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ABSTRACT This manuscript reports the first step towards building a robust and efficient model reduction
methodology to capture transient dynamics in a transmission level electric power system. Such dynamics
is normally modeled on seconds-to-tens-of-seconds time scales by the so-called swing equations, which
are ordinary differential equations defined on a spatially discrete model of the power grid. Following
Seymlyen (1974) and Thorpe, Seyler, and Phadke (1999), we suggest to map the swing equations onto a
linear, inhomogeneous Partial Differential Equation (PDE) of parabolic type in two space and one time
dimensions with time-independent coefficients and properly defined boundary conditions. We illustrate our
method on the synchronous transmission grid of continental Europe. We show that, when properly coarse-
grained, i.e., with the PDE coefficients and source terms extracted from a spatial convolution procedure
of the respective discrete coefficients in the swing equations, the resulting PDE reproduces faithfully
and efficiently the original swing dynamics. We finally discuss future extensions of this work, where the
presented PDE-based modeling will initialize a physics-informed machine learning approach for real-time
modeling, n− 1 feasibility assessment and transient stability analysis of power systems.

INDEX TERMS Power system dynamics, disturbance propagation, electromechanical waves, inter-area
oscillations, physics-informed machine learning.

I. INTRODUCTION
This manuscript is focused on building a computationally
efficient and sufficiently accurate model describing the tran-
sient response of a transmission level electric power system
to a significant perturbation – for example the disconnection
and/or reconnection of a large generator. We consider the
dynamics of the transmission level of power systems on
a continental scale and focus on sub-minute transients on
time scales ranging from one second to few tens of seconds.
We follow an approach that is standard in power system
studies and assume that the so-called swing equations [1], [2],
giving the time-evolution of the voltage angles at all nodes
on the power grid, provide a sufficiently accurate represen-
tation of the power system dynamics within the considered
spatio-temporal scales. Stated differently in the language of
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modern machine learning, the spatio-temporal integration of
the swing equations provide a high-fidelity representation
of the ground truth. There are two competing aspects of
the swing equations. On the one hand, they are based on
physically meaningful quantities and parameters such as line
capacities, machine inertia and damping. Accordingly they
are expected to correctly capture the physics of the system.
On the other hand, integrating these equations on a large,
continental scale grid can be computationally very expensive,
even for a single run corresponding to a specific initial con-
dition. Obviously, it becomes even more expensive if the task
is to screen many possible initial conditions, and often pro-
hibitively expensive when the screening need to be repeated
numerous times, testingmany possible control actions.Model
reduction for this type of online applications [3] comes as a
way to strike a balance between accuracy and computational
complexity. Central to this optimization is that the transient
dynamics of interest occurs over time scales up to few tens
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of seconds while the goal is to numerically resolve multiple
scenarios of initial conditions and various controls faster than
real time.

How does model reduction work? In the current era
of deep learning, many model reduction techniques rely on
neural networks and other tools of modern data science and
machine learning, see e.g. [4]–[7]. The idea is to use the
ground truth model – the swing equations in our case – to pro-
duce dynamical data, and then to train a pre-selected reduced
model on these datasets to fine-tune the parameters of the
model. If the reducedmodel is of an application agnostic type,
as is customary in mainstream machine learning, the scheme
relies on very large datasets. However, recall that running
our ground truth model is computationally expensive. Then,
if producing the needed training datasets is not an option, can
we still hope to build a reliable reduced model? Our only
hope in this case is to inject the relevant, application-specific
information – in our case information about the power sys-
tem physics – into the model reduction framework. Physics-
Informed Machine Learning (PIML) is the modern approach
to resolve the model reduction bottleneck – that is to com-
pensate for the lack of data (typical of online applications) by
building models that are aware of the underlying physics [8],
as, e.g., expressed in terms of differential equations [9]–[11].
(See also [12], [13] for discussion of the application of PIML
to power systems.)

Why is Partial Differential Equation (PDE) modeling
a sound option for power system model reduction? In this
manuscript, we propose a first step towards developing PIML
for general online applications and advancing model reduc-
tion of PIML applications to power systems, as e.g. developed
earlier by members of our team [13], [14]. Similarly to [12],
we take advantage of the PIML approach and construct an
online framework for simulating power system dynamics
faster than real time. We are however aiming to capture the
transient dynamics in a very large, continental-scale power
system, a goal that has not been addressed by any earlier
related approach we are aware of. Accordingly, we choose to
build our reduced model on the continuous PDE approach to
modeling power system dynamics pioneered by Semlyen [15]
and later extended by Thorpe, Seyler, and Phadke [16]
(see also [17]). These works were however restricted to
spatially-continuous one dimensional, time-dependent sys-
tems, i.e. with 1+1 dimensional PDE. Our PDE approach
to power systems, to be presented below, inherits all the
relevant physics of the original swing Ordinary Differential
Equations (ODEs), accordingly it is 2+1 dimensional. Thus,
it resolves power grid dynamics over a spatially-continuous
two-dimensional domain associated with the power system’s
geographical area of service. Approximating the swing ODEs
by a PDE may seem strange at first sight, as naively, this
transition dramatically increases the number of degrees of
freedom. However, this naive thinking is not quite right
for several reasons. First, numerical solutions of linear
2+1 dimensional PDE assume spatial regularization via a
two-dimensional grid, where the grid size can be chosen

according to the desired spatial resolution. Therefore, the
number of grid points may eventually be comparable to or
even smaller than the number of nodes in the original grid.
Second, numerical operations, such as matrix inversion, can
be performed much more efficiently on a regular grid than
on a complex meshed graph. Third, and most importantly,
the number of physical parameters in the original power
grid model (line capacities, machine inertia and damping
coefficients) may be reduced significantly within the PDE
approach. Indeed, within the reducedmodel, wewant to faith-
fully capture only the long-wavelength components of the
swing dynamics. This justifies using a coarse-grained/filtered
expression for all the coefficients in the linear PDE, therefore
representing the coefficients via only a few long-wavelength
harmonics.

Our Contribution: In this manuscript we make the first
steps towards a novel online methodology for multi-scenario
testing and control based on modeling the dynamics of a
large, continental scale power system within a novel 2+1
PDE modeling framework. We show how a properly coarse-
grained PDE model faithfully captures the power grid tran-
sient responses to disturbances of a high fidelity model.
Our approach is rather heuristic, but it is backed by phys-
ical understanding of how perturbations propagate over the
grid. Therefore, we ‘‘prove by example’’ – illustrating our
model reduction methodology on the PanTaGruEl model
of the synchronous grid of continental Europe introduced
in [18], [19]. Specifically, PanTaGruEl simulates power flow
and swing equations with high fidelity to produce the ground
truth data. The latter in their turn are used to infer a spatially
continuous 2+1 dimensional PDE model. The quality of the
reconstruction is judged, first, by its ability to mimic power
system dynamics and, second, by a faithful reconstruction of
spatially coarse-grained and physically meaningful static –
spatial distribution of line impedances – and dynamic –
spatial distribution of damping and inertia – parameters.
We conclude the manuscript with a suggestion for a path
towards using the PDE based reduced modeling framework
for efficient online screening of multiple failure scenarios on
large transmission grids, faster than real time.

II. PROBLEM FORMULATION
A. POWER FLOW AND SWING EQUATIONS (SYSTEM
OF ODEs)
AC Power Flow (PF) equations describe steady distributions
of electric power flows over an AC power grid. The equations
connect complex power injections {si ≡ pi+ i qi} to complex
voltages {Vi ≡ vi exp(i θi)}, where pi, qi, vi and θi denote
the active and reactive power injections, and the voltage
magnitude and angle at node i ∈ V respectively:

pi =
∑
j

vivj
[
gij cos

(
θi − θj

)
+ bij sin

(
θi − θj

)]
, (1a)

qi =
∑
j

vivj
[
gij sin

(
θi − θj

)
− bij cos

(
θi − θj

)]
. (1b)
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FIGURE 1. Evolution of the system parameters for the continuous PDE
model with increasing Gaussian kernel. (See text for details.)

Here, bij and gij are elements of the susceptance and conduc-
tance matrices, see e.g. [20] for more details.

Suppose that a steady solution of the PF Eqs. (1) is per-
turbed, for example by a fast disconnection and reconnection
of a large generator or load. Such a fault induces a tran-
sient voltage angle and amplitude dynamics. It is customary
to assume a time-scale separation between voltage ampli-
tudes and angles. On time scales ranging from sub-seconds
to few tens of seconds, voltage amplitudes remain con-
stant, while voltage angles evolve according to the swing
equations [2], [21],

miθ̈i + diθ̇i = pi −
∑
j

vivjbij(θi − θj) . (2)

The voltage amplitudes vi and vj are considered constant,
already stabilized to the steady-state solution of Eqs. (1) and
mi and di denote the inertia and the damping (i.e., primary
control) of the generators. Eq. (2) describes the relaxation
dynamics of voltage angles towards a steady-state solution,
θ̈i = θ̇i = 0, corresponding to the lossless, gij = 0,
linearized version of Eqs. (1a). Two comments are in order
here. First, the linearized approach used here is in practice
quite accurate to reproduce the transient dynamics following
not too strong perturbations - a problem called small signal
stability [2]. Nevertheless, the approach to be presented below
can be extended to the nonlinear case, with (θi − θj) →
sin(θi − θj) in Eq. (2). Second, the swing equation approach

is not restricted to the just discussed case of a fast
disconnection-reconnection fault, but also captures the volt-
age angle dynamics following a fault which is not immedi-
ately cleared, such as the removal of a generator or a load
without reconnection. In such cases, the final relaxed state
is not balanced, i.e.

∑
i pi 6= 0, and the power mismatch is

compensated by the second, damping term in Eq. (2), leading
to anAC frequency shift θ̇i = ωpf ∀i, with

∑
i pi = ωpf

∑
i di,

where ωpf denotes the post-fault synchronous frequency.
In the next paragraph, we construct a reduced model by

mapping the discrete system of ODEs (2) into a continuous
PDE. Before we do that, we re-emphasize why amodel reduc-
tion is needed at all. The motivation was lucidly expressed
in Ref. [22] as follows: ‘‘The focus is on the construction
of low-order models which closely approximate the global
behavior of the hybrid nonlinear system. There is a growing
recognition of the strong need for rapid and reliable compu-
tation of the system dynamics.’’ Comprehensive discussions
of model reduction in a general context as well as for specific
applications to slow coherency and inter-area oscillations can
further be found in Ref. [23].

B. MAPPING THE POWER SYSTEM TO A
TWO-DIMENSIONAL CONTINUUM: THE
SWING PDE MODEL
Consider a two-dimensional domain � ⊂ R

2, with coordi-
nates r = (x, y), inside which the discrete, planar or quasi-
planar network is embedded. The boundary of the domain is
denoted by ∂� and ∀r ∈ ∂�, n ≡ (nx , ny) denotes the normal
vector to the boundary at r. Imagine that the swing Eqs. (2)
are derived by discretizing a PDE describing the dynamics of
a scalar field θ (t; r) over an irregular mesh which corresponds
to the original network. Then, following [16], one naturally
asks: what is the PDE corresponding to the swing Eqs. (2)?
We answer this question by writing the following, most gen-
eral form of the swing PDE on �:

m(r)
∂2

∂t2
θ (t; r)+ d(r)

∂

∂t
θ (t; r) = p(t; r)

+

∑
α,β=1,2

∂rαbαβ (r)∂rβ θ (t; r), (3)

where r1 = x, r2 = y. One of our main task is to map the
physical parameters of (2) into the continuum as follows

∀i : θi(t) → θ(t; r), mi→ m(r), di→ d(r)

pi(t) → p(t; r), bij→ bαβ (r), ∀α, β = 1, 2. (4)

We discuss a procedure for initializing these continuous
parameters in Section III.

Next, the swing PDE (3) must be constrained with physi-
cally appropriate boundary conditions. In our case, they are
Neumann boundary conditions

∀t, ∀r ∈ ∂� :
∑

α,β=1,2

nα(r)bαβ (r)∂rβ θ (t; r) = 0, (5)
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FIGURE 2. (a) Assessment of the local propagation speed as
c(r) =

√
b(r)/m(r). (b)-(d) Fronts of the perturbation at incremental time

intervals of 1t = 0.6s, after a fault in Greece (violet star), for
inhomogeneous (red) and average parameters (blue).

corresponding to a vanishing normal derivative of the angle
field on the domain boundary ∂�. These boundary condi-
tions directly follow from the condition that post-perturbation
frequencies in the continuous model correspond to those in
the original swing equations, i.e. ω(t; r) ≡ ∂

∂t θ (t; r) =
ωpf , ∀r ∈ �. This condition translates into

ωpf

∫
�

d(r)dr =
∫
�

p(t; r)dr

+

∑
α,β=1,2

∫
∂�

nα(r)bαβ (r)∂rβ θ (t; r)dr . (6)

This directly corresponds to the frequency shift
∑
diωpf =∑

i pi in the swing Eqs. (2) if the second term in the right-hand
side of Eq. (6) vanishes identically, which is guaranteed by the
Neumann boundary conditions (5).

In the followingwe simplify our PDEmodel, assuming that
the b-tensor is diagonal b12 = b21 = 0, accordingly, we use a
shorter notation, b11→ bx , b22→ by. We will shortly show
that it can be even more simplified to by(r) ≈ bx(r) =: b(r).

III. INITIALIZATION OF PDE PARAMETERS AND
CALIBRATION
Once the general structure of the swing PDE (3) is estab-
lished, we need to initialize the PDE parameters bx,y(r),m(r)
and d(r). This is achieved by applying a smoothing to
the original parameters defined on the discrete grid of
Eq. (2). Obviously, there are many different choices for this
coarse-graining/filtering procedure. Therefore, it is crucial
to develop a validation criteria. We calibrate and validate
via post factum tests, described in the following section,
where we compare the dynamics of a fault in the original,
discrete swing equations with that in the spatially continuous
model. In future work, this initialization procedure will be
complemented by a machine learning scheme performing

FIGURE 3. Comparison of ground-truth and continuous PDE steady state
solutions. (a) One-to-one comparison of local voltage angle: for each bus
in the discrete model the nearest node in the continuous mesh is
selected. The red line indicates a perfect match. The outliers marked in
orange, red and green correspond to the points marked on the map in (b).
The square markers correspond the solution after adjusting the
susceptances as outlined in the text. (c) Continuous solution θ(r) after
adjustment. (d) Discrete solution θdisc .

tailored adjustments to increase the accuracy of the model
even more.

This simple smoothing procedure was proposed in
Ref. [15], [16] focusing on a 1+1 dimensional PDE repre-
sentation of a linear power network, where all parameters in
the 1+1 dimensional PDE were chosen to be spatially con-
stant. This homogeneous smoothing procedure was improved
in [17], where non-uniform parameters of the 1+1 PDE
system were derived by means of a convolution with a fixed
Gaussian kernel.

We introduce a slight generalization of this Gaussian
smoothing process. We apply an Artificial Diffusion (AD) to
spatial distributions of the physical coefficients, m(r), d(r) or
bαβ (r). It starts by assigning discrete physical quantities to the
nearest nodes discretizing the PDE (3), then they diffuse over
the lattice. The longer the diffusion is allowed, the broader
the convolution kernel. The diffusion is stopped when param-
eters satisfy some smoothness criterion. This generalization
is advantageous because it allows the optimal width of the
Gaussian kernel to be self-determined (no additional criteria
are required).

We illustrate the AD process on PanTaGruEl which con-
sists of 3809 buses, 618 generators and 4944 lines. There
are 3221 nodes in the discretization of our continuous model.
Even though this number is not significantly smaller than the
number of buses in the discrete system, the continuum model
can be parametrized efficiently with a much fewer parameters
than what is required in the discrete model as we will show
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FIGURE 4. Frequency response of generators in (a) Bulgaria, (b) Poland, (c) France, and (d) Spain to a 900 MW loss of power in Greece. Data from the
continuous PDE and the ground-truth ODE models are displayed as dotted and solid lines respectively. The map (e) shows the locations of the fault
(marked by the purple star) and of the generators considered in panels (a)-(d) (marked by dots with the color corresponding to the respective frequency
plots).

shortly. Fig. 1 illustrates the AD process on the susceptances,
the damping and inertia coefficients and the power injections.
These numerical results suggest in particular that the resulting
spatial distribution of the diagonal part of the susceptance
tensor is isotropic, i.e. bx(r) ≈ by(r). This, combined with
the assumption that the off-diagonal terms of the b-matrix are
much smaller than the diagonal ones (thus dropped), means
that the entire susceptance tensor may be approximated by a
scalar function, bαβ (r) ≈ δαβb(r), where δαβ is the Kronecker
symbol.

We conclude this section by showing how already this
relatively simple initialization procedure provides a useful
and intuitive insight into the system behavior. Indeed, once
the continuous values of the susceptance tensor, b(r) and
of the inertia vector, m(r), are determined and validated,
we can immediately use them to build a spatial map of
the electro-mechanical wave velocity, c(r) =

√
b(r)/m(r),

shown in Fig. (2). This figure also illustrates how knowing
the velocity, c(r), allows us to reconstruct the dynamical
spread of a localized perturbation. Notice, however that these
illustrations, even though encouraging, also suggest that one
needs to be careful in extending the approach to the grids with
strong degree of heterogeneity. The extension is certainly
possible, however to achieve an accurate representation of
the actual grid dynamics by the PDE model will require
introducing more trainable parameters representing higher
degree of spatial inhomogeneity.

IV. NUMERICAL VALIDATION
In this Section, we juxtapose our PDEmodel, with the param-
eters found through the AD process explained in the pre-
ceding section, against the original swing model considered
as the ground truth. Therefore, our first validation task is to
compare the steady state solution (of the static PF equations)
with the solution of a Poisson problem associated with the
static version of the PDEmodel. We then compare responses,
within our PDE model vs the ground truth model, to a suffi-
ciently large perturbation - a power outage. Finally, we show

that the number of parameters describing the PDE model can
be reduced dramatically without loss in accuracy.

A. STEADY STATE EXPERIMENTS
We start with a comparative analysis of the steady-state solu-
tions of the PDE and of the ground-truth model. To do that,
we find the grid points closest to the location of the buses
within PanTaGruEl and terminate the AD process when the
voltage angles of the two steady-state solutions are as close
to one another as possible, θconti ' θdisci . Comparison of the
two solutions is shown in Fig. 3 (a). They are clearly in a
good agreement overall, even though not without some dis-
crepancies. The outliers were highlighted in different colors
in Fig 3 (b). We conjecture that the discrepancies are largely
due to misrepresentation of parameters in the part of the
grid with strong aspect ratio, e.g. at the Italian peninsula
which is long and narrow. Specifically, in this case the
boundary conditions we set in the continuous model may
be too restrictive, effectively forcing parameters in the part
of the grid with large aspect ratios to become much smaller
than what we observe in the respective part of the discrete
model.

To verify the hypothesis, we simply modify susceptances
in the parts of the grid corresponding to the outliers. Specif-
ically, we increase susceptance uniformly within the Italian
peninsula (as the aspect ratio there is large) and reduce it over
the Iberian peninsula and Transylvania. As seen in Fig. 3, this
simple and admittedly ad-hoc adjustment was sufficient to
improve the agreement (the outlier effect was reduced sig-
nificantly). We anticipate that a more accurate and automatic
tuning (viaML tools which arework in progress) will produce
even better results.

We conclude by mentioning that some of the discrepancies
just discussed can be attributed to transformers present in
the ground truth model, but absent in the PDE model. These
and other strongly localized effects cannot be, properly repre-
sented in the continuousmodel. However, these discrepancies
are expected to weaken at larger (spatial) scales – that is at
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FIGURE 5. Distribution of the grid parameters before and after a Fourier low pass filter with a cut-off frequency of 30% (of the maximum
frequency) applied.

in the coarse-grained picture which is in the focus of our
model reduction analysis. Moreover, we do not expect the
transformers to play a significant role in analysis of transients,
we are now switching our attention to.

B. DYNAMIC EXPERIMENTS
Here we discuss how well the PDE model reproduces the
ground truth dynamics observed in response to an abrupt
removal of a 900 MW power plant in Greece. Fig 4 shows
comparison of the frequency response at four generators
across Europe. The agreement between the reduced and
ground truth model is very good. It is especially accurate far
away from the fault. (We remind the reader that reproduc-
ing fatefully coarser picture, and not the small scale details,
is exactly our goal.) We also report that the propagation time
and the frequency map of the inter-area oscillations are well
reproduced too. Not surprisingly, we also see that higher har-
monics present close to the fault location (and gradually dis-
appearing as wemove away from the fault) are over-estimated
by the PDEmodel.We expect that amore accurate –machine-
learning trained – re-parametrization of the PDE model will
be able to correct the problem, however on the expense of
introducing higher-degree of parameter inhomogeneity in the
PDE model. In the end, this is a matter of a trade-off decision
which a designer of the reduced model should make— this is
a trade off between accuracy of prediction and degree of the
model reduction.

C. MOVING TOWARDS MODEL REDUCTION
As we mentioned earlier in the text, the number of harmonics
in the parameters of the PDE model was set to be slightly less
than the number of nodes in the original grid model. Our next
step is to see if we can reduce the number of harmonics in the
PDE model coefficients even further without any significant
loss of accuracy in the spatio-temporal dynamics coarse-
grained at the resolution of 50 km or larger. In other words
we now study how our PDE model performs once we apply
a low-pass filter to the coefficients.

FIGURE 6. Comparison of the steady state solution before (a) and after
(b) application of the Fourier low-pass filter. The two solutions are in
good general agreement, with some deviations in peripheral regions, e.g.
in the Balkans or Spain. The same color scale as in Fig. 3 is used in panel
(a) and (b). (c) Frequency response of the system to same fault as Fig. 4
(same configuration), frequencies obtained with the filtered model are
displayed with dashed lines.

To investigate this matter, we perform an additional Fourier
filtering to the results of the AD procedure. Specifically,
we choose the cut-off spatial frequency equal to 30% of the
largest spatial frequency set in the bare (unfiltered) version
of the PDE model. The results of this filtering experiments
are shown in Figs. (5,6). We observe that some compression
artifacts, similar to ‘‘ripples’’, are present, but they seem
to show little to no effect on the system dynamics, see in
particular Fig. 6 (c). Here we would like to emphasize (again)
that a much more accurate filtering can be achieved with
a ML approach, however it is encouraging to see that with
a relatively simple tuning of parameters we were able to
achieve reproduction of the principal features with such a
good quality, even though out filtering (parameter fitting) pro-
cedure was certainly not optimal. Let us also notice that the
coarse adjustments, mentioned in Section IV-A, are clearly
visible.
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V. CRITICAL EVALUATIONS, DISCUSSIONS AND FUTURE
WORK
Our main accomplishment in this manuscript is the con-
struction and the validation of the continuous PDE model
of the swing equations. The construction included the
accurate resolution of the boundary conditions and the devel-
opment of an efficient and flexible parameter filtering pro-
cedure based Artificial Diffusion (AD) and Fourier filtering.
The validation proceeded via static and dynamic comparisons
of the continuous PDEmodel and the original discrete model.

We also made a number of interesting observations which
are clearly preliminary. Comparing the computation times
for dynamical simulations of the PDE model on a regular
grid of size comparable to the size of the original discrete
graph we found that the PDE model is faster by at least
a factor of ten. This is consistent with what we stated in
the introduction. We also observed that in many instances a
significant filtering of the dynamical parameters through a
rather large coarse-graining scale (via wide Gaussian kernels
and Fourier filtering) does not impact the accuracy of the
dynamics of voltage frequency waves on sufficiently large
scales (hundreds of kilometers) and sufficiently long times
(seconds).

Finally, this manuscript’s most important message is that
the model reduction presented here is only the starting point
for an upcoming PIML methodology, where the functional
maps for m(r), d(r) and bαβ (r) will be modeled as Neu-
ral Networks. Specifically, future work will focus on using
the approach developed here as a warm start for learn-
ing physical parameters of the PDE model (3). Indeed,
we envision modeling the functional maps for, m(r), d(r)
and bαβ (r) as Neural Networks. Hence, the AD procedure
is still expected to be useful to initialize the future PIML
schemes.

Planning for this work, we are aiming for keeping training
process of the Machine Learning schemes under control in
terms of computation time – consistently with the goal of
making them capable of achieving the goal of evaluating in
parallel multiple perturbation scenarios in the time which is
comparable or faster than dynamic simulations of the ground
truth (swing) model.

APPENDIX
DETAILS ON THE DISCRETIZATION OF THE PDE AND
ITS NUMERICAL INTEGRATION
We use the same spatial increment 1 for x and y axes,
subsequently r = (i1, j1).

bx(r) =
bxi,j−1 + b

x
i,j

2
,

∂xbx =
bxi,j − b

x
i,j−1

1
+ O(13) ,

∂xθ =
θi+1,j − θi−1,j

21
+ O(13) ,

∂2x θ =
θi−1,j − 2θi,j + θi+1,j

12 + O(14) .

Similar expressions are obtained for the y-axis. Then dis-
cretization of the last term in Eq.(3) becomes

∂xbx∂xθ + bx∂2x θ + ∂yby∂yθ + by∂
2
y θ ≈

(
bxi,j−1θi,j−1

+bxi,jθi,j+1 + b
y
i−1,jθi−1,j + b

y
i,jθi+1,j − βθi,j

)/
12, (7)

where β = bxi,j−1 + b
x
i,j + b

x
i−1,j + b

y
i,j. In order to make our

numerical scheme more efficient we vectorize (re-index) the
grid, and the field, θ (t; r) defined over the grid, according to
θi,j→ θ̃k , where k = Ny(i− 1)+ j. It results in the following
re-indexing of the grid-neighbors: i − 1, j → k − 1, i + 1,
j → k + 1, i, j − 1 → k − Ny, i, j + 1 → k + Ny. This
results in reformulation of the principal part of Eq. (7) in
terms of a matrix4 acting on the vector θ̃ . Furthermore, with
the convention that inner nodes, i.e. nodes that aren’t on the
boundary layer, have a zero normal vector, nx = 0 and ny =
0, and introducing η±(x) = {1 if ± x ≥ 0 ; 0 otherwise}, we
rewrite 4, therefore accounting for the Neumann boundary
conditions (5),

4kl = −β̃kδk,l + η+(nx)b̃xk−Nyδk−Ny,l + η−(nx)b̃
x
kδk+Ny,l

+η+(ny)b̃
y
k−1δk−1,l + η+(ny)b̃

y
kδk+1,l , (8)

where β̃k = η−(nx)b̃xk + η+(nx)b̃xk−Ny + η−(ny)b̃
y
k +

η+(ny)b̃
y
k−1 and δ·,· is the Kronecker product. It is important

that the method used for the numerical integration of the
PDE is a finite volume method. This class of methods is
conservative. This means that there is zero flux leakage at
the boundary by construction which, in particular, guaranties
that the post-fault system frequency is indeed at the value it
is expected to be.

Finally, we use the Crank–Nicolson method [24] to inte-
grate PDE (3). At each time step we solve the following
system of linear equations

A
[
θ̃ (t +1t)
ω̃(t +1t)

]
= B

[
θ̃ (t)
ω̃(t)

]
+ C , (9)

where

A =
[

1 −
1t
2 1

−
1t
2 M−14 1+

1t
2 0

]
,

B =

[
1

1t
2 1

1t
2 M−14 1−

1t
2 0

]
,

C =

[
0

1t
2 M

−1
(
p̃(t +1t)+ p̃(t)

)]
,

withM = diag
(
m̃
)
and 0 = diag

(
m̃−1d̃

)
.
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