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The growing world population and the need to reduce the environmental impact of
food production drive the exploration of novel protein sources. Insects are being
cultivated, harvested, and processed to be applied in animal and human nutrition.
The inherent microbial contamination of insect matrices requires risk management and
decontamination strategies. Thermal sterilization results in unfavorable cooking effects
and oxidation of fatty acids. The present study demonstrates the risk management in
Acheta domesticus (home cricket) powder with a low-energy (8.7–22.0 mW/cm2, 5 min)
semi-direct surface micro discharge (SMD)–cold atmospheric pressure plasma (CAPP).
At a plasma power density lower than 22 mW/cm2, no degradation of triglycerides
(TG) or increased free fatty acids (FFA) content was detected. For mesophilic bacteria,
1.6 ± 0.1 log10 reductions were achieved, and for Enterobacteriaceae, there were
close to 1.9 ± 0.2 log10 reductions in a layer of powder. Colonies of Bacillus cereus,
Bacillus subtilis, and Bacillus megaterium were identified via the mass spectral fingerprint
analyzed with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)
mass spectrometry (MS). The spores of these Bacillus strains resisted to a plasma
power density of 22 mW/cm2. Additional inactivation effects at non-thermal, practically
non-oxidative conditions are supposed for low-intensity plasma treatments combined
with the powder’s fluidization.

Keywords: insect powder, Acheta domesticus, cold plasma, microbial decontamination, lipids, food safety, non-
thermal processing

INTRODUCTION

Insects are recognized as a valuable source of proteins, poly-unsaturated fatty acids (PUFA),
vitamins, minerals, and nutritional fibers (van Huis et al., 2013). The house cricket (Acheta
domesticus L.) belongs to the protein-rich insects of specific interest (see Table 1). Although
edible insects have been consumed from ancient times by several civilizations worldwide, the
consumption in the Western countries was emerging just close to 2010 (van Huis et al., 2013;
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TABLE 1 | Composition of insects used as a protein source in the human feed (based on Williams et al., 2016).

Insect Common name Crude protein (%) Crude fat (%) Fiber (%)

Bombyx mori Silkworm 64.7 20.8

Heliothis zea Corn earworm 18.2

Spodoptera frugiperda Fall armyworm 59.3 11.7 12.4

Galleria mellonella (larva) Waxworm 34.0 60.0 8.1

Xyleutes redtenbacheri (larva) Carpenter moths 48 6.0

Oileus rimator (larva) Beetle 36.0 15.0

Rhyncophorus ferrugineus (larva) Red palm weevil 20.7 44.4

Zophobas morio (larva) Darkling beetle 46.8 42.0 6.3

Acheta domesticus (adult) House cricket 66.6 22.1 10.2

Acheta domesticus (nymph) 67.2 14.4 9.6

Sphenarium histro (nymphs and adults) Grasshoppers 4.0 12.0

Macrotermes bellicosus (alate) African termites 34.8 46.1

Apis mellifera (larva) European honeybee 40.5 20.3 1.3

Drosophila melanogaster (adult) Common fruit fly 56.3 17.9

Hermetia illucens (larva) Black soldier fly 47.0 32.6 6.7

Mason et al., 2018). Since 2013, insects were used more frequently
in whole or parts of the insects, in formulations for humans
and animals (Borrelli et al., 2017). In 2018, the European Union
recognized insects as novel foods (EU Novel Foods regulation,
2015/2283). However, eating whole insects is still unfamiliar to
most people in Western countries. So, most food companies offer
flours or powders of extracted proteins to develop novel products
(Megido et al., 2016; Dobermann et al., 2017).

According to EFSA risk assessment published in October 2015
(EFSA, 2015), some microbiological and chemical hazards have
been identified to be associated with ingredients derived from
insects, depending on different factors: (i) production methods;
(ii) what the insects are fed on; (iii) insect species; (iv) life cycle
stage at which insects are harvested and consumed; and (v) the
methods applied for processing. Specifically, using A. domesticus
as an edible insect ingredient, the scientific concern is about both:
(1) high total aerobic bacterial counts in crude materials and (2)
survival of spore−forming bacteria following thermal processing
(Fernández-Cassi et al., 2018).

Wet and dry thermal treatment was applied to decontaminate
insect powders (Rumpold et al., 2014; Fasolato et al., 2018;
Kröncke et al., 2018). Despite a possible protein denaturation and
reduced applicability as a functional food ingredient, the thermal
treatment results in considerable fatty acid oxidation (Tiencheu
et al., 2013; Jeon et al., 2016). Rumpold et al. (2014) compared
the decontamination of whole mealworm larvae with thermal and
cold plasma processing. A remote plasma powered with a 1.2-kW
microwave source resulted in 5 log10 reductions within 10 min.

Cold plasma was also proven as an effective method to
inactivate spores from pathogenic bacteria on powdered food
(Bußler et al., 2016; Beyrer et al., 2020a,b; Pina-Pérez et al.,
2020). The inactivation of Bacillus spores embedded in a
powder required a plasma power density of 10 mW/cm2 only
when generating the plasma with a surface micro discharge
(SMD) device (Beyrer et al., 2020a; Pina-Pérez et al., 2020). It
was suggested that microorganisms be inactivated by etching
through reactive oxygen and nitrogen species, altering of the

cytoplasmic membrane, metabolic proteins, DNA, or photo-
oxidation (Waskow et al., 2018; Pina-Pérez et al., 2020). However,
plasma does not act selectively on bacterial cells, and active
plasma species can trigger chemical reactions with food matrix
components, mainly carbohydrates, proteins, and lipids (Chen
et al., 2012; Meinlschmidt et al., 2016; Gavahian et al., 2018; Pan
et al., 2019; Sharma and Singh, 2020).

The present study aims to evaluate SMD-CAPP technology
potential to be used in A. domesticus crude powder’s
decontamination. Due to the nutritional value of A. domesticus
as a source of poly-unsaturated fatty acids (PUFA), the free
fatty acid concentration was measured as an indicator of
possible hydrolysis of TGs under CAPP processing suited for the
inactivation of reasonable amounts of microorganisms.

MATERIALS AND METHODS

Acheta Domestica Powder
Crude powder from A. domesticus was provided by Thailand
Unique (Available at https://www.thailandunique.com/)
(humidity 12% w/w).

Surface Micro Discharge–Cold
Atmospheric Pressure Plasma
(SMD-CAPP) Treatment
Home cricket powder was exposed to cold plasma to evaluate
antimicrobial effectiveness. An SMD device (Figure 1) fully
developed and constructed by the Institute of Systems
engineering in collaboration with the Institute of Life
Technologies, HES-SO Valais-Wallis was described in detail
before (Pina-Pérez et al., 2020). In brief, plasma was ignited
in ambient air at atmospheric pressure using an electrical
power generator (TitanTM Series, Compact Power Company,
United States) at 10 kHz frequency and a high voltage
transformer (Swiss Trafo Josef Betschart AG, Switzerland).
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FIGURE 1 | Surface micro discharge (SMD)–cold atmospheric pressure plasma (CAPP) device (schematic drawing).

The high-voltage-powered, planar grid electrode (total
surface = 150 cm2, grid opening = 9.8 × 9.4 mm) was mounted
compactly with a Teflon dielectric barrier and a ground electrode
(Figure 1). A quantity of 0.1 g insect powder was spread on sterile
glass slides (5 mg powder per cm2) and exposed to the plasma
at a 6-mm distance to the powered electrode. The discharge
power applied was 1.3, 1.8, 2.2, and 3.3 W, corresponding to
a plasma power density of 8.7, 12.0, 14.7, and 22.0 mW/cm2,
respectively. All samples were treated for 5 min. The temperature
of the ground electrode was controlled by a water-cooling cycle
and was traced with a K-type thermocouple (Thermocoax,
France). This temperature determines the temperature in the
closed chamber and the sample. Temperatures between 25 and
30◦C were detected.

Samples were treated in triplicate for each processing
condition. Immediately after CAPP treatments, samples were
used for microbiological analysis.

Thermal Treatment
For thermal treatments, 10 g of A. domesticus powder was
placed in hermetically closed glass flasks and subjected to a
thermal treatment in a FOB2-TS steam sterilizer (Fedegari S.A.,
Switzerland). The average chamber temperature was developed
stepwise and held 30 min at 75◦C, 10 min at 110◦C, and
20 min at 121◦C before vacuum cooling of the chamber to
20◦C. The temperature increase in the chamber was reached
within 2 min by steam injection at a suited pressure. The
samples were not in contact with the steam and were heated
indirectly to the equilibrium temperature. Afterward, flasks were
removed from the autoclave chamber, and the powder was
prepared for microbiological analysis. The thermal treatment was
done in triplicate.

Microbiological Analysis of Samples
Crude powdered samples of A. domesticus were prepared
in triplicate for microbiological load analysis (suspensions of
1 g/10 ml buffered peptone water, BPW) (Sigma Aldrich,
SA, Switzerland). A serial dilution procedure [in sterile BPW
1% (w/v)] of each replicate was carried out, with a final
microbial load value estimation as colony-forming units (CFU)

per gram (average ± standard deviation), obtained by viable
plate count analysis.

Total mesophilic bacterial counts and Enterobacteriaceae
counts were analyzed in all samples. Sterile Tryptic Soy Agar
(TSA) (Sigma Aldrich, SA, Switzerland) was used to estimate
total microbial counts from crude powder samples. Specifically,
Violet Red Bile Glucose Agar (VRBGA) was used as selective
media to estimate viable Enterobacteriaceae bacteria in all assays.
Microbiological analysis was carried out identically to estimate
the number of CFU per gram of powder in untreated, crude
powder samples, dry heat-treated samples, and cold plasma
processed powders.

Tubes with the powder dispersions were heated in a water
bath at 95◦C for 15 min and the dispersion was spread on TSA
plates. Colonies were transferred to fresh agar plates for isolation
(2×). Plates with purified colonies of microorganisms were sent
to the Marbitec AG (Riehen, Switzerland) for further analysis.
The matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry to detect the mass-to-charge
ratio (m/z) of molecules was described before (Carbonnelle et al.,
2011; Ziegler et al., 2012; Starostin et al., 2015). In brief, material
from the colonies transferred to a carrier will be desorbed
and partially ionized by a laser. Time-of-flight analysis and
mass spectrometry offer possibilities for detecting the unique
mass spectral fingerprint of a microbial strain. Fingerprints
were compared to biomarkers (super spectrum) reported in the
SARAMIS database (AnagosTec GmbH, Potsdam, Germany) and
ribosomal proteins (PAPMIDTM database). The identification
was accepted at a homology of ≥90% with at least one
of the databases.

Lipid-Oxidation Analysis
Considering the radical oxygen species (ROS) formation in
the cold plasma “active cloud” in SMD-CAPP treatments, the
assessment of possible breakage (hydrolysis) and alteration of
PUFA present in A. domesticus powder samples is required
as a food quality–nutritional preservation indicator. Lipid
peroxidation is defined as a chain reaction initiated by the
hydrogen abstraction, or ROS addition, resulting in the oxidative
damage of PUFA (Repetto et al., 2012). Propagation (peroxyl
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radicals lead to the production of organic hydroperoxides)
implies that once the process is initiated, it can result in
the conversion of numerous PUFA to lipid hydroperoxides
(ROOH) (first stable products of lipid peroxidation reaction). So,
FFA profile modification can be considered as an evidence of
autoxidation (free radical reaction) and hydrolytic rancidity.

In the present study, lipid oxidation was quantified using
a free-fatty acids detection kit provided by Sigma-Aldrich
(Reference: MAK044). Briefly, the concentration of FFA (C8
and longer) is determined by a coupled enzyme assay, which
results in a chromophore product (570 nm)/fluorometric
( y

ex = 535/ y

em = 587 nm), proportional to the FFA concentration
present. Palmitic acid (C16:0) was used as a standard for the
quantification of FFA. A standard curve was prepared for analysis
with concentrations at 0, 0.2, 0.4, 0.6, 0.8, and 1 nmol.

Samples of A. domesticus powder were prepared as follows:
First, 10 mg of powder was homogenized in 200 µl of a
1% (w/v) Triton X-100 in chloroform solution. Samples were
centrifuged at 13,000× g for 10 min to remove insoluble material.
Organic phases were collected and air-dried at 50◦C to remove
chloroform. Residues of chloroform were removed by vacuum
dry for 30 min. Dried lipids were dissolved in 200 µl of fatty acid
assay buffer by vortexing extensively for 5 min. Accordingly, the
different sample suspensions (crude powder, heat-treated, and
CAPP-treated) were used in the analysis, and the concentration
of FFA was calculated (Eq. 1):

C
(
nmole

)
=

Sa
Sv

(1)

Where Sa is the amount of FFA in an unknown sample (nmol)
read from the calibration curve and Sv is the sample volume (µl)
added to reaction well; C is the concentration of FFA in a sample
(nmol/µl).

Statistical Analysis
All treatments were applied in triplicate. Results were tested
for normality and homogeneity before calculating mean values
and standard deviations with Statgraphics Centurion XVIII
(Statgraphics Inc., United States). An analysis of variance
(ANOVA) was carried out to determine the significance of
differences (p < 0.05) between means, applying Turkey honest
significant difference (HSD) test. In figures, the mean variability
of data was indicated by the standard deviation.

RESULTS AND DISCUSSION

Microbial Decontamination
The total microbial count in crude A. domesticus powder was
1.9 × 106 cfu/g, and the count of Enterobacteriaceae was close
to 1.1 × 106 cfu/g. Similar loads were detected in Hermetia
illucens larvae powder, in detail 1.6 × 107 cfu/g for total aerobic
mesophilic bacteria, and 1.2 × 106 cfu/g for Enterobacteriaceae
(Kashiri et al., 2018); in Tenebrio molitor powder, 5.2× 107 cfu/g
for the total microbial count were found (Bußler et al., 2016).

In the present study, the initial microbial load was significantly
reduced by thermal (121◦C for 20 min) and non-thermal

SMD-CAPP treatment (1.3–3.3 W discharge power for 5 min).
Mesophilic bacteria were reduced by 2.3 ± 0.4 log10 cycles
with the heat treatment and 1.4 ± 0.1 log10 cycles with the
SMD-CAPP treatment. The reduction of Enterobacteriaceae in
A. domesticus powder was significantly higher with the SMD-
CAPP treatment (1.9 ± 0.2 log10 cycles with a plasma power
density of 22.0 mW/cm2).

The increase of the discharge power from 1.3 to 3.3 W or of the
discharge power density from 8.7 to 22.0 mW/cm2, respectively,
does not contribute to higher effectiveness (Figure 2). Plateau
values have been reported earlier (Butscher et al., 2016; Beyrer
et al., 2020a) and might be caused by protective factors, such as
shadowing or encapsulation (Kim et al., 2014; Liao et al., 2017),
heterogeneity of age and resistance of the microbe population
(Liao et al., 2017), or antioxidant effects (Beyrer et al., 2020a).

Bußler et al. (2016) achieved similar reductions of the total
microbial count in T. molitor powder by using an SDBD-CAPP
(surface dielectric-barrier CAPP, voltage of 8.8 kVpp, frequency
of 3.0 kHz), being ≈2 log10 reduction in 5 min or 3 log10
reductions in 15 min. Rumpold et al. (2014) decontaminated a
mealworm powder with a 1,200-W microwave-powered remote
plasma and achieved >5 log10 reductions of the total bacterial
count in 10 min exposure time.

The gas composition [pure helium, argon, nitrogen, or
mixtures (e.g., air)], direct vs. indirect plasma exposure,
treatment time, and plasma density are essential factors triggering
the inactivation effectiveness. For example, Rumpold et al. (2014)
identified an indirect, remote cold plasma as more efficient
than a direct plasma (>5 log10 reductions by remote microwave
plasma, 2.45 GHz, 1.2 kW total power, 10 min vs. undetectable
inactivation with a plasma jet, 27.12 MHz, 20 W total power).

In A. domesticus powder, bacterial spores from Bacillus
cereus (>99.9% spectra homology), Bacillus subtilis (99.9%
spectra homology), and Bacillus megaterium (96.0% spectra
homology) were detected before and after the thermal and SMD-
CAPP treatment. Conditions of the thermal or SMD-CAPP
treatment are not satisfying for the inactivation of spores of
such microorganisms.

An increased plasma density can increase the inactivation
effect for B. subtilis spores on a flat, smooth surface. In contrast,
the presence of particles as in starch or algae powder reduces
the inactivation of spores or living cells (Beyrer et al., 2020a;
Pina-Pérez et al., 2020). With insect powders, the limitations are
comparable, while the protective principle might vary and can
involve shadowing or/and reducing the chemical potential of the
plasma via reactions with other compounds of the matrix than
the microorganisms. It was proposed to reduce shadowing effects
by fluidizing the powder (Butscher et al., 2016).

Thermal treatments do not solve the problem of
contaminations with spores in insect products in general.
Grabowski and Klein (2016) found 2–4 log10 cycles of Bacillus
spp. spores in an insect product after 30 min of boiling and
drying at 100◦C. B. cereus, B. thuringiensis, and B. cytotoxicus
were isolated from processed insects (Garofalo et al., 2017)
and represent a food safety issue when spores germinate and
bacteria produce toxins (Lima et al., 2011; Huang et al., 2020).
A tyndallization process for the germination of dormant spores
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FIGURE 2 | Total bacterial count and Enterobacteriaceae in A. domestica powder processed 5 min with a surface micro discharge–cold atmospheric pressure
plasma (SMD-CAPP) or treated at a maximum temperature of 121◦C with dry heat. Significantly different values (p < 0.05) were classified, and the classes are
indicated with letters.

before the inactivation might be an effective strategy to improve
the safety of food such as rice (Kim et al., 2012) and could be
applied for insect powder containing products.

Considering the energy consumption in thermal and plasma
treatments, approximately 2,706 kJ/kg are required for heating
the powder to 121◦C (Holdsworth and Simpson, 2007), while
with 8.7 mW/cm2 during 5 min, equal to 500 kJ/kg would be
required for the SMD-CAPP treatment. A comprehensive energy
balance must consider further factors, such as energy losses at the
steam or plasma production and energy for drying subsequently
to wet heat treatments.

Quantification of Free Fatty Acids
A. domesticus is a valuable source of unsaturated fatty acids and
contains, on average, 23–26% of monounsaturated fatty acids
(MUFA), 28–31% of PUFA, and 42–47% of saturated fatty acids
(SFA). The FA profile is determined by oleic acid (C18:1, cis
9; 22–24.7%), palmitic acid (C16:0; 26.28–27.46%), and linoleic
acid (C18:2, cis 9, 12; 26.74–30.13%) (Kulma et al., 2019). In
the present study, FFA concentration variation (calibration with
palmitic acid) was traced as an indicator of the hydrolytic
potential of an SMD-CAPP. A significant increase (p < 0.05) of
the FFA concentration was found for the powder treated at the
highest plasma density of 22.0 mW/cm2 (Table 2). Insignificant
hydrolysis was observed for samples processed at 8.7, 12.0, and
14.7 mW/cm2 (5 min). So, according to our results, it can be
said that SMD-CAPP treatment conditions have demonstrated to
be intensive enough to reduce microbial load >1 log10 cycles in
A. domesticus powder (8.7–14.7 mW/cm2) and do not increase
the concentration of primary products of lipid oxidation.

Lipid oxidation and increased rancidity have been previously
reported, depending on the matrix and plasma conditions applied
(Gavahian et al., 2018; Lee et al., 2018; Pérez-Andrés et al.,
2020). According to Gebremical et al. (2019), an increase of

FFA in peanuts was observed with a power of 36 W in a DBD
plasma. Also, Yepez and Keener (2016) reported a significant
increment of different FFA (C18:1, n-9; C18:0; C16:0) after an
extended exposure of 1–12 h of soybean oil to a plasma powered
with 90 kV. Albertos et al. (2017) detected an increase of FFA
concentrations (C16:0; C18:1, n-9; C20:5, n-3; C22:6n-3) in
mackerel after a DBD CAPP treatment with a discharge voltage
of 70 and 80 kV for 1, 3, and 5 min. So, it is supposed that both
the plasma power and treatment time influence the FFA content
in TG-rich food.

Surowsky et al. (2016), summarized that regarding most
sensitive poly-unsaturated FA in food, Linoleic (C18:2) and
α-Linolenic (C18:3) were modified in a 20-min CAPP and
the activation energy of the double-bond hydrogenation was
422 kJ/mol. In wheat flour, the linoleic and linolenic acid
concentration was reduced significantly by treatment of 2 min
already, applying a power of 40–90 W for igniting the plasma
in the air (Bahrami et al., 2016). In conclusion, a low dosage of
the plasma, such as applied in the current study, characterized
by a low discharge power or plasma density, is conditional
for preventing hydrolysis of TGs and increasing the FFA
content in food.

TABLE 2 | Free fatty acid (FFA) concentration of A. domesticus powders before
(control) and after surface micro discharge–cold atmospheric pressure plasma
(SMD-CAPP) treatments.

Plasma density (mW/cm2) FFA concentration (% w/w DM)

0 (control) 12.9 ± 0.7a

8.7 13.7 ± 0.7a

12.0 13.3 ± 0.7a

14.7 13.2 ± 0.7a

22.0 16.3 ± 0.8b

a,bDifferent superscript letters correspond to significantly different values.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 July 2021 | Volume 9 | Article 644177

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-644177 June 26, 2021 Time: 19:12 # 6

Pina-Pérez et al. Plasma Processing of Cricket Powder

CONCLUSION

The treatment at a very low plasma density of only 8.7–
22.0 mW/cm2 with an SMD setup results in a 1–2 log10
reduction of the total microbial count in an A. domesticus
powder (mainly in the reduction of Enterobacteriaceae), and this
at almost no increase of the FFA content. Shadowing might
inhibit the inactivation of near-surface bacteria, and fluidization
might improve the efficiency of the treatments. The increase
of the plasma power does not increase the inactivation. An
intensification of the plasma treatment results in an increased
risk of the hydrolysis of triglycerides or the oxidation of
mono- or poly-unsaturated fatty acids. Further advantage can
be provided through energy savings comparing plasma with
thermal treatments.
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