoulidis@epfl.ch

(D. Gourzoulidis), marco.picasso@epfl.ch (M. Picasso).
https://doi.org/10.1016/j.cam.2021.113997
0377-0427/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.cam.2021.113997
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2021.113997&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alexandre.caboussat@hesge.ch
mailto:dimitrios.gourzoulidis@hesge.ch
mailto:dimitrios.gourzoulidis@epfl.ch
mailto:marco.picasso@epfl.ch
https://doi.org/10.1016/j.cam.2021.113997
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

a
l

N
t
w

h
a

s
f
t
i
p

p
b
s
d
s
d
a
d

w
t

b
i

2

p

In terms of numerical methods, several algorithms can be found for the solution of the scalar Eikonal equation (see [10]
nd references therein), or the Hamilton–Jacobi–Bellman (HJB) equation [25]. However, for the vectorial problem, the
iterature is rather scarce, besides related problems such as [14,15].

The Dirichlet problem addressed in this work consists of a degenerate system of first order fully nonlinear equations.
amely, it consists in finding a vector-valued function such that its gradient is an orthogonal matrix-valued function,
ogether with essential, piecewise linear, Dirichlet boundary conditions. The solution to this problem is piecewise linear,
ith a singular set composed of straight lines representing the folding edges.
A variational approach relying on the minimization of a variational principle to enforce the uniqueness of the solution

as been presented in [7], and will be summarized in the sequel. In particular, a time-splitting approach allows to decouple
sequence of local nonlinear problems from a global elliptic variational problem at each time iteration.
Anisotropic adaptive techniques have been reported to be very efficient in the presence of boundary layers or

ingularities [26–30]. Indeed, the use of finite element meshes with high aspect ratio allows the number of degrees of
reedom to be reduced, while keeping the same accuracy as the classical isotropic finite elements. The goal of this article is
o apply these techniques to paper-folding. Since the underlying mathematical problem is fully nonlinear, and the solution
s not smooth, a posteriori estimates are difficult to derive and our error indicator is the one corresponding to a simplified
roblem.
Compared to [7], the novelty of this work lies in the adaptive mesh refinement algorithm. Since the solution is

iecewise linear, adaptive techniques not only allow to drastically improve the accuracy and efficiency of the method,
ut are even necessary to obtain the convergence of the time-stepping algorithm to some admissible solution in some
tringent cases. We introduce here a non-standard adaptive method and, in the final examples, couple it with domain
ecomposition approach for the most difficult test cases. Adaptive methods for first order fully nonlinear equations are
carce in the literature. In the particular case of orthogonal maps, the solutions are piecewise linear, and thus the whole
ifficulty is to approximate the set of discontinuities for the solution. Thus anisotropic adaptive methods are very well
dapted, and provide a significant improvement to finite element methods, as they allow to accurately track the set of
iscontinuity lines of the solutions.
Numerical experiments are presented to validate the accuracy and the efficiency of the method, on a set of examples

ith exact solutions. Adaptive meshes show appropriate convergence properties, and allow to recover the sharp edges of
he solutions. In particular, singular points at the intersection of several lines of singularity are well-tracked.

In the last section, the case of the homogeneous Dirichlet problem is discussed, as it exhibits a stringent fractal
ehavior near the boundary. A domain-decomposition approach, together with the anisotropic adaptive mesh refinement,
s advocated to appropriately take into account the boundary conditions, and to converge to a fractal solution.

. Mathematical formulation

Let Ω be a open bounded domain of R2 (typically (0, 1)2), which represents a paper to fold. The orthogonal maps
problem consists in finding u : Ω ⊂ R2

→ R2 satisfying{
∇u ∈ O(2) a.e. in Ω,

u = g on ∂Ω,
(1)

where O(2) denotes the set of orthogonal 2 × 2 matrix-valued functions, and g : ∂Ω → R2 is a sufficiently smooth,
iecewise linear, given function. Writing u = [u1, u2]

T , (1) is equivalent to finding [u1, u2]
T : Ω ⊂ R2

→ R2 such that⎧⎨⎩
|∇u1| = |∇u2| = 1 a.e in Ω,

∇u1 · ∇u2 = 0 a.e in Ω,

[u1, u2]
T

= g on ∂Ω.

(2)

3. Numerical methods

3.1. Regularization and penalization

The existence of a solution to (1) has been studied, e.g., in [1], and the uniqueness of the solution is not guaranteed.
Thus, in order to enforce some kind of uniqueness, we consider a variational principle and the problem: Find u ∈ Eg
satisfying

min
v∈Eg

[
C
2

∫
Ω

|v − f|2 dx +
1
2

∫
Ω

|∇v|2dx
]

(3)

where

Eg = {v ∈ (H1(Ω))2, v|∂Ω = g, ∇v ∈ O(2) a.e in Ω}, (4)

and where C ≥ 0, and g and f are given and sufficiently regular functions. The data f corresponds to a target function,
corresponding to some a priori information on the solution and set to 0 by default.
2

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

t
n
f
n

o

t
Y
u
t

In order to solve (3), one advocates an appropriate combination of penalization of the first order optimality conditions,
ogether with a splitting algorithm for the corresponding flow problem. The splitting approach allows to decouple the
onlinearities (which are local) and a global linear variational problem. A complete description of the algorithm can be
ound in [7] and is briefly sketched in the sequel — in a somehow simplified version. The first step is to penalize the
onlinear constraints in Eg and regularize the objective function in (3), so that it becomes

min
v∈Vg

[
C
2

∫
Ω

|v − f|2 dx +
1
2

∫
Ω

|∇v|2dx +
ε1

2

∫
Ω

|∇
2v|2dx

+
1
4ε2

∫
Ω

[
(|∇v1|

2
− 1)2 + (|∇v2|

2
− 1)2 + |∇v1 · ∇v2|

2] dx.] (5)

where Vg = {v ∈ (H2(Ω))2, v|∂Ω = g}, and where ε1, ε2 > 0 are given. We then compute the corresponding first order
ptimality conditions (Euler–Lagrange equations): Find u = [u1, u2] ∈ Vg such that:∫

Ω

∇u : ∇vdx + C
∫

Ω

(u − f) · vdx + ε1

∫
Ω

∇
2u · ∇

2vdx

+
1
ε2

∫
Ω

[
(|∇u1|

2
− 1)∇u1 · ∇v1 + (|∇u2|

2
− 1)∇u2 · ∇v2

+
1
2
∇u1 · ∇u2(∇u2 · ∇v1 + ∇u1 · ∇v2)

]
dx = 0, ∀v = [v1, v2] ∈ V0,

(6)

where V0 = (H2(Ω) ∩ H1
0 (Ω))2.

3.2. Flow problem and time splitting algorithm

The next step of the algorithm is to introduce a flow problem (in the dynamical systems sense), and look for the
stationary solution. In order to do so, this initial value problem is defined as follows: Find u(t) ∈ Vg for a.e. t ∈ (0, +∞)
satisfying∫

Ω

∂∇u(t)
∂t

: ∇vdx +

∫
Ω

∇u(t) : ∇vdx + C
∫

Ω

(u(t) − f) · vdx + ε1

∫
Ω

∇
2u(t) · ∇

2vdx

+
1
ε2

∫
Ω

[
(|∇u1(t)|2 − 1)∇u1(t) · ∇v1(t) + (|∇u2(t)|2 − 1)∇u2(t) · ∇v2

+
1
2
∇u1(t) · ∇u2(t)(∇u2(t) · ∇v1 + ∇u1(t) · ∇v2)

]
dx = 0, ∀v = [v1, v2] ∈ V0.

(7)

together with the initial condition u(0) := u0, given. The choice of u0 has been discussed in [7]. This flow problem is

not classical, in the sense that it involves
∂∇u(t)

∂t
, which will allow to obtain the right balance between operators in

he splitting algorithm that follows. We apply an operator-splitting strategy to solve (7) (namely a first-order Marchuk–
anenko scheme). Let ∆t > 0 be a constant given time step, tn = n∆t , n = 1, 2, . . ., to define the approximations
n

≃ u(tn). Starting from the initial condition ∇u0
:= ∇u0, the Marchuk–Yanenko scheme allows, using un for all n ≥ 0,

o compute successively un+1/2 and un+1 using the two following intermediate steps.

1. Prediction step: Find ∇un+1/2
∈ ∇Vg satisfying∫

Ω

∇un+1/2
− ∇un

∆t
: ∇vdx +

∫
Ω

∇un+1/2
: ∇vdx

+
1
ε2

∫
Ω

[
(|∇un+1/2

1 |
2
− 1)∇un+1/2

1 · ∇v1 + (|∇un+1/2
2 |

2
− 1)∇un+1/2

2 · ∇v2

+
1
2
∇un+1/2

1 · ∇un+1/2
2 (∇un+1/2

2 · ∇v1 + ∇un+1/2
1 · ∇v2)

]
dx = 0,

(8)

for all ∇v ∈ ∇V0. Problem (8) is a local optimization problem for ∇un+1/2, as it does not involve any derivative of
the unknown variable ∇un+1/2. The local optimization problem leads to a nonlinear system solved by a Newton
method without safeguarding. In practice, it can be solved on each element of the finite element discretization.
Details can be found in [7].

2. Correction step: Find un+1
∈ Vg satisfying∫

Ω

∇un+1
− ∇un+1/2

∆t
: ∇vdx + C

∫
Ω

(un+1
− f) · vdx + ε1

∫
Ω

∇
2un+1

· ∇
2vdx = 0, (9)

for all v ∈ V . This problem is an elliptic linear variational problem, whose solution will be detailed in Section 3.3.
0

3

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

v
(

f
a

s
u

3.3. Linear variational problems

Problem (9) is a fourth-order linear variational problem of the biharmonic type. Via the introduction of an auxiliary
ariable wn+1

:= −∇
2un+1, it is rewritten as a coupled second order linear system that reads as follows: Find

un+1,wn+1) ∈ {v ∈ H1(Ω)2, v|∂Ω = g} ×
(
H1

0 (Ω)
)2 such that

ε1∆t
∫

Ω

∇wn+1
: ∇vdx +

∫
Ω

∇un+1
: ∇vdx + C∆t

∫
Ω

un+1
· vdx

= C∆t
∫

Ω

f · vdx +

∫
Ω

∇un+1/2
: ∇vdx,∫

Ω

∇un+1
: ∇qdx −

∫
Ω

wn+1
· qdx = 0,

(10)

for all (v, q) ∈
(
H1

0 (Ω)
)2

×
(
H1

0 (Ω)
)2.

It follows from (10) that the pair (un+1,wn+1) satisfies the strong formulation:

− ε1∆t∇2wn+1
+ wn+1

+ C∆tun+1
= C∆tf − ∇

2un+1/2, in Ω. (11)

Anticipating on the space discretization addressed in Section 4, boundary layer thickness considerations suggest taking
ε1∆t of the order of h2 in (11), that is taking ε1 of the order of h2/∆t .

When ε1 = 0, the decoupling of (9) into (10) is not required, as (9) is a classical, second-order, linear variational
problem. Considering that the coefficient ε1∆t ≃ h2 is small, the adaptive strategy we advocate in the sequel is based
on the assumption ε1 = 0 (without biharmonic regularization). The error estimate derived in that case is then applied,
by extension, to the case when ε1 ̸= 0. The space adaptivity algorithm is applied at each time step of the time iteration
method. As a consequence, there will be no adaptivity treatment using directly the auxiliary variable wn+1.

4. Finite element discretization and anisotropic adaptive algorithm

4.1. Discrete operator splitting algorithm

Let us denote by h > 0 a space discretization step, together with an associated triangulation Th of Ω that satisfies the
usual compatibility conditions (see, e.g., [31]). Let us denote by Σh the (finite) set of the vertices of Th, by Nh the number
of elements in Σh, and by Σ0h the subset of those elements in Σh not located on ∂Ω (with N0h := card(Σ0h)). From the
triangulation Th, we define the following finite element spaces:

Vh = {vh ∈ (C0(Ω))2, vh|K ∈ (P1)2, ∀K ∈ Th},

Vg,h = {vh ∈ Vh, vh = gh on ∂Ω},

Qh = {qh ∈ (L∞(Ω))2×2, qh|K ∈ R2×2, ∀K ∈ Th},

where P1 is the space of two-variable polynomials of degree ≤ 1, and gh is the piecewise linear approximation of the
boundary data. Note that ∇Vh ⊂ Qh. The use of low degree (piecewise linear) finite elements is justified by the low
regularity of the solution (typically Lipschitz continuous, with jumps of the gradient). Next, we equip Vh, and its sub-space
Vg,h, with a discrete inner product (based on classical quadrature formulas) (v,w)0h. The quadrature formulas we used
are implemented in the library libmesh [32]. The corresponding norm is ∥v∥0h :=

√
(v, v)0h, for all v ∈ Vh. In a similar

ashion, we equip the space Qh with the inner product and norm respectively defined by: ((p, q))0h =
∑

K∈Th
|K | p|K : q|K

nd ∥|q∥|0h =
√
((q, q))0h (with |K | = area of K).

We denote by un
h the approximation of uh(tn), and we derive a finite dimensional approximation of the operator-

plitting strategy (8) (9) as follows. Starting from the initial condition u0
h = u0,h, we compute successively un+1/2

h and
n+1
h via the two following intermediate steps, which are the discretized versions of (8) and (9):

1. Prediction step: Find ∇un+1/2
h ∈ Qh satisfying((

∇un+1/2
h − ∇un

h

∆t
, ∇vh

))
0h

+ ((∇un+1/2
h , ∇vh))0h

+
1
ε2

∫
Ω

[
(|∇un+1/2

1,h |
2
− 1)∇un+1/2

1,h · ∇v1,h + (|∇un+1/2
2,h |

2
− 1)∇un+1/2

2,h · ∇v2,h

+
1
2
∇un+1/2

1,h · ∇un+1/2
2,h (∇un+1/2

2,h · ∇v1,h + ∇un+1/2
1,h · ∇v2,h)

]
dx = 0,

(12)

for all ∇vh ∈ ∇V0,h. The finite dimensional local nonlinear problem (12) is solved triangle-wise on each element of
T .
h

4

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

T
s

4

r

w

w

Fig. 1. Reference element, main directions, and element dimensions.

2. Correction step: Find (un+1
h ,wn+1

h) ∈ Vg,h × V0,h such that⎧⎪⎨⎪⎩
ε1∆t((∇wn+1

h , ∇vh))0h + ((∇un+1
h , ∇vh))0h + C∆t(un+1

h , vh)0h
= C∆t(f, vh)0h + ((∇un+1/2

h , ∇vh))0h,
((∇un+1

h , ∇qh))0h − (wn+1
h , qh)0h = 0,

(13)

for all (vh, qh) ∈ V0,h × V0,h. The adaptive strategy incorporated into the solution to (13) is described in the next
section.

he stopping criterion we use to decide on the flow stationarity is either n ≤ 1000 or ||un+1
h − un

h||L2(Ω) ≤ 10−7 (unless
tated otherwise).

.2. Adaptive algorithm with anisotropic meshes

Following [33,34], at each step of (12) (13), our goal is now to build an anisotropic mesh such that the estimated
elative error is close to a preset tolerance TOL, namely:

0.75 TOL ≤
ηA,n+1∇un+1
h


L2(Ω)

≤ 1.25 TOL, (14)

here the anisotropic error estimate ηA,n+1 is based on the finite element mesh.
In order to describe the mesh anisotropy, let us first recall some required geometrical definitions. For any triangle K

of the discretization Th, let TK : K̂ → K be the affine transformation which maps the reference triangle K̂ into K . Let MK
be the Jacobian of the mapping TK . Since MK is invertible, it admits a singular value decomposition MK = RT

KΛKPK , where
RK and PK are orthogonal and where ΛK is diagonal with positive entries. In the following, we set

ΛK =

(
λ1,K 0
0 λ2,K

)
, RK =

(
rT1,K
rT2,K

)
, (15)

ith the choice λ1,K ≥ λ2,K . These geometrical quantities are illustrated in Fig. 1.
This error estimate is then re-distributed on the elements as

ηA,n+1
=

⎛⎝∑
K∈TH

(ηA,n+1
K)2

⎞⎠1/2

.

Let us now focus on the derivation of the estimator η
A,n+1
K on each triangle. The estimator contains one contribu-

tion from the residual of (13), and another contribution due to the anisotropic metric. The latter relies here on the
Zienkiewicz–Zhu approach [35,36]. More precisely, we have:

(ηA,n+1
K)2 = ρK (un+1

h) × ωK (u(tn+1) − un+1
h), (16)

where, following the steps of [34], the problem-dependent residual is given on each element K by:

ρK (un+1
h) = ||C∆tf − ∇

2un+1/2
h + ∇

2un+1
h − C∆tun+1

h ||L2(K)

+
1

2λ1/2

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
[

∂(un+1
h − un+1/2

h)
∂n

]⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ , (17)
2,K L2(∂K)

5

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

O

where [·] denotes the jump of the bracketed quantity across an internal edge ([·] = 0 for an edge on the boundary ∂Ω).
n the other hand, the geometrical contribution is given by

ωK (u(tn+1) − un+1
h)2 = λ2

1,K (r
T
1,KGK (u(tn+1) − un+1

h)r1,K) + λ2
2,K (r

T
2,KGK (u(tn+1) − un+1

h)r2,K),

where the error gradient matrix GK (·) is defined as: GK (v) =

∑
T∈∆K

⎛⎜⎜⎜⎝
∫
T

(
∂v

∂x1

)2

dx
∫
T

∂v

∂x1

∂v

∂x2
dx∫

T

∂v

∂x1

∂v

∂x2
dx

∫
T

(
∂v

∂x2

)2

dx

⎞⎟⎟⎟⎠ , and ∆K is the

set of triangles having a vertex common with K .
In practice, GK (u(tn+1) − un+1

h) in (18) is approximated by a post-processed matrix G̃K (u(tn+1) − un+1
h), obtained by

recovering the gradients according to the procedure described in [35,36].
In (17), the first term of the residual could practically become negligible when using piecewise linear finite elements,

and when the time step is small (recall that ∆t = ε2/2, and the penalization parameter ε2 is very small), meaning that
the most important contribution comes from the jump terms.

The BL2D mesh generator [37] is used to reconstruct an adapted mesh at each iteration. It requires a metric to be given
at the vertices of Th for the update of the mesh, and thus the anisotropic error estimate on the elements is translated into
an error estimate on each node of the mesh, as detailed, e.g., in [33].

4.3. General algorithm

The time splitting algorithm (12) (13) is revisited with additional mesh adaptivity techniques. Unlike what has been
done in [38,39], the algorithm relies on the fact that the mesh is refined at each time step. When the stationary solution
is reached, it is stabilized by performing additional iterations with the final adapted mesh. Let us consider given values
of ∆t, ε1 and ε2; and let us denote by nmesh the number of time iterations achieved with mesh adaptation at each step,
and nfinal the (maximal) number of additional time steps performed with the given final adapted mesh. The general time
stepping algorithm is sketched as follows:

▷ Set given initial conditions, with the initial finite element mesh T 0
h .

▷ For n = 0, 1, . . . , nmesh, do

1 (Local optimization) Solve the local algebraic optimization problems (12) at each grid point of T n
h ;

2 (Variational) Solve the global linear variational problem (13) with the current discretization T n
h ;

3 (Adapt) Update the finite element mesh T n
h → T n+1

h ;

▷ For n = 0, 1, . . . , nfinal (or until
un+1

h − un
h


0h < 10−7), solve (12) (13) on the fixed final adapted meshT nmesh

h .

Numerical experiments have shown that adapting the finite element mesh at each time step helps to converge to a
stationary solution. This effect is documented in the next section. Adapting the mesh at each pseudo-time step may create
spurious mesh adaptations in some cases. The only purpose of the introduction of stabilization steps is to safeguard the
algorithm, and it acts merely as a smoother for small oscillations that may be introduced. However, the presented optimal
convergence orders are identical without this additional loop, and the convergence behavior is similar when replacing this
stopping criterion with a fixed number of additional steps, and when using, e.g.,

un+1
h − un

h


0h < 10−7.

5. Numerical experiments

We present some test cases to illustrate the convergence of our algorithm, and to perform a sensitivity analysis. The
numerical implementation has been done with libmesh [32], which uses the libraries Lapack and Blas (for the solution
of the algebraic nonlinear systems), and Petsc (for the solution of linear systems). The mesh is adapted with bl2d [37].
For all examples considered, the computational domain is the unit square Ω = (0, 1)2, and the parameters in (8) (9) are
given by ε2 = 10−11 and ∆t = ε2/2. The value of the parameter ε1 will be discussed further. The parameter ε2 ensures
that the orthogonality conditions are satisfied, see (5). The condition ∆t ≤ ε2 ensures the Newton algorithm for the local
nonlinear problems to converge. Numerical experiments have shown that taking larger values of those parameters (up to
10−6) does not impact the number of pseudo-time steps and thus the speed of the algorithm.

Numerical experiments have been obtained with Intel
®

Xeon(R) CPU E5-1650 v3 @ 3.50 GHz × 12 processor with
64 GB ram.

Because of the low regularity of the solution, small oscillations are created when the mesh is adapted and the stationary
solution is difficult to catch. Therefore, the stopping criterion for the iterative method reads as follows: the number of
time steps is fixed as nmesh = 500 for all test cases. All error indicators are averaged over the last 200 time steps in the
tables detailing the convergence behavior of the algorithm. Finally, the results on the effectivity index are given with a

margin of error (± standard deviation).

6

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

a

m

5

e

e

Fig. 2. Single folding. Snapshots of the approximated solution (left: first component u1,h; right: second component u2,h), with illustration of the final
dapted mesh.

Fig. 3. Iterative mesh adaptation within the time stepping algorithm (∆t = 0.5 · 10−11, ε1 = 0.0, TOL = 0.03125). Left: mesh at time step n = 20;
iddle: mesh at time step n = 21; right: mesh at time step n = 40.

.1. Single folding

The first example corresponds to a single fold, for which the singular set consists of the segment {1/2} × [0, 1]. The
xact solution of this problem is

u1(x1, x2) =

{
x1 if x1 < 0.5,
1 − x1 if x1 ≥ 0.5,

u2(x1, x2) = x2,
∀(x1, x2) ∈ Ω,

and the boundary conditions are defined accordingly. Fig. 2 illustrates a snapshot of the stationary solution, together with
an illustration of an adaptive mesh (in that case, hmin = 4.53 · 10−3, hmax = 9.81 · 10−1, TOL = 0.03125, ε1 = 0). We can
observe that the orthogonality conditions are accurately satisfied (

∫
Ω

|∇u1,h| = 1.000407,
∫

Ω
|∇u2,h| = 1.000000, and∫

Ω
∇u1,h · ∇u2,h = 0.0001).
The method we advocate adapts the mesh at each time iteration. Fig. 3 illustrates the evolution of the finite element

discretization after 20,21 and 40 time iterations. Even though the transient solution at one given time step is not accurate
and has not converged yet to the stationary solution, the mesh refinement allows to track for the singularities and obtain
more robust convergence properties of the global outer loop algorithm.

Figs. 4 and 5 illustrate the snapshots of the solution for various values of TOL (ε1 = 0 fixed), and various values of
ε1 (TOL fixed). The conclusions are the following: i) the first figure shows that the smaller the tolerance, the thinner the
region where elements are generated along the discontinuity line, and the larger the number of those elements; ii) the
second figure shows that, for a given tolerance, if ε1 is too large the solution becomes very smooth and thus the anisotropic
mesh refinement is not accurate anymore as there is no privileged direction in the solution. Actually, when ε1 becomes
smaller, the mesh converges to the same mesh as when ε1 = 0. Numerical results confirm that the jump terms in ρK (uh)
in (17) are the crucial ones for mesh adaptation, as results are very similar even when C = 0.

Table 1 shows the numerical behavior of the algorithm for varying parameters, namely the values of the parameters and
final adapted meshes for all tolerances and for ε1 = 2·10−6 and ε1 = 0. The mesh sizes are defined as hmin = minK∈Th λ1,K

and hmax = maxK∈Th λ2,K . The aspect ratio AR represents the maximal aspect ratio defined as AR = maxK∈Th
λ1,K
λ2,K

.
As illustrated, the aspect ratio, the number of elements and the number of nodes increase appropriately when the

tolerance decreases. The number of elements and nodes is larger when ε1 = 0, showing that the convergence of the mesh
adaptive algorithm is more difficult to reach. On the other hand, for the same number of time iterations, the L2-error is
smaller when ε1 = 0.

We observe that the effectivity index becomes smaller than one when the tolerance decreases, meaning that the H1-
rror is not bounded by the estimator ηA

K . This effect will be observed in all numerical experiments in the sequel. This
behavior means that a contribution is missing in the estimator to have optimal convergence orders. This effect is actually
7

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

r

(
i

e
t
o

s
o

Fig. 4. Single folding. Snapshots of the final adapted mesh after 500 time iterations, for various values of the tolerance TOL (ε1 = 0.0). The colormap
epresents the values of the first component u1,h . The second row corresponds to a zoom in the squared region indicated in the first row.

Fig. 5. Simple folding. Snapshots of the final adapted mesh after 500 time iterations, for various values of the regularization parameter ε1
TOL = 0.03125). The colormap represents the values of the first component u1,h . The second row corresponds to a zoom in the squared region
ndicated in the first row.

xpected, since we are not incorporating either the splitting error, not the contribution from the nonlinear operators in
he estimator ηA

K , but only the linear variational operator. Table 2 shows an appropriate convergence behavior for the
rthogonality conditions, with even some super-convergence behavior in some cases.
Finally, Fig. 6 illustrates the iterative behavior of the time-stepping algorithm for various tolerances when ε1 = 0; it

hows that the time evolution of indicators is indeed oscillating when the mesh is adapted, due to the low regularity
f the solution. The top left figure shows the time evolution of the number of elements; the top right figure shows the
8

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

n

d
e
e

5

o

Fig. 6. Simple folding (case ε1 = 0.0). Visualization of the behavior of the iterative algorithm. Top left: Visualization of the time evolution of the
umber of elements; Top right: Visualization of the time evolution of the error ∥u−uh∥L2(Ω); Bottom left: Visualization of the relationship between

the error ∥u − uh∥L2(Ω) vs the number of elements; Bottom right: Visualization of the time evolution of hmin .

Table 1
Simple folding. Convergence behavior of the algorithm for various values of parameter ε1 , as a function of the tolerance TOL. The columns contain the
final minimal and maximal mesh sizes, the final numbers of elements and nodes, the maximal value of the aspect ratio, the value of the estimator,
the effectivity index, and the L2-norm on the approximation uh of the solution map u.
Regularization term: ε1 = 2 · 10−6

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 7.86e−02 9.96e−01 10.57 24 19 4.49e−01 1.33 ± 0.4224 1.52e−02
0.125000 3.50e−02 1.00e+00 11.11 35 26 2.34e−01 1.18 ± 0.2705 4.56e−03
0.006250 1.09e−02 9.84e−01 29.27 40 28 1.38e−01 1.11 ± 0.3452 2.03e−03
0.031250 3.22e−03 9.83e−01 94.54 64 43 6.51e−02 0.86 ± 0.1584 8.88e−04

Regularization term: ε1 = 0.0

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 1.09e−01 1.00e+00 5.10 21 17 4.46e−01 1.39 ± 0.3156 1.36e−02
0.125000 2.45e−02 9.95e−01 19.24 39 28 2.14e−01 1.03 ± 0.2432 4.89e−03
0.006250 1.20e−02 9.90e−01 26.58 53 36 1.34e−01 0.93 ± 0.2517 2.85e−03
0.031250 4.53e−03 9.81e−01 46.53 61 40 7.47e−02 0.86 ± 0.1453 1.12e−03

time evolution of the error ∥u−uh∥L2(Ω); both allow to conclude to the convergence of the algorithm when the tolerance
ecreases. The bottom left figure shows the relationship between the error ∥u−uh∥L2(Ω) and the number of elements (at
ach time iteration). It shows that, in average in time, a smaller tolerance leads to a smaller error and a larger number of
lements, and the relationship seems to be linear. The bottom right figure illustrates the behavior of hmin versus time.

.2. Double diagonal folding

The second example corresponds to a double folding, along the diagonals of the unit square domain. The exact solution
f this problem is

u1(x1, x2) = d(x, ∂Ω),

u2(x1, x2) =

{
min(x2, 1 − x1) if x1 < x2, ∀x = (x1, x2) ∈ Ω,
min(x1, 1 − x2) otherwise ,

9

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

c
t

o

a
s
h

Table 2
Simple folding. Convergence behavior of the algorithm for various regularization parameters ε1 , as a function of the
tolerance TOL. The columns contain the constraints for the orthogonality of the solution.
Regularization term: ε1 = 2 · 10−6

TOL
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

0.2500 0.9914 1.0002 0.0417
0.1250 0.9975 1.0001 0.0192
0.0625 0.9950 1.0000 0.0101
0.03125 0.9982 1.0000 0.0049

Regularization term: ε1 = 0.0

TOL
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

0.0312 0.9982 1.0000 0.0049
0.1250 0.9929 1.0000 0.0221
0.0625 0.9959 1.0000 0.0165
0.03125 1.0004 1.0000 0.0010

Table 3
Double diagonal folding. Convergence behavior of the algorithm for various values of parameter ε1 , as a function of the tolerance TOL. The columns
ontain the final minimal and maximal mesh sizes, the final numbers of elements and nodes, the maximal value of the aspect ratio, the value of
he estimator, the effectivity index, and the L2-norm on the approximation uh of the solution map u.
Regularization term: ε1 = 2 · 10−6

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 4.48e−02 4.80e−01 8.72 82 54 5.28e−01 1.18 ± 0.2049 1.74e−02
0.125000 1.42e−02 4.96e−01 18.63 157 93 2.96e−01 0.97 ± 0.0853 6.75e−03
0.006250 3.65e−03 4.81e−01 66.06 309 173 1.48e−01 0.81 ± 0.0993 2.92e−03
0.031250 7.75e−04 4.97e−01 208.35 537 300 7.42e−02 0.61 ± 0.0518 1.09e−03

Regularization term: ε1 = 0.0

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 4.42e−02 4.53e−01 7.69 86 56 5.25e−01 1.15 ± 0.1645 1.70e−02
0.125000 1.52e−02 4.71e−01 15.93 164 97 2.97e−01 1.03 ± 0.1109 6.60e−03
0.006250 4.82e−03 5.05e−01 50.25 265 150 1.56e−01 0.88 ± 0.1259 2.63e−03
0.031250 1.57e−03 5.14e−01 120.01 456 248 7.76e−02 0.69 ± 0.0767 1.15e−03

Fig. 7. Double diagonal folding. Snapshots of the approximated solution (left: first component u1,h; right: second component u2,h), with illustration
f the final adapted mesh.

nd the boundary conditions are set accordingly. The additional difficulty lies in the intersection of two lines of the singular
et. Fig. 7 illustrates a snapshot of the stationary solution, together with an illustration of an adaptive mesh (in that case,
min = 1.57 · 10−3, hmax = 5.14 · 10−1, TOL = 0.03125, ε1 = 0.0).
Fig. 8 illustrates, for ε1 = 0.0, the refined mesh when the tolerance decreases. Again, the number of elements increases

in a narrow neighborhood around the line singularities. Table 3 numerically confirms this statement. It also emphasizes
that the convergence properties are comparable when ε1 ̸= 0 and when ε1 = 0 (both in terms of accuracy and convergence
rate). Note that using smaller tolerances usually requires a larger number of iterations, and may require a continuation
approach (namely starting the time iterations with a larger tolerance and decreasing it as the iterations go, as, e.g., in [7]).

Fig. 9 illustrates the influence of the regularization parameter ε1. When too large, the singularities of the solution are
lost, and the anisotropic mesh adaptation algorithm does not converge easily.

Table 3 numerically confirms that (i) the smaller the tolerance, the larger the number of elements, nodes and aspect
ratio; (ii) the estimator ηA

K and the error in the L2-norm are divided by 1.8 ∼ 2.6 when the tolerance is divided by two;
(iii) however, the effectivity index does not remain constant.
10

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

T
r

i

Fig. 8. Double diagonal folding. Snapshots of the final adapted mesh after 500 time iterations, for various values of the tolerance TOL (ε1 = 0.0).
he colormap represents the values of the first component u1,h . The second row corresponds to a zoom in the squared region indicated in the first
ow.

Fig. 9. Double diagonal folding. Snapshots of the final adapted mesh after 500 time iterations, for various values of the regularization parameter
ε1 (TOL = 0.03125). The colormap represents the values of the first component u1,h . The second row corresponds to a zoom in the squared region
ndicated in the first row.
11

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

o
b

Fig. 10. Double diagonal folding (case ε1 = 0.0). Visualization of the behavior of the iterative algorithm. Top left: Visualization of the time evolution
f the number of elements; Top right: Visualization of the time evolution of the error ∥u − uh∥L2(Ω); Bottom left: Visualization of the relationship
etween the error ∥u − uh∥L2(Ω) vs the number of elements; Bottom right: Visualization of the time evolution of hmin .

Table 4
Double diagonal folding. Convergence behavior of the algorithm for various regularization parameters ε1 , as a function
of the tolerance TOL. The columns contain the constraints for the orthogonality of the solution.
Regularization term: ε1 = 2 · 10−6

TOL
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

0.2500 0.9785 0.9899 0.1111
0.1250 0.9957 0.9960 0.0432
0.0625 0.9961 0.9957 0.0288
0.03125 0.9957 0.9946 0.0180

Regularization term: ε1 = 0.0

TOL
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

0.2500 0.9896 0.9893 0.0763
0.1250 0.9976 0.9988 0.0409
0.0625 0.9988 0.9986 0.0237
0.03125 0.9997 0.9995 0.0100

Table 4 shows that the orthogonality constraints are satisfied and converge asymptotically. The accuracy in approxi-
mating the orthogonality conditions is better when ε1 = 0.0.

Fig. 10 illustrates the iterative behavior of the time-stepping algorithm for various tolerances when ε1 = 0.0; it shows
that the time evolution of indicators is indeed oscillating when the mesh is adapted, due to the low regularity of the
solution. The conclusions are similar to those of the single folding example.

Finally, Table 5 illustrates the computational cost of the algorithm for the approximation of the solution to this test
case. We can observe that the algorithm is faster when considering no smoothing (ε1 = 0.0), as it converges more rapidly
to the solution with sharp edges. On the other hand, the introduction of the smoothing parameter ε1 = 2·10−6 diminishes
the oscillations but increases the total CPU time.

5.3. Comparison with a standard adaptive approach

We actually advocate here a non-standard adaptive method when compared to the literature about mesh adaptive
methods for elliptic problems. Indeed, the more standard approach [38,39] would be to solve the entire time-stepping
12

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

a
t

n

p
s
m
t
t
s

l
a
s
t

n

Table 5
Double diagonal folding. Computational cost (total CPU time) of the algorithm for various values of
parameter ε1 , and various tolerances TOL.
Regularization term ε1 = 2 · 10−6 ε1 = 0.0

TOL CPU time CPU time

0.250000 1 min 55 s 1 min 57 s
0.125000 2 min 21 s 2 min 20 s
0.006250 2 min 59 s 2 min 55 s
0.031250 6 min 60 s 5 min 32 s

Table 6
Double diagonal folding. Convergence behavior of the algorithm for various values of parameter ε1 , as a function of the tolerance using the standard
daptive strategy. The columns contain the final minimal and maximal mesh sizes, the final numbers of elements and nodes, the maximal value of
he aspect ratio, the value of the estimator, the effectivity index, and the L2-norm on the approximation uh of the solution map u.
Regularization term: ε1 = 2 · 10−6

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 5.00e−02 4.82e−01 7.34 72 47 5.51e−01 1.44 ± 0.2884 1.42e−02
0.125000 1.54e−02 5.20e−01 20.72 161 95 2.74e−01 1.16 ± 0.1154 4.61e−03
0.006250 4.42e−03 3.96e−01 27.64 447 242 1.51e−01 0.81 ± 0.0623 4.05e−03
0.031250 1.48e−03 2.86e−01 23.36 1564 815 7.43e−02 0.67 ± 0.0597 7.96e−04

Regularization term: ε1 = 0.0

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 4.86e−02 4.56e−01 5.52 95 59 5.45e−01 1.37 ± 0.1456 1.35e−02
0.125000 1.65e−02 4.65e−01 13.18 157 92 2.90e−01 1.05 ± 0.1022 7.49e−03
0.006250 3.60e−03 3.98e−01 25.83 514 277 1.49e−01 0.84 ± 0.0618 2.35e−03
0.031250 1.07e−03 2.84e−01 30.35 1462 759 7.60e−02 0.55 ± 0.0357 1.62e−03

Fig. 11. Double diagonal folding. Snapshots of the final adapted mesh (the colormap represents the values of the first component u1,h). Left:
on-standard approach advocated here, after 500 time iterations; right: standard approach, after 4000 time iterations. (TOL = 0.625, ε1 = 0).

roblem, then to adapt the mesh and re-apply the whole solution method for the time-dependent problem. In the adaptive
trategy described in Section 4.3, a few time iterations are performed without reaching the stationary solution with a fixed
esh, then the mesh is adapted at each time iteration. Actually the variations in the solution occur slowly and locally (on

he edges where the singularities are formed), which favors a mesh adaptivity at each iteration. The other advantage of
he adaptive approach described in Section 4.3 is that it allows to recover a suitable mesh faster compare to the standard
trategy.
Fig. 11 illustrates a comparison between the different approaches (with TOL = 0.625 and ε1 = 0). The figure on the

eft shows the numerical solution using the adaptive approach (Section 4.3) after 500 iterations (total of time iterations
nd adaptive remeshing steps at each time iteration). The figure on the right shows the numerical solution applying the
tandard approach after 4000 iterations (same total). Fig. 11 indicates that the mesh obtained with the adaptive approach
racks more efficiently the singularities with a smaller total number of iterations.

Table 6 shows the numerical behavior of the algorithm using the standard adaptive approach for varying parameters,
amely the values of the parameters and final adapted meshes for all tolerances and ε = 2 · 10−6 and ε = 0.
1 1

13

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997
Fig. 12. Non-smooth folding with point singularity. Snapshots of the approximated solution (left: first component u1,h; right: second component
u2,h), with illustration of the final adapted mesh.

Table 7
Non-smooth folding with point singularity. Convergence behavior of the algorithm for various values of parameter ε1 , as a function of the tolerance
TOL. The columns contain the final minimal and maximal mesh sizes, the final numbers of elements and nodes, the maximal value of the aspect
ratio, the value of the estimator, the effectivity index, and the L2-norm on the approximation uh of the solution map u.
Regularization term: ε1 = 2 · 10−6

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 4.83e−02 6.66e−01 8.14 60 41 5.11e−01 1.15 ± 0.1605 2.00e−02
0.125000 1.55e−02 6.58e−01 11.97 136 82 2.86e−01 0.98 ± 0.0875 8.18e−03
0.006250 4.59e−03 6.81e−01 37.89 259 149 1.44e−01 0.81 ± 0.1469 3.39e−03
0.031250 6.55e−04 5.81e−01 225.45 545 301 7.71e−02 0.64 ± 0.0697 1.48e−03

Regularization term: ε1 = 0.0

TOL hmin hmax AR # elem # nodes ηA
K

ηAK
∥u−uh∥H1

∥u − uh∥L2

0.250000 3.59e−02 6.92e−01 15.49 64 44 5.08e−01 1.08 ± 0.1142 2.16e−02
0.125000 1.61e−02 7.11e−01 15.97 122 75 2.88e−01 1.06 ± 0.1573 6.25e−03
0.006250 4.81e−03 6.82e−01 33.88 233 134 1.52e−01 0.86 ± 0.0989 2.59e−03
0.031250 1.78e−03 5.81e−01 49.02 427 234 7.71e−02 0.77 ± 0.1375 9.73e−04

5.4. Non-smooth example with a point singularity

The third example also corresponds to a double, re-entrant, folding. The exact solution of this problem is

u1(x1, x2) =

⎧⎨⎩
x1 if x2 ≥ x1 and x1 ≤ 0.5,
1 − x1 if x1 > 0.5 and x2 > −x1 + 1,
x2 if x2 ≤ x1 and x2 ≤ −x1 + 1,

u2(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩
x2 if x2 ≥ x1 and x1 ≤ 0.5,
x2 if x1 > 0.5 and x2 > −x1 + 1,
x1 if x2 ≤ x1 and x1 ≤ 0.5,
1 − x1 if x2 > x1 and x2 ≤ −x1 + 1,

∀(x1, x2) ∈ Ω,

and the boundary conditions are set accordingly. We consider a fixed number of nmesh = 500 time steps, and, for this
example, we take C = 0. The additional difficulty lies in the refolding with a re-entrant corner, which causes a new
type of point singularity. For this specific test problem, in the case when TOL = 0.03125, the algorithm fails to converge
for nmesh = 500. In order to accelerate the convergence the adaptive algorithm uses gradually decreasing tolerances
TOL (i.e. first a few iterations are performed with TOL = 0.125 then the tolerance decreases to TOL = 0.0625 and
TOL = 0.03125 successively).

Fig. 12 illustrates a snapshot of the stationary solution, together with an illustration of an adaptive mesh (in that case,
hmin = 1.78 · 10−3, hmax = 5.81 · 10−1, TOL = 0.03125, ε1 = 0.0). Figs. 13 and 14 illustrate the adapted mesh for ε1 = 0.0
when the tolerance decreases, and for TOL = 0.03125 when the penalization parameter varies. Similar conclusions to the
previous test cases hold.

Table 7 numerically confirms the conclusions reached earlier. Table 8 shows an appropriate behavior for the orthog-
onality constraints that converge asymptotically when the tolerance decreases (except for one result for the smaller
tolerance and ε1 ̸= 0.0). As expected, the accuracy in approximating the orthogonality conditions is higher when ε1 = 0.0.

Fig. 15 illustrates the iterative behavior of the time-stepping algorithm for various tolerances when ε1 = 0.0
respectively; it confirms the oscillatory behavior of the time evolution of indicators when the mesh is adapted, due
to the low regularity of the solution. Fig. 16 illustrates the same iterative behavior when ε1 = 2.0 · 10−6; it confirms
that the oscillatory behavior of the algorithm can be decreased by the introduction of the smoothing parameter. Table 9
illustrates the numerical behavior of the approximated solution for various ε . Again, when ε is too large, the algorithm
1 1

14

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

T

r

Fig. 13. Non-smooth folding with point singularity. Snapshots of the final adapted mesh after 500 time iterations, for various values of the tolerance
OL (ε1 = 0.0). The colormap represents the values of the first component u1,h . The second row corresponds to a zoom in the squared region

indicated in the first row.

Fig. 14. Non-smooth folding with point singularity. Snapshots of the final adapted mesh after 500 time iterations, for various values of the
egularization parameter ε1 (TOL = 0.03125). The colormap represents the values of the first component u1,h . The second row corresponds to
a zoom in the squared region indicated in the first row.

under-performs. Then, we can observe that, when ε1 → 0.0, the number of elements and nodes remains bounded despite
the loss of regularity of the solution. Similarly the orthogonality conditions become more accurate when ε1 → 0.0.

5.5. Comparison of results with and without the adaptive mesh refinement algorithm

This test case is a practical application of foldable compliant mechanism device using thick material, see, e.g., [40]. Here
we emphasize and quantify the added value of the adaptive mesh refinement algorithm for such a practical application.
Table 10 first illustrates the computational cost of the adaptive algorithm. The same remarks as for the previous example
hold: the algorithm is faster without the introduction of the smoothing term, but its behavior is more oscillatory.
15

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

o

T
N
T

Table 8
Non-smooth folding with point singularity. Convergence behavior of the algorithm for various regularization parameters
ε1 , as a function of the tolerance TOL. The columns contain the constraints for the orthogonality of the solution.
Regularization term: ε1 = 2 · 10−6

TOL
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

0.2500 0.9780 0.9907 0.0826
0.1250 0.9933 0.9945 0.0489
0.0625 0.9968 0.9979 0.0174
0.03125 0.9959 0.9951 0.0092

Regularization term: ε1 = 0.0

TOL
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

0.2500 0.9754 0.9947 0.1126
0.1250 0.9899 0.9956 0.0493
0.0625 0.9984 0.9994 0.0187
0.0312 0.9992 0.9995 0.0074

Fig. 15. Non-smooth folding with point singularity (case ε1 = 0.0). Visualization of the behavior of the iterative algorithm. Top left: Visualization of
the time evolution of the number of elements; Top right: Visualization of the time evolution of the error ∥u − uh∥L2(Ω); Bottom left: Visualization
f the relationship between the error ∥u − uh∥L2(Ω) vs the number of elements; Bottom right: Visualization of the time evolution of hmin .

able 9
on-smooth folding with point singularity. Convergence behavior of the algorithm as a function of the regularization parameter ε1 (tolerance:
OL = 0.3125).
ε1 hmin hmax # elem # nodes ∥u − uh∥L2

2.0e−04 7.66e−04 2.35e−01 3869 2095 1.25e−04
2.0e−06 6.55e−04 5.81e−01 545 301 1.48e−03
2.0e−08 1.70e−03 4.70e−01 422 232 4.16e−04
0.0 1.78e−03 5.81e−01 427 234 9.73e−04

ε1
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

2.0e−04 0.9529 0.9496 0.0641
2.0e−06 0.9960 0.9954 0.0113
2.0e−08 0.9992 0.9996 0.0117
0.0 0.9991 0.9998 0.0074

Tables 11 and 12 show the numerical results for the algorithm without mesh adaptation. In order to compare the
algorithms with and without adaptive mesh refinement, we consider the appropriate tolerance that leads to the right
minimal mesh size considered without the adaptive algorithm. Comparing Tables 8 and 12, we can see that the accuracy
16

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

o
o

a
c
m

Fig. 16. Non-smooth folding with point singularity (case ε1 = 2.0·10−6). Visualization of the behavior of the iterative algorithm. Top left: Visualization
f the time evolution of the number of elements; Top right: Visualization of the time evolution of the error ∥u−uh∥L2(Ω); Bottom left: Visualization
f the relationship between the error ∥u − uh∥L2(Ω) vs the number of elements; Bottom right: Visualization of the time evolution of hmin .

Table 10
Non-smooth folding with point singularity. Computational cost (total CPU time) of the algorithm for
various values of parameter ε1 , and various tolerances TOL.
Regularization term ε1 = 2 · 10−6 ε1 = 0.0

TOL CPU time CPU time

0.250000 2 min 2 s 1 min 53 s
0.125000 2 min 9 s 2 min 10 s
0.006250 2 min 50 s 2 min 50 s
0.031250 3 min 51 s 3 min 24 s

Table 11
Non-smooth folding with point singularity and without adaptive mesh refinement. Convergence behavior of the algorithm for various values of
parameter ε1 , as a function of the mesh size. The columns contain the fixed minimal and maximal mesh sizes, the fixed numbers of elements and
nodes, the L2-norm on the approximation uh of the solution map u, the number of iterations, and the computational time.
Regularization term: ε1 = h2

min

hmin hmax # elem # nodes ∥u − uh∥L2 iter CPU time

4.00e−02 5.65e−02 1250 676 1.54e−02 147 0 min 10 s
2.00e−02 2.82e−02 5000 2601 5.71e−03 332 1 min 57 s
1.00e−02 2.88e−02 20000 10201 2.88e−03 675 129 min 56 s
5.00e−03 7.07e−03 80000 40401 1.51e−03 1438 1118 min 58 s

Regularization term: ε1 = 0

hmin hmax # elem # nodes ∥u − uh∥L2 iter CPU time

4.00e−02 5.65e−02 1250 676 1.06e−02 255 0 min 17 s
2.00e−02 2.82e−02 5000 2601 5.93e−03 290 1 min 36 s
1.00e−02 2.88e−02 20000 10201 5.76e−03 580 24 min 11 s
5.00e−03 7.07e−03 80000 40401 5.86e−03 2077 692 min 17 s

in the fulfillment of orthogonality conditions is very similar. Comparing Tables 7 and 11, we remark that the accuracy
of the algorithm (expressed by ∥u − uh∥L2) is about 10% better with adaptive mesh refinement (for a comparable hmin),
nd we obtain better convergence behavior, especially when ε1 = 0.0 and small values of hmin. Finally comparing the
omputational costs in Tables 10 and 11, we observe a significant computational gain when introducing the adaptive
esh algorithm. This illustrates the improved efficiency of the algorithm.
17

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

i
∆

6

I
f
a
i

c
o
c

n
n

d
o

Table 12
Non-smooth folding with point singularity and without adaptive mesh refinement. Convergence behavior of the
algorithm for various regularization parameters ε1 , as a function of the fixed mesh size hmin . The columns contain
the constraints for the orthogonality of the solution.
Regularization term: ε1 = h2

min

hmin
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

4.00e−02 0.9703 0.9667 0.0422
2.00e−02 0.9852 0.9831 0.0219
1.00e−02 0.9926 0.9915 0.0113
5.00e−03 0.9963 0.9957 0.0058

Regularization term: ε1 = 0.0

hmin
∫

Ω
|∇u1,h|dx

∫
Ω

|∇u2,h|dx
∫

Ω
|∇u1,h · ∇u2,h|dx

4.00e−02 0.9886 0.9895 0.0476
2.00e−02 0.9948 0.9851 0.0202
1.00e−02 0.9971 0.9967 0.0182
5.00e−03 0.9982 0.9977 0.0155

Fig. 17. Homogeneous Dirichlet test case. Snapshots of the approximated solution (left: first component u1,h; right: second component u2,h), with
llustration of the final adapted mesh consisting of an unstructured adapted triangulation with 22,871 vertices and 42,987 triangles (C = 0,
t = 5 · 10−12 , ε1 = 0, TOL = 0.625, approx. 3000–5000 time steps).

. A decomposition approach for the homogeneous Dirichlet problem

In this final section, let us consider the, purely academic, homogeneous Dirichlet problem:{
∇u ∈ O(2) a.e. in Ω,

u = 0 on ∂Ω.
(18)

n this particular case, the solution becomes fractal near the boundary (see, e.g., [1], but also [11] for a similar behavior
or a scalar Eikonal equation). This test case with homogeneous boundary conditions is mainly an academic example. It is
ddressed last as it is the most stringent case for the orthogonal maps problem, as the solution maps the whole boundary
nto a single point that is the origin.

Preliminary numerical results reported in [7] have shown that adaptive mesh refinement is required to obtain the
onvergence of the time-stepping algorithm, and recover a (nearly-) admissible solution. Fig. 17 illustrates the snapshot
f the numerical approximation uh of u, obtained with the anisotropic mesh adaptivity algorithm. However, sharp edges
annot be recovered exactly near the boundary where strong oscillations arise.
One property of the solution is that every singular point should be adjacent to an even number of edges, and this

umber is at least four. This property is not satisfied for the numerical approximation in Fig. 17 due to these instabilities
ear the boundary.
In order to overcome the introduction of such instabilities and numerically capture one solution, we advocate a domain

ecomposition algorithm to approximate one given solution of (18). Using the geometric information about the expected
scillatory behavior of the solution near the boundary of Ω = (0, 4)2, we define a sequence of domains Ωk, k ≥ 0, such

that

Ω =

⋃
Ωk,
k≥0

18

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

o

w

N

a

w

Fig. 18. Decomposition approach for the solution of the homogeneous Dirichlet problem. Left: sketch of the sequence of domains Ωk; Right: sketch
f the shape of (piecewise linear) boundary conditions.

ith

Ω0 = (1, 3)2 , and Ωk =

(
1 −

1
k
, 3 +

1
k

)2

\Ωk−1, k ≥ 1.

umerically, the sequence is truncated to M domains, and ΩM = (0, 4)2\ΩM−1. Fig. 18 (left) illustrates the situation for
a decomposition in four domains. This decomposition allows to enforce a fractal behavior through boundary conditions.
Fig. 18 (right) illustrates schematically the shape of successive boundary conditions (only on half of the boundary).

The algorithm reads as follows: for each k, the orthogonal maps problem is solved on Ωk with given boundary

conditions. We use the following notation: Ωk = (ak, bk)2, Nk = 2Nk−1 + 4 for k ≥ 1, N0 = 4, hk =
bk − ak

Nk
and

pj = ak + jhk, where j = 2ℓ + 1, ℓ = 0, . . . , Nk
2 − 1.

The boundary conditions are written, for all x = (x1, x2) on ∂Ωk as

g1,k(x1, x2) = 0 (19)

nd

g2,k(x1, x2) =

{
y − p2ℓ, if p2ℓ ≤ y ≤ p2ℓ+1,

p2ℓ+2 − y, if p2ℓ+1 ≤ y ≤ p2ℓ+2,
∀ℓ = 0, 1, 2, . . . ,

Nk

2
− 1, (20)

here

y =

{
x1 when x2 = ak or x2 = bk,
x2 when x1 = ak or x1 = bk.

On the internal boundary, the external boundary conditions gk−1 are reproduced.
Fig. 19 illustrates the snapshot of the numerical approximation uh of u obtained by coupling the anisotropic adaptive

algorithm with this domain decomposition method and M = 4. Results show that the symmetries are perfectly respected,
and that the spurious oscillations are controlled. As a side effect, let us note that this approach allows us to observe
that the proposed adapted algorithm behaves well when solving the orthogonal maps problem in non-convex domains,
as emphasized in Fig. 20. Parallelization of this domain decomposition approach can be investigated in the future for
speed-up purposes.

7. Conclusions and perspectives

We have extended the operator-splitting/finite element methodology for the numerical solution of the Dirichlet
problem for orthogonal maps presented in [7] by introducing an anisotropic space adaptivity method to track more
accurately the singularities of the gradient of the solution. The adaptive criterion is that of a linear variational problem
at each time step of the splitting algorithm, regardless of the local nonlinearities of the problem. Anisotropic adaptive
techniques are based on a posteriori error estimates for a Laplace operator, and on a Zienkiewicz–Zhu estimator. Numerical
experiments have illustrated an accurate tracking of the line singularities of the gradient of the solution, but have exhibited
convergence properties that are sub-optimal. The effectivity index decreases when the tolerance goes to zero, implying
that our estimator is not optimal. This was to be expected since it relies only on the linear variational part of the fully
nonlinear equation, without incorporating neither the nonlinear operator, nor the operator splitting error. For some
stringent instances (e.g. with homogeneous boundary data), the fractal behavior of the solution near the domain boundary
requires a more sophisticated, heuristics-based, approach. A domain decomposition strategy has been presented to capture
one particular solution.
19

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997

c
s
n

s

Fig. 19. Decomposition approach for the solution of the homogeneous Dirichlet problem. Snapshots of the approximated solution (left: first
omponent u1,h; right: second component u2,h), with illustration of the final adapted mesh after 4150 time iterations on each subdomain,
uperimposed after individual computation on each subdomain. The resulting mesh obtained by superimposition of the several meshes is
on-conforming.

Fig. 20. Decomposition approach for the solution of the homogeneous Dirichlet problem. Snapshots of the individual solution computed on each
ubdomain. The colormap represents the values of the first component u1,h .

Future work will include the investigation of a posteriori error estimates based on a more complete operator. First, error
estimates for the bi-harmonic operator will be investigated, in order to incorporate the case ε1 ̸= 0; then the investigation
should include the operator splitting error, before addressing the case of the nonlinear operator. We can study the
extension of those adaptive mesh refinement methods to other fully nonlinear equations in two space dimensions, such
as the second-order elliptic Monge–Ampère equation. Extensions to adaptive methods in three space dimensions can also
be investigated using algorithms described in the literature, e.g., mmg3d [38,39], meshadapt [41] or feflo [42].

Acknowledgments

This work was partially supported by the Swiss National Science Foundation (SNF Grant 165785). The authors would
like to thank Prof. R. Glowinski (Univ. of Houston, and Hong Kong Baptist University), Prof. B. Dacorogna (EPFL), and
Prof. Marcellini (University of Firenze) for fruitful discussions, and the two anonymous referees for insightful comments.

References

[1] B. Dacorogna, P. Marcellini, E. Paolini, On the n-dimensional Dirichlet problem for isometric maps, J. Funct. Anal. 255 (2018) 3274–3280,
http://dx.doi.org/10.1016/j.jfa.2008.10.010.

[2] B. Dacorogna, P. Marcellini, Implicit Partial Differential Equations, Birkhaüser, Basel, 1999, http://dx.doi.org/10.1007/978-1-4612-1562-2.
[3] B. Dacorogna, P. Marcellini, E. Paolini, Functions with orthogonal hessian, Differential Integral Equations 23 (2010) 51–60.
[4] B. Dacorogna, P. Marcellini, E. Paolini, Origami and partial differential equations, Notices Amer. Math. Soc. 57 (2010) 598–606.
[5] S. Bartels, Handbook of numerical analysis, in: Ch. Finite Element Simulation of Nonlinear Bending Models for Thin Elastic Rods and Plates,

Elsevier, 2019, http://dx.doi.org/10.1016/bs.hna.2019.06.003.
[6] S. Bartels, A. Bonito, A.H. Muliana, R.H. Nochetto, Modeling and simulation of thermally actuated bilayer plates, J. Comput. Phys. 354 (2018)

512–528, http://dx.doi.org/10.1016/j.jcp.2017.10.044.
[7] A. Caboussat, R. Glowinski, D. Gourzoulidis, M. Picasso, Numerical approximation of orthogonal maps, SIAM J. Sci. Comput. 41 (2019)

B1341–B1367, http://dx.doi.org/10.1137/19M1243683.
[8] R. Glowinski, T. Lueng, H. Liu, J. Qian, A penalization-regularization-operator splitting method for eikonal based traveltime tomography, SIAM

J. Imaging Sci. 8 (2015) 1263–1292, http://dx.doi.org/10.1137/140992072.
[9] R. Glowinski, S. Osher, W. Yin, Splitting methods in communication, imaging, science, and engineering, Sci. Comput. (2018) http://dx.doi.org/

10.1007/978-3-319-41589-5.
20

http://dx.doi.org/10.1016/j.jfa.2008.10.010
http://dx.doi.org/10.1007/978-1-4612-1562-2
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb3
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb4
http://dx.doi.org/10.1016/bs.hna.2019.06.003
http://dx.doi.org/10.1016/j.jcp.2017.10.044
http://dx.doi.org/10.1137/19M1243683
http://dx.doi.org/10.1137/140992072
http://dx.doi.org/10.1007/978-3-319-41589-5
http://dx.doi.org/10.1007/978-3-319-41589-5
http://dx.doi.org/10.1007/978-3-319-41589-5

A. Caboussat, D. Gourzoulidis and M. Picasso Journal of Computational and Applied Mathematics 407 (2022) 113997
[10] A. Caboussat, R. Glowinski, A penalty-regularization-operator splitting method for the numerical solution of a scalar Eikonal equation, Chinese
Ann. Math. Ser. B 36 (5) (2015) 659–688, http://dx.doi.org/10.1007/s11401-015-0930-8.

[11] A. Caboussat, R. Glowinski, T.W. Pan, On the numerical solution of some Eikonal equations: An elliptic solver approach, Chinese Ann. Math.
Ser. B 36 (5) (2015) 689–702, http://dx.doi.org/10.1007/s11401-015-0971-z.

[12] S. Basterrechea, B. Dacorogna, Existence of solutions for Jacobian and Hessian equations under smallness assumptions, Numer. Funct. Anal.
Optim. 35 (2014) 868–892, http://dx.doi.org/10.1080/01630563.2014.895746.

[13] B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst. Henri PoincarÉ, Analyse Non LinÉaire
7 (1990) 1–26.

[14] A. Bonito, D. Guignard, R.H. Nochetto, S. Yang, Numerical analysis of the LDG method for large deformations of prestrained plates, 2021,
arXiv:2106.13877.

[15] A. Bonito, D. Guignard, R.H. Nochetto, S. Yang, LDG approximation of large deformations of prestrained plates, J. Comput. Phys. 448 (2022)
110719, http://dx.doi.org/10.1016/j.jcp.2021.110719.

[16] S.W. Grey, F. Scarpa, M. Schenk, Embedded actuation for shape-adaptive origami, J. Mech. Des. 143 (8) (2021) 02, http://dx.doi.org/10.1115/1.
4049880.

[17] J. Bernhard, J. Gilgen, R. Geisthövel, B.E. Marston, L. Hurni, Design principles for swiss-style rock drawing, Cartograp. J. 51 (2014) 360–371.
[18] S. Janbaz, R. Hedayati, A.A. Zadpoor, Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding

origami, Mater. Horiz. 3 (2016) 536–547, http://dx.doi.org/10.1039/C6MH00195E.
[19] D.D. Santis, A framework for optimizing co-adaptation in body-machine interfaces, Front. Neurorobot. 15 (2021) 40, http://dx.doi.org/10.3389/

fnbot.2021.662181.
[20] V. Nguyen, A. Harati, R. Siegwart, A lightweight slam algorithm using orthogonal planes for indoor mobile robotics, in: 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2007, pp. 658–663, http://dx.doi.org/10.1109/IROS.2007.4399512.
[21] S.J.P. Callens, A.A. Zadpoor, From flat sheets to curved geometries: Origami and kirigami approaches, Mater. Today 21 (2018).
[22] S. Janbaz, N. Noordzij, D.S. Widyaratih, C.W. Hagen, L.E. Fratila-Apachitei, A.A. Zadpoor, Origami lattices with free-form surface ornaments, Sci.

Adv. 3 (2017).
[23] T. van Manen, S. Janbaz, K. Jansen, A.A. Zadpoor, 4D printing of reconfigurable metamaterials and devices, Commun. Mater. 2 (2021) 56.
[24] L. Winkless, Origami inspires shape-shifting microelectronics, Mater. Today 31 (2019) 3–4, http://dx.doi.org/10.1016/j.mattod.2019.10.018.
[25] M. Jensen, I. Smears, On the convergence of finite element methods for Hamilton-Jacobi-Bellman equations, SIAM J. Numer. Anal. 51 (1) (2013)

137–162.
[26] L. Billon, Y. Mesri, E. Hachem, Anisotropic boundary layer mesh generation for immersed complex geometries, Eng. Comput. 33 (2) (2017)

249–260, http://dx.doi.org/10.1007/s00366-016-0469-7.
[27] A. Laadhari, P. Saramito, C. Misbah, An adaptive finite element method for the modeling of the equilibrium of red blood cells, Internat. J.

Numer. Methods Fluids 80 (2015) 397–428.
[28] A. Loseille, R. Löhner, On 3D anisotropic local remeshing for surface, volume and boundary layers, in: B.W. Clark (Ed.), Proceedings of the 18th

International Meshing Roundtable, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 611–630.
[29] J.L. Prieto, J. Carpio, A-SLEIPNNIR: A multiscale, anisotropic adaptive, particle level set framework for moving interfaces. transport equation

applications, J. Comput. Phys. 377 (2019) 89–116, http://dx.doi.org/10.1016/j.jcp.2018.10.031.
[30] M. Shakoor, C.H. Park, A higher-order finite element method with unstructured anisotropic mesh adaption for two phase flows with surface

tension, Comput. & Fluids 230 (2021) 105154.
[31] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, second ed., Springer-Verlag, New York, NY, 2008, http://dx.doi.org/10.

1007/978-3-662-12613-4.
[32] B.S. Kirk, J.W. Peterson, R.H. Stogner, G.F. Carey, libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng.

Comput. 22 (3–4) (2006) 237–254, http://dx.doi.org/10.1007/s00366-006-0049-3.
[33] M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems, SIAM J.

Sci. Comput. 24 (4) (2003) 1328–1355, http://dx.doi.org/10.1137/S1064827501398578.
[34] M. Picasso, Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator, Commun.

Numer. Methods. Eng. 19 (1) (2003) 13–23, http://dx.doi.org/10.1002/cnm.546.
[35] O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods

Engrg. 24 (1987) 337–357, http://dx.doi.org/10.1002/nme.1620240206.
[36] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer.

Methods Engrg. 33 (1992) 1331–1364, http://dx.doi.org/10.1002/nme.1620330702.
[37] P. Laug, H. Borouchaki, the BL2D Mesh Generator: Beginner’s Guide, User’s and Programmer’s Manual, Tech. Rep. RT-0194, 1996, INRIAhttps:

//hal.inria.fr/inria-00069977.
[38] Y. Bourgault, M. Picasso, F. Alauzet, A. Loseille, On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid

compressible flows, Internat. J. Numer. Methods Fluids 59 (2009) 47–74, http://dx.doi.org/10.1002/fld.1797.
[39] W. Hassan, M. Picasso, An anisotropic adaptive finite element algorithm for transonic viscous flows around a wing, Comput. & Fluids 111

(2015) 33–45, http://dx.doi.org/10.1016/j.compfluid.2015.01.002.
[40] A. Yellowhorse, R.J. Lang, K. Tolman, L.L. Howell, Creating linkage permutations to prevent self-intersection and enable deployable networks of

thick-origami, Sci. Rep. 8 (1) (2018) 12936, http://dx.doi.org/10.1038/s41598-018-31180-4.
[41] M. Picasso, Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives, Comput.

Methods Appl. Mech. Engrg. 196 (1) (2006) 14–23, http://dx.doi.org/10.1016/j.cma.2005.11.018.
[42] M. Picasso, A. Loseille, Anisotropic, Adaptive Finite Elements for a Thin 3D Plate, Springer International Publishing, Cham, 2015, pp. 217–230,

http://dx.doi.org/10.1007/978-3-319-06053-8_11.
21

http://dx.doi.org/10.1007/s11401-015-0930-8
http://dx.doi.org/10.1007/s11401-015-0971-z
http://dx.doi.org/10.1080/01630563.2014.895746
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb13
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb13
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb13
http://arxiv.org/abs/2106.13877
http://dx.doi.org/10.1016/j.jcp.2021.110719
http://dx.doi.org/10.1115/1.4049880
http://dx.doi.org/10.1115/1.4049880
http://dx.doi.org/10.1115/1.4049880
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb17
http://dx.doi.org/10.1039/C6MH00195E
http://dx.doi.org/10.3389/fnbot.2021.662181
http://dx.doi.org/10.3389/fnbot.2021.662181
http://dx.doi.org/10.3389/fnbot.2021.662181
http://dx.doi.org/10.1109/IROS.2007.4399512
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb21
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb22
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb22
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb22
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb23
http://dx.doi.org/10.1016/j.mattod.2019.10.018
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb25
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb25
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb25
http://dx.doi.org/10.1007/s00366-016-0469-7
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb27
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb27
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb27
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb28
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb28
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb28
http://dx.doi.org/10.1016/j.jcp.2018.10.031
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb30
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb30
http://refhub.elsevier.com/S0377-0427(21)00589-6/sb30
http://dx.doi.org/10.1007/978-3-662-12613-4
http://dx.doi.org/10.1007/978-3-662-12613-4
http://dx.doi.org/10.1007/978-3-662-12613-4
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1137/S1064827501398578
http://dx.doi.org/10.1002/cnm.546
http://dx.doi.org/10.1002/nme.1620240206
http://dx.doi.org/10.1002/nme.1620330702
https://hal.inria.fr/inria-00069977
https://hal.inria.fr/inria-00069977
https://hal.inria.fr/inria-00069977
http://dx.doi.org/10.1002/fld.1797
http://dx.doi.org/10.1016/j.compfluid.2015.01.002
http://dx.doi.org/10.1038/s41598-018-31180-4
http://dx.doi.org/10.1016/j.cma.2005.11.018
http://dx.doi.org/10.1007/978-3-319-06053-8_11

	An anisotropic adaptive method for the numerical approximation of orthogonal maps
	Introduction
	Mathematical formulation
	Numerical methods
	Regularization and penalization
	Flow problem and time splitting algorithm
	Linear variational problems

	Finite element discretization and anisotropic adaptive algorithm
	Discrete operator splitting algorithm
	Adaptive algorithm with anisotropic meshes
	General algorithm

	Numerical experiments
	Single folding
	Double diagonal folding
	Comparison with a standard adaptive approach
	Non-smooth example with a point singularity
	Comparison of results with and without the adaptive mesh refinement algorithm

	A decomposition approach for the homogeneous Dirichlet problem
	Conclusions and perspectives
	Acknowledgments
	References

