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Highlights 
• Turbidity continuous measurements is a well-recognized technique for pollutants monitoring
• Grouping campaigns lead to lower uncertainties in the Turbidity-Concentrations regression(s)
• Findings show a significant impact over uncertainties of environmental indicators

Introduction 

Online monitoring has emerged over last decades as a well-recognized technique for water quality 
monitoring in urban Hydro-Systems. However, sensors employed for this purpose (e.g. turbidimeters, 
flowmeters, conductivity or water level sensors) installed in the field represent important challenges related 
to the appropriate treatment and interpretation of the acquired data (Métadier and Bertrand-Krajewski, 
2012). This last, given intrinsic aspects of the measured signals such as complex noise structures, outliers and 
missing values. Aimed to tackle most of these issues, uncertainty-based data treatment techniques have 
received increasing interest. For example, new methods have been developed in the field of environmental 
signal processing covering aspects such as: - Signal filtering by linear and non-linear uncertainty-based filters 
(Kalman Filters, Particle Filters or Bayesian Filters), - Time series uncertainty-based interpolation techniques 
(Lepot et al., 2017) - Transformation of noisy signals by calibration functions (e.g. water levels to flowrate) 
(Horner et al., 2018). On the other hand, heteroscedasticity and autocorrelation of fitting errors in these 
calibrated functions are reported to have a significant impact over the propagation of uncertainties in e.g. 
the calculation of environmental indicators (e.g. total loads, means concentrations or total runoff volumes). 
The present study proposes a simplified methodology aimed to reduce the effect of autocorrelation and 
heteroscedasticity of errors in regressions employed to transform turbidity signals into pollutants 
concentrations (e.g. Total Suspended Solids TSS). The proposed methods are applied to estimate pollutant 
loads time series from online monitoring and sampling campaigns in two experimental treatment systems, 
collecting stormwater from a train railway in Switzerland.    

Methodology 

Experimental site and data description 

The monitored system was designed to treat runoff collected from a 9055 m2 area that drains stormwater 
from a train railway in Renens, Switzerland. Stormwater from the draining area is collected into a pumping 
chamber by gravity, where it is pumped into a main detention tank. The pumps are activated when the water 
level in the pumping chamber is above 90 cm. Then, the inlet to the main tank (IN) is produced as pumping 
pulses with a duration between 3 to 10 min. The main tank has two identical outlet pipes, which were 
equipped with two different experimental treatment modules, aimed to treat and release the stormwater to 
the receiving water body. Three monitoring points were located at IN and at the outlet of the two modules 
(HEPIA and CFF hereafter), measuring online flowrate and turbidity during 10 months (January to October 
2020) with a time-step of 10 seconds. The three (IN, HEPIA and CFF) turbidity and flow rate time series were 
aggregated to a one-minute time step. A median filter was applied to these time series and outliers were also 
removed. Standard uncertainties of time series were attributed based on manufacturers recommendations 
of the sensors. Missing data in time series for gaps shorter than two hours were interpolated, accounting for 
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standard uncertainties and the autocorrelation of the time series (method in Lepot et al., 2017). Stormwater 
elemental samples were collected by three automated 24 bottles samplers (one per point IN, HEPIA and CFF) 
during nine rainfall events. For each sample (bottle), TSS and heavy metals (Zn, Cu, Fe, Ni and Cr) laboratory 
analyses were carried out, as well as Turbidity measurements. Standard uncertainties of concentrations C for 
TSS and heavy metals were attributed as a function of the analytical methods employed and the intra-sample 
variability from duplicate analyses (about 10 % of the measured concentrations). All turbidimeters (three in 
situ and one in laboratory) were calibrated with standard solutions, propagating uncertainties from: (i) 
standard uncertainties of the original turbidity measurements and (ii) errors from the fitted regression 
employed for the calibration (e.g. Métadier and Bertrand-Krajewski, 2012).  
 
Turbidity-Concentration relation from detangling global regressions 
 
The transformation of the turbidity signals into C (TSS or heavy metals) is proposed to be carried out from 
the pairs of Turbidity-C values and their uncertainties obtained from the elemental samples. However, 
employing a global Turbidity-C regression for each IN, HEPIA and CFF monitoring point (i.e. with the totality 
of the Turbidity-C pairs from all the samples collected during the nine events) might introduce biases and 
heteroscedasticity in the errors of the regression (Hannouche et al., 2017). This last, principally from not 
accounting for the temporal variability of the Turbidity-C relation. On the other hand, adopting a different 
regression for each event might lead to an insufficient number of points (< 20) to fit the regressions. 
Therefore, the present study proposes a simplified solution to the aforementioned drawbacks. A grouping 
strategy of samples from monitored campaigns is aimed to establish an intermediate number of Turbidity-C 
regressions (between the event-based and the global case). This method is based on grouping the Turbidity-
C data from sampling campaigns by chronological order. All Turbidity-C values from campaign i are grouped 
with all Turbidity-C values from campaign i + 1 if: the number of Turbidity-C couples for campaign i is lower 
than 30 and (ii) if the elapsed time between both campaigns i and i + 1 is lower than 30 days. Regressions 
were fitted by Ortogonal Distance Regressions ODR (Boggs and Rogers, 1990), considering uncertainties in 
Turbidity, as well as in C values. The best order for the fitted regression was chosen for each group of 
campaigns among a linear, second- and third-degree polynomial, based on the Bayesian Information Criteria 
(BIC) (Ward, 2008). An example of a fitted regression is shown in Figure 1 (left) for all pairs Turbidity-Iron 
from a group of sampling campaigns at CFF. 
 

  
Figure 1. Fitted Regression Turbidity-Iron with data from a group of sampling campaigns at HEPIA (left) and TSS load time series for 
IN, HEPIA and CFF.   
 
Established regressions are used to transform continuous Turbidity time series from each point (IN, HEPIA 
and CFF) to C (TSS or heavy metals). For each Turbidity value at t, the transformed C value is calculated as a 
weighted average from the two regressions fitted for the preceding and subsequent group of campaigns to 
t. Uncertainties in C time series are obtained from the propagation of: (i) standard uncertainties of calibrated 
turbidity time series and (ii) errors from the two neighbour Turbidity-C regressions employed for the 
transformation. Then C time series can be used to calculate loads L time series as L = Q · C. For example, TSS 
loads are obtained from time series of TSS concentrations (Figure 1).    
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Results and discussion 
 
Turbidity time series at IN, HEPIA and CFF were transformed into TSS and Iron concentrations by the proposed 
methodology. Results for the standard uncertainties compared to TSS concentrations over time are shown 
in Figure 2 for HEPIA (left) and CFF (right) monitoring points. 
 

  
Figure 2. TSS concentrations versus standard uncertainties over time (in colour) for HEPIA (left) and CFF (right) 

 
Three different trends can be identified from Figure 2, due to the three different Turbidity-TSS regressions 
employed over time (one for each group of campaigns). From the proposed methodology applied to IN, HEPIA 
and CFF, relative uncertainties in TSS concentrations were reported to be generally lower than 10 %, 
compared to values of about 14 % obtained from global regressions. The proposed approach brings to a 
certain extent more homoscedastic, less-autocorrelated residuals in the employed Turbidity-C regressions, 
in contrast to global regressions. These improvements could be expected to be more significant for larger 
datasets, including a higher heteroscedasticity in the errors of the regression (Hannouche et al., 2017).  
 

Conclusions and future work 
 

The present study proposes a methodology to improve the quality of the transformation of continuous 
turbidity time series into pollutants concentrations C (e.g. TSS). A strategy based on grouping events or 
campaigns is aimed to obtain more adaptable error structures (homoscedastic and less-autocorrelated) in 
the Turbidity-C regression(s) used for this purpose, compared to global regressions. Future work can be 
oriented to formalize and optimize the trade-off between: the autocorrelation and heteroscedasticity in the 
residuals (global) / the amount of data included in the regression (event-based). The enhancement of 
Turbidity-C regressions encourages the reduction of uncertainties and biases in the estimation of 
environmental indicators (e.g. total loads, removal efficiencies). 
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