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The dynamics of systems of interacting agents is determined by the structure of their coupling network.
The knowledge of the latter is therefore highly desirable, for instance to develop efficient control schemes,
to accurately predict the dynamics or to better understand inter-agent processes. In many important and
interesting situations, the network structure is not known, however, and previous investigations have shown
how it may be inferred from complete measurement time series, on each and every agent. These methods
implicitly presuppose that, even though the network is not known, all its nodes are. Here we investigate the
different problem of inferring network structures within the observed/measured agents. For symmetrically-
coupled dynamical systems close to a stable equilibrium, we establish analytically and illustrate numerically
that velocity signal correlators encode not only direct couplings, but also geodesic distances in the coupling
network, within the subset of measurable agents. When dynamical data are accessible for all agents, our
method is furthermore algorithmically more efficient than the traditional ones, because it does not rely on
matrix inversion.

Network inference is useful for complex systems
as diverse as biological networks, power grids, in-
formation and social networks to name but a few.
Time series of the degrees of freedom are typi-
cally obtained through experiments or monitor-
ing on systems that are most of the time only
partially accessible. Indeed, in some systems the
number of interacting agents is too large so that
it is impossible to monitor all of them, or some
agents might be hidden or one only needs infor-
mation on a specific part of a larger coupled sys-
tem. In this work we propose a method to infer
the network structure within a set of accessible
agents, for which time series of the degrees of
freedom are measurable. The observed system
is subjected to noise that might come from envi-
ronmental degrees of freedom that were neglected
or from external perturbations. We analytically
connect the two-point correlators of the velocity
deviations to the underlying coupling network for
a general class of symmetrically-coupled systems
close to a stable equilibrium.

I. INTRODUCTION

Network science – the field that studies complex, net-
worked systems1 – has seen an enormous growth of ac-
tivity in recent years. More and more diverse systems of

a)Corresponding author; Electronic mail: melvyn.tyloo@gmail.com

physical, life and human sciences are analyzed through
larger and larger models of agents connected to one an-
other,2 thanks in large part to the ever-increasing capac-
ity for data mining and processing.3 As a matter of fact,
network science draws heavily on data science, however,
it also draws on analytical methods, most notably of sta-
tistical physics, graph theory and dynamical systems.

Approaches combining analytical and data-based ap-
proaches generally compensate for the weaknesses of one
with the strengths of the other and are currently exten-
sively applied to solve challenging problems of network
science. One such challenging problem is to reconstruct
the structure of a priori unknown networks from sets
of dynamical measurement data of its agents. Time se-
ries recording the agents dynamics are used to infer the
topology of their coupling network when the direct ob-
servation of the latter is impossible.4,5 The gained knowl-
edge of the coupling network is then used to evaluate the
state of the system more precisely, to predict its future
evolution, to anticipate extreme behaviors, to implement
control schemes, to deduce inter-agent processes and so
forth. The problem is of particular interest for noisy so-
cial networks which change over short time scales,6 inter-
connected power grids and information networks whose
topology is regularly modified by line faults and rerout-
ings,7–10 or gene regulatory networks made of such huge
numbers of proteins and genes that the precise struc-
ture of their interaction network is inaccessible.11–13 In
all these examples, it is particularly important to have
inference methods that are resilient against missing data
and that can still reliably provide partial network struc-
tures in the case of incomplete measurements, i.e. when
not all agents are measurable.

There is a rather vast literature on network inference
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from dynamical measurements of agents and many data-
based methods have been constructed. Early approaches
use a probe injection signal and measure the response
dynamics of the agents.14–20 The successful reconstruc-
tion of the network topology, through e.g., the Laplacian
matrix, the Jacobian matrix of dynamical flows or the
adjacency matrix, requires then not only to record the
dynamics of all agents, but also that one can control and
inject specially tailored probe signals. Less demanding
passive methods have been devised, which rely only on
observations of the agents dynamics. Some are based
on the optimization of a likelihood21 or cost function,
and require a computation time that scales at least as
O(n3),22 or even as O(n4),23,24 with the number n of
agents. To reconstruct large networks, a computation-
ally more efficient method is therefore highly desirable.
Lighter, probabilistic approaches identify likely couplings
between pairs of agents from statistical properties of the
corresponding pairs of trajectories.25–30 A different and
rather efficient approach extracts the network topology
from the n(n−1)/2 two-point correlators of pairs of agent
trajectories in systems subjected to white31–33 or corre-
lated noise.34,35 The method is in principle quite accu-
rate, however it assumes that every agents in the sys-
tem are measurable. Because in many systems, mea-
surements of only subsets of agents are possible, or be-
cause one often cannot be sure that all nodes are actu-
ally known and recorded, it is important to develop a
reconstruction method that can extract even partial but
reliable information on the network from dynamical data
over a subset of the agents. In this manuscript we con-
struct such a method for a general class of symmetrically-
coupled systems close to a stable equilibrium. In contrast
to purely data-based approaches such as machine learn-
ing algorithms or optimization techniques, our method
connects statistical properties of time series data to the
coupling between agents. Therefore it does not rely on
any training set, nor on minimization solvers, but only
on sufficiently long time series.

II. RESULTS

We consider general dynamical systems defined by cou-
pled ordinary differential equations, in the vicinity of a
stable fixed point solution. Stability means that upon not
too large deviations, the system remains close to the fixed
point. Consider now that the system is initially there, but
is subjected to some noisy perturbation. The latter may
originate from simplifications in constructing the model,
from the coupling to unavoidable environmental degrees
of freedom or from a deliberately applied perturbation.36

Assuming that the noise is sufficiently weak, the system
wanders stochastically about, but remains close to the
fixed point for a long time.37,38 We record the dynamics
of the agents and, from these time series, compute two-
point velocity correlators, 〈δẋiδẋj〉, between measurable
agents i and j. Our key observation is that, unlike the

position correlators considered so far,31–35 velocity cor-
relators contain direct information on the network Jaco-
bian matrix of dynamical flows [see Eq. (6) below]. The
method therefore enables the direct reconstruction of net-
work structures, without any matrix inversion. This ap-
parently minor improvement impacts network inference
very significantly and positively in that, first, and most
importantly, avoiding the matrix inversion enables to still
recover partial information on the network matrix when
only a subset of the agents is measurable; second, matrix
inversion being a computationally costly operation, our
method is scalable to larger networks; third, our method
is able to identify not only direct couplings, but also the
geodesic distance between pairs of not too distant ob-
servable agents. Additionally, we show below that the
method can efficiently determine topological changes in
time-evolving networks. The price to pay for these im-
provements is moderate. As a matter of fact, we show in
the Supplementary Information that measuring velocity
instead of position correlators does not require a pro-
hibitively fine time sampling of the dynamics, and that
our method is more robust against measurement noise.

The power of our method to infer partially accessible
network structures is illustrated in Fig. 1 for a dynami-
cal system of n = 100 agents on a random Erdős-Rényi
network. Existing network couplings between pairs of
m = 10 measurable agents are shown in red in panel (a).
An observer, unaware that they have access to a fraction
of the network agents only and who would apply the posi-
tion correlator method of Refs. 31–35 outside its range of
validity, would generally conclude that all pairs of agents
are directly coupled, because the method relies on a ma-
trix inversion (see Supplementary Information). This is
shown in panel (c). Furthermore, the position correla-
tor method also fails quantitatively in that it predicts
coupling strengths that are too large by a factor of up
to three. These shortcomings do not affect our method,
however, which correctly predicts qualitatively and quan-
titatively the couplings between the m = 10 measurable
agents [blue lines and histogram in panels (b) and (d)].
When all agents are accessible, our method finally cap-
tures the full network structure with high precision. This
is illustrated in Fig. 2.

A. Network-coupled dynamical systems.

We consider a system of n agents whose coordinates
are cast in a vector x ∈ Rn. Their dynamics is governed
by a generic autonomous ordinary differential equation

ẋ(t) = F[x(t)] , (1)

Assume next that this equation has a stable fixed point
solution x∗, i.e. F[x∗] = 0, that F = (F1, . . . Fn) is
a real vector function that is differentiable about x∗,
and that the Jacobian matrix of the dynamical flows,
Jij(x∗) = −∂Fi(x∗)/∂xj , is real symmetric and posi-
tive semidefinite at x∗. The pairwise couplings between
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Figure 1. Partial network inference from partial measurements. (a) Erdős-Rényi random network2 with n = 100 agents
subjected to the dynamics defined by Eqs. (1), (A1) and (A2) with f(x) = sin(x) and nonzero matrix elements Jij ∈ [0.6, 1.3].
Only the m = 10 black nodes are measurable. They are directly connected by the red edges. (b) Edges inferred using our
method, Eq. (7). The inferred partially reachable network (blue) is the same as the true, accessible one (red) in panel (a).
(c) Edges inferred from the method of Ref. 31 (see Supplementary Information) applied outside of its regime of validity to the
subset of accessible nodes. Solid green edges are those correctly inferred while dashed green edges are incorrectly predicted
to exist. (d) Elements of the Jacobian matrix of dynamical flows between the 10 black nodes in panel (a). All blue crosses
are within the grey area corresponding to Jij ± 0.1 . Red histogram bars give the distribution of true matrix elements; blue
crosses and histogram bars are results from Eq. (7); green crosses and histogram bars correspond to the method of Ref. 31. (e)

Fraction of errors 2nerr
/
m(m−1) of inferred off-diagonal elements Ĵij as a function of the number of accessible nodes m . Blue

symbols correspond to our method, Eq. (7); green symbols correspond to the method of Ref. 31. Different symbols correspond

to different tolerances, εerr > |Ĵij − Jij | , for correctly inferred couplings.

agents is encoded in Jij and the latter condition guaran-
tees the stability of the fixed point solution under not too
strong perturbations. Assume finally that the system is
subjected to a noisy perturbation ξ(t), starting initially
at the fixed point. When the noise perturbation is suf-
ficiently weak, the system remains in the vicinity of the
fixed point for long times37,38 and its dynamics is well
captured by the linearized ordinary differential equation

δẋ = −J(x∗) δx+ ξ , (2)

governing the vector of deviation coordinates δx = x −
x∗. Despite its simplicity and the assumptions on which
it is based, Eq. (2) is used to analyze a wide variety of
systems, such as electric power grids subjected to fluctu-
ations of loads8,39,40, consensus algorithms in computer
science,41 opinion dynamics in social sciences,42 vehicle

platoon formation and stability in trafic modeling and
control43 or contagion dynamics at early stages of epi-
demia.44,45

The matrix elements Jij(x∗) contain the information
we want to extract on the coupling network between
agents i and j. It is the matrix we want to reconstruct.
Under our assumptions that it is real symmetric and that
x∗ is a stable fixed point, J(x∗) has real, nonnegative
eigenvalues, 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn, associated to a com-
plete orthonormal basis of eigenmodes {uα}nα=1. Eq. (2)
is solved by a spectral expansion of the displacements
over this basis, δx(t) =

∑
α cα(t)uα . This leads to a set

of uncoupled Langevin equations with solution39

cα(t) = e−λαt
∫ t

0

eλαt
′
ξ(t′) · uαdt′ (3)

for the coefficients of the spectral expansion. To cal-
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Figure 2. Full network reconstruction from complete sets of measurement. (a) Complex network used to generate
time series following the dynamics defined by Eqs. (1) and (A1) with f(x) = sin(x) , in the limit λατ0 � 1 of short noise
correlation time. (b) Color-coded true Jacobian matrix of the dynamical flows for the network in panel (a). (c) Color-coded

difference ∆Jij = |Ĵij − Jij | between matrix elements of the inferred (Ĵ) and true (J) Jacobian matrices. Note the difference in
colorscale between panels (b) and (c). (d) PanTaGruEl model of the synchronous power grid of continental Europe10 used to
generate time series following the dynamics defined by Eqs. (1) and (A1) with f(x) = sin(x) , in the limit λατ0 � 1 of short
noise correlation time. The complete network has n = 3809 nodes and 4944 edges. (e) Complete inference for the PanTaGruEl

network with all agents accessible to measurement. Blue crosses plot the inferred matrix elements Ĵij from Eq. (7), against
their real value Jij . (f) Histogram of the inferred velocity (blue) and of the true Jacobian matrix (red) of dynamical flows. The
method satisfactorily infers the Jacobian matrix elements that vary over more than one order of magnitude, and furthermore
identifes the two types of edges, corresponding to different voltage levels of 220 and 380 kV [arrows in panels (e) and (f)]. The
separation between low-valued inferences (corresponding to non-existant edges) and higher-valued ones is obvious. The small
but still significant inference imprecision is due to computational limits for generating velocity time series by simulating the
dynamics of this large network, and not to our inference method.

culate the equal time, two-point velocity correlator
〈δẋi(t)δẋj(t)〉 between agents i and j we next need to
specify the noise distribution.

B. Network reconstruction from ambient noise.

The perturbation noise in Eq. (2) is unavoidable. This
is in particular so since real systems are often too compli-
cated to be exactly modeled by a tractable function F[x].
Therefore, noise is often introduced to mimic the effect of
neglected terms or to model uncapturable environmental
degrees of freedom36. It is reasonable to assume that this
ambient noise has fast decaying spatial correlations and is

characterized by some finite correlation time τ0. Accord-
ingly, we model ξ(t) by an Ornstein-Uhlenbeck process
defined by its first two moments

〈ξi(t)〉 = 0 ,

〈ξi(t+ ∆t/2)ξj(t−∆t/2)〉 = ξ20 δij exp (−|∆t|/τ0) , (4)

where ξ0 is the noise standard deviation and the
brackets denote ensemble averaging over noise real-
izations or a large enough observation time, 〈...〉 =

limT→∞T
−1 ∫ T

0
...dt. Ambient noise originates from cou-

plings to an environment that is large by definition. Ac-
cordingly, one standardly assumes that τ0 is one of, if
not the shortest time scale in the problem. In our dis-
cussion we take τ0 as an independent parameter, but we
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often assume below that the physically relevant limit is
τ0 → 0.

In this paper, we specialize to sets of agents with two-
body interactions, Fi = ωi +

∑
j 6=i Fij , whose coupling

network can be inferred from the linearized dynamics
close to the fixed point solution x∗ of Eq. (1). Accord-
ingly, only the first two moments of the noise need to
be specified to infer the coupling network through Fij .
We note that our method can be extended to coupling
networks with higher order interactions between three or
more agents, in which case one needs however to spec-
ify higher order moments of ξ(t). Also worth noticing is
that Eq. (2) satisfies conditions for dynamical structure
reconstruction.46

Earlier approaches reconstruct first the pseudo-
inverse Jacobian J† from two-point position correla-
tors 〈δxi(t)δxj(t)〉 derived from dynamical measurements
over all agents.31–35 Here, we consider instead two-point
velocity correlators, 〈δẋi(t)δẋj(t)〉, which enables us to
directly reconstruct J, without any matrix inversion, as
we will show shortly. We consider the long-time influ-
ence of the noise perturbation, after all initial transient
behaviors have relaxed. Expanding the velocities over the
eigenmodes of J, δẋ(t) =

∑
α ċα(t)uα , and using Eqs. (3)

and (4), it is straightforward to obtain (See Supplemen-
tary Information)

limt→∞〈δẋi(t)δẋj(t)〉 = ξ20

(
δij −

∑
α

uα,iuα,j
λατ0

1 + λατ0

)
,

(5)
where uα,i is the ith component of the αth eigenmode.

Eq. (5) connects the long-time velocity correlator to
the eigenmodes and eigenvalues of the Jacobian matrix
J. To extract network structures from it, we recall that
the matrix elements of the kth power of J read (Jk)ij =∑
α λ

k
α uα,iuα,j . Taylor-expanding Eq. (5) in the limit of

short correlation time, λατ0 < 1, then gives

limt→∞〈δẋi(t)δẋj(t)〉 = ξ20

[
δij +

∞∑
k=1

(−τ0)k(Jk)ij

]
.

(6)
In the opposite limit of λατ0 > 1, another Taylor-
expansion connects the velocity correlator to powers of
the inverse Jacobian instead (See Supplementary Infor-
mation). As argued above, if the noise perturbation
arises from a large, fast-varying environment, the limit
λατ0 < 1 of short noise correlation time is expected to
be physically more relevant. Accordingly, we base our
network reconstruction approach on Eq. (6).

C. Direct network reconstruction.

In the limit of very short noise correlation time,
λατ0 → 0, only the k = 1 term in Eq. (6) matters, which
gives

Ĵij = (δij − 〈δẋiδẋj〉/ξ20) τ−10 . (7)

The Jacobian matrix J of dynamical flows is directly
given by the long-time velocity correlator. Eq. (7) en-
ables the complete reconstruction of the network when all
nodes are measurable. It is important to realize that this
is done passively, i.e. solely by measuring the dynamics
of the agents. In particular, the method does not require
to control the perturbation. For full network reconstruc-
tion, Eq. (7) improves on earlier approaches in that the
considered velocity correlators directly give the matrix
elements of J and not of its inverse. This is algorith-
mically advantageous, especially in systems with many
agents. If one is only interested in the structure of the
Jacobian matrix then τ0 and ξ0 do not need to be known.
If one wants a more quantitative inference, τ0 can be ex-
tracted from the frequency spectrum of the time series,
while the noise amplitude is obtainable from the variance
of the agent coordinate at a single node, 〈δẋ2i 〉 = ξ20 . For
full reconstruction, the method is numerically illustrated
in Fig. 2. Quite remarkably, one sees in Fig. 2(e-f) that
our method correctly identifies different magnitudes of
the Jacobian matrix elements.

Eq. (7) furthermore enables to identify direct connec-
tions between nodes without the need to reconstruct the
full matrix. This is especially important when one has
access to only a subset of the agents in the network or if
one wants to check the connectivity only within a partic-
ular subset of the nodes. Then, our approach allows us to
infer all direct connections between pairs of agents within
those subsets. This is illustrated in Fig. 1 where one sees
that Eq. (7) accurately reconstructs the direct couplings,
including their magnitude, between the m = 10 mea-
surable agents in an Erdös-Rényi network of n = 100
agents. An observer who would not know that only a
subset of the agents is being recorded and who would ap-
ply approaches based on position correlators outside their
range of applicability, would wrongly conclude that the
coupling between these m = 10 agents is all-to-all. This
is so, since these methods first construct the inverse of
the network matrix, and then invert that partially known
matrix.

D. Inferring geodesic distances.

When the noise correlation time is small, but finite, one
can extract further important information from Eq. (7),
beyond direct network couplings. Suppose that two mea-
surable agents i 6= j are located a geodesic distance q
away from each other. This means that the shortest path
i → k1 → k2 → . . . kq−1 → j from i to j goes through q
direct network couplings. Accordingly, q is the lowest ex-
ponent for which (Jq)ij 6= 0 and therefore, for such pairs
i 6= j one has, instead of (6),

〈δẋiδẋj〉 = ξ20

∞∑
k=q

(−τ0)k
(
Jk
)
ij
. (8)
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Figure 3. Inference of geodesic distances. Long-time velocity correlator of Eq. (5) between agent #4 [open red circle in
the network map in the inset of panel (a)] and all other agents up to its 4th neighbors. The geodesic distance between pairs
of considered agents is color-coded. (a) Network with uniform couplings. (b) Network with inhomogeneous couplings with
strengths varying by a factor of 4.5. Vertical dashed lines indicate the boundaries τ0 = λ−1

n (left) and τ0 = λ−1
2 (right) from the

spectrum of the Jacobian. (c) Complete reconstruction of the 1st to 4th neighbors from Eq. (5) for the network in the inset to
panel (a) with homogeneous couplings. For each agent i = 1, . . . 20, and each correlator value, the color plot gives the number
of agents j 6= i with that correlator value for λnτ0 = 0.4 [smallest value in panel (a)].

This makes it possible to determine the geodesic distance
q between any measurable pair of nodes (i, j) as long as

minl,m(Jq−1)lmτ
−1
0 � (Jq)ij � maxl,m(Jq+1)lmτ0 , (9)

where the minimum (resp. maximum) is taken over pairs
(l,m) of nodes with geodesic distance ≤ q − 1 (resp. ≥
q+ 1). When Eq. (9) holds, pairs of nodes with geodesic
distance q have noise correlators sufficiently away from
those with geodesic distances q − 1 and q + 1 that one
can identify them.

Inference of geodesic distances between pairs of mea-
surable agents is illustrated in Fig. 3 for a small random
network with n = 20 agents. When the noise correlation
time τ0 is sufficiently small, one sees that the values of
long-time velocity correlators coalesce into distinct clus-
ters. Each cluster corresponds to agents located a fixed
geodesic distance away from the chosen agent. Cluster
correlator values decrease with increasing geodesic dis-
tance, which allows to infer the latter. Remarkably, the
method works even when the network has nonhomoge-
neous couplings [see panel (b)], and is limited only by
correlator values becoming smaller and smaller as the
geodesic distance increases.

We found that the inference of geodesic distances is
in practice limited to identifying the first few neighbors.
This is so because, first, it requires short correlation times
and second, from Eq. (6), pairs of kth neighbor agents
(i, j) have a noise correlator given by

〈δẋiδẋj〉 = ξ20(−τ0)k(Jk)ij + O[τk+1
0 (Jk+1)ij ] . (10)

As k increases, the correlator therefore becomes smaller
and smaller, until it eventually is smaller than its sta-
tistical standard deviation, at which point geodesic dis-
tances can no longer be inferred. For the networks we

investigated [see Fig. 3] we have found that geodesic dis-
tances up to k = 3, 4 can typically be inferred. As a re-
mark concluding this paragraph, we stress that Eqs. (8)
and (9) allow to extract geodesic distances between pairs
of measurable agents, even when only a subset of the
agents is accessible. In that situation, powers of the
partially inferred Jacobian would systematically overes-
timate geodesic distances.

E. Partial reconstruction from partial measurements.

Eq. (7) makes it clear that Jij can be predicted from
time series for agents i and j only, and we already men-
tioned that this enables partial reconstruction of network
structures even when there are inaccessible agents. The
power of our method for partial network structure infer-
ence has already been illustrated in Fig. 1 and we next
show how it scales to larger systems.

Fig. 4 shows how our inference method correctly dif-
ferentiates the nonzero network couplings from the van-
ishing ones, for three types of complex networks with
n = 1000 agents, about m ≈ 100 of which are accessible
to measurements. The chosen finite recording time and
the finite noise correlation time result in an uncertainty
of the inferred matrix elements Ĵij , however their his-
togram indicates a clear separation between low-valued
and high-valued Ĵij , i.e. between vanishing and exist-
ing direct network couplings. For the existing couplings,
one furthermore sees that the inferred histogram largely
overlaps with the real ones, since the predicted coupling
strengths are quantitatively captured.

In the Supplementary Information we show a direct
comparison of the results of Fig. 4 with predictions from
the method of Ref. 31 which shows that the latter, ap-
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Figure 4. Partial inference on large networks. Partial velocity correlator inference of Eq. (7), for networks with n = 1000

agents, m ≈ 100 of which are accessible to measurement. Blue crosses plot the inferred matrix elements Ĵij between measurable
agents against their real value Jij . Converted into histogram form, the data exhibit a clear separation between low-valued
inferences – corresponding to vanishing couplings – and higher-valued inferences – corresponding to existing couplings. Red
histograms correspond to the true Jacobian matrix of dynamical flows. The networks are: (a) an Erdős-Rényi network2; (b)
a Barabási-Albert network2; (c) a Watts-Strogatz network47. The small but still significant inference imprecision is due to
computational limits for generating velocity time series by simulating the dynamics of these networks, and not to our inference
method.

plied outside its range of validity to infer the coupling
network between a subset of measurable agents, fails
in predicting the existing couplings and their coupling
strength. Our method thus offers a significant improve-
ment over existing approaches when not all nodes are
accessible to measurement.

F. Time-Evolving Networks.

We finally show how the noisy agent dynamics di-
rectly reflects topological changes in the coupling net-
work structure. From Eqs. (6) and (7), disconnecting
a network edge between two agents reduces the corre-
sponding velocity correlator, and makes it even disap-
pear in the white-noise limit. Recording the noise and
calculating the velocity correlator in real-time enables to
identify topological changes. This is illustrated in Fig. 5
for three Watts-Strogatz networks where one coupling
is cut at λ2t ≈ 900 (see arrows). The velocity corre-
lator is quickly reduced compared to the value it has
without topological change, almost directly reflecting the
coupling cut. In the Supplementary Information, the cal-
culation of the velocity correlator indicates that transient
terms exist, which disappear exponentially in time with
rates given by the eigenvalues of the network Jacobian
matrix J. These terms govern the transient behavior fol-
lowing the topological change in Fig. 5. Therefore, such
topological changes can be identified after a time on the
order tc ∼ λ−12 with the smallest nonvanishing eigenvalue
λ2 of the Jacobian of dynamical flows after the topologi-
cal change. This reasoning is confirmed in Fig. 5 for three
networks with different λ2.

III. DISCUSSION

We have shown how to infer a coupling network via dy-
namical monitoring of its agents. The method presents a
number of advantages over existing approaches. In par-
ticular (i) it is nonintrusive; it does not require the ability
to inject a perturbation signal locally on specific agents,
(ii) it allows to reconstruct network structures such as
direct couplings and geodesic distances between measur-
able agents, even when only partial measurements are
feasible, (iii) it is algorithmically efficient; unlike earlier
approaches it does not rely on a matrix inversion as it
directly reconstruct the network matrix; it is therefore
easily scalable to larger networks, and (iv) it allows to
monitor time-evolving networks in real-time and in par-
ticular to identify when a direct coupling line between
two agents is cut. The price to pay for these advantages is
that velocity, and not position correlators need to be mea-
sured. One may then think that the resolution in time
sampling necessary to extract velocities from positions
would render our method inapplicable in practice. In the
supplementary material, we show that this is not so, as
the time sampling needs only to resolve the time scales
λ−1α of the network but not the noise correlation time τ0.
This poses only a weak condition on the resolution one
must have to extract velocities from positions. Finally,
we also show in the Supplementary Information that our
method is more robust against measurement noise than
earlier ones. We therefore think that our method will
prove to be very beneficial to infer basic interactions in
large networks, which often cannot be fully monitored
nor directly probed, or simply to extract partial network
structures, when one does not need to know the full net-
work.

Classes of network-coupled systems include those with
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Figure 5. Real-time monitoring of dynamically evolv-
ing networks. Time evolution of the agent velocity correla-
tor between agents i and j for three different Watts-Strogatz
networks47. with n = 20. The correlator is calculated over
sliding time-windows. The coupling between i and j (red edge
on the blue networks on the right panels) is removed at time
λ2t = 900, indicated by the arrow in each panel. Follow-
ing that topological change, the velocity correlator decreases
fast and oscillates around zero (orange curve), well below its
behavior without the change (blue curve), as predicted by
Eqs. (6) and (7). In all three cases, the convergence time τc
to the new behavior is determined by the smallest nonvanish-
ing Jacobian eigenvalue, τc ∼ λ−1

2 , with λ2 = 5.84 × 10−3,
4× 10−3 and 8.2× 10−3 from top to bottom.

higher-dimensional agents with intrinsic, internal dynam-
ics. While not considered in our numerical illustrations,
we believe that our method also applies to such systems
in the case of fully symmetrical couplings, i.e. also with
respect to the internal degrees of freedom. Network re-
construction in such cases has been attempted based on
data-based approaches48 and we leave it to future works
to illustrate the power of our method in such cases.

As a final remark, when inferring an unknown network
from measurement of the dynamics of its agents, one may
be trying to reconstruct a disconnected network without
knowing it. In that case, we show in the Supplementary
Information that earlier inference methods based on
measurement time series of agents dynamics and their

correlators have trouble differentiating between existing
and non-existing couplings. Our method does not suffer
from this shortcoming. As such it is able to recon-
struct network structures for fully unknown networks,
where neither all nodes, nor the network connectiv-
ity are known a priori. Future works might apply our
method to time series measured from real-world systems.

APPENDIX A. METHODS

A. Dynamical model.

In our numerical investigations we focus on Eq. (1)
with

Fi[x(t)] = ωi −
∑
j

aij f(xi − xj). (A1)

Here, ωi ∈ R are natural frequencies with
∑
i ωi = 0, and

the interaction between agents is a differentiable function
f : R → R, that is even in its indices i and j and odd
in its argument, and aij ≥ 0 are unknown elements of
the adjacency matrix of the interaction network. When
the nonvanishing aij are sufficiently large and numerous,
Eq. (1) has at least one stable fixed point x∗ ∈ Rn, see
e.g. Refs. 49, 50.

For this type of models, the Jacobian matrix of dy-
namical flows reads

Jij(x∗) =

{
−aij ∂x f(x)

∣∣
x=x∗i−x∗j

, i 6= j ,∑
k aik ∂x f(x)

∣∣
x=x∗i−x∗k

, i = j .
(A2)

It is a Laplacian matrix with zero row and column sums
of its components, and one vanishing eigenvalue, λ1 = 0,
corresponding to a constant-component eigenmode, u1 =
(n−1/2, n−1/2, . . . n−1/2). Eq. (A2) makes it clear that
J(x∗) contains information on both the coupling network
and the fixed point x∗.

B. Numerical simulations.

Dynamical series for the agent coordinates and veloc-
ities are obtained from Eqs. (1) and (A1) that are time-
evolved following a fourth-order Runge-Kutta algorithm.
In most numerical simulations, we considered the short
correlation time limit, λnτ0 � 1. Short noise correlation
times require even shorter Runge-Kutta time steps for
accurate dynamical calculations. This results in rather
long computation times for generating velocity time se-
ries of sufficient duration, while time series on only one
every ten (or more) Runge-Kutta times steps are needed
as input for our inference method. The generation of
these input data requires computation times on the or-
der of a week on twelve Intel® Xeon® Gold 6140 CPU @
2.30GHz for each simulation of the larger networks con-
sidered in this article. Longer computation times would
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improve the accuracy of our numerical simulations. It is
important to understand that this is not a shortcoming of
our approach, which infers network structures in a frac-
tion of the time needed to generate its input. The con-
vergence of the algorithm to the true Jacobian as longer
time series are generated is illustrated in the Supplemen-
tary Information.

SUPPLEMENTARY MATERIAL

The supplementary Material gives details of the ana-
lytical results presented in the main text, considers the
case of inference with noise that has long correlation
time, shows further numerical illustration of our infer-
ence method and also discusses the effect coming from
the sampling rates of the time series on the precision of
our method.
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