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ABSTRACT We investigate coherent oscillations in large scale transmission power grids, where large groups
of generators respond in unison to a distant disturbance. Such long wavelength coherent phenomena are
known as inter-area oscillations. Their existence in networks of weakly connected areas is well captured by
singular perturbation theory. However, they are also observed in strongly connected networks without time-
scale separation, where applying singular perturbation theory is not justified. We show that the occurrence
of these oscillations is actually generic. Applying matrix perturbation theory, we show that, because these
modes have the lowest oscillation frequencies of the system, they are only moderately sensitive to increased
network connectivity between well chosen, initially weakly connected areas, and that their general structure
remains the same, regardless of the strength of the inter-area coupling. This is qualitatively understood by
bringing together the standard singular perturbation theory and Courant’s nodal domain theorem.

INDEX TERMS Slow coherency, transmission power systems, matrix perturbation theory, inter-area
oscillations.

I. INTRODUCTION
Synchronous generators in interconnected AC electric power
systems exhibit electro-mechanical oscillations. Of partic-
ular interest are large-scale cooperative phenomena termed
inter-area oscillations which are coherent, sub-Hz frequency
oscillations between geographically separated large groups
of generators [1]. Such oscillations may become unstable
and lead to large scale blackouts [2], therefore safe sys-
tem operation requires that they are appropriately damped,
which becomes harder as the energy transition unfolds. As a
matter of fact, power system stabilizers installed on con-
ventional synchronous generators have so far been the main
source of damping against inter-area oscillations [1] and
substituting new renewable sources of energy for conven-
tional synchronous machines reduces the availability of these
resources. There is a vast literature on damping of inter-area
oscillations in power systems with large penetrations of new
renewable generation, see e.g. [3].

To achieve optimal damping of inter-area oscillations it is
important to first identify the geographical areas that carry
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them, i.e., where synchronous generators display the same
frequency response following a fault or other excitations. This
identification commonly proceeds through highlighting weak
links [4], spectral analysis [5], and data-based approaches
identifying generators with similar frequency responses,
either in simulations of the linearized dynamics [6] or using
wide area measurement data [7]. Once coherent areas are
identified, inter-area oscillations are studied using aggregated
models constructed from singular perturbation theory [5], [8],
[9]. These methods presuppose the existence of at least one
small parameter µmeasuring the ratio between the inter-area
and the intra-area connection strength or the associated time
scales. When µ is not small, the theory loses its validity,
yet inter-area oscillations are observed even in networks with
large µ. This is illustrated in Fig. 1 which shows coherent,
low-frequency inter-area oscillations obtained numerically in
the PanTaGruEl model of the synchronous grid of continen-
tal Europe [10], [11]. It is seen that the Iberian Peninsula
responds coherently to a noisy power injection in Greece,
and reciprocally, even though µ is close to one hundred.
All 981 nodes in the Iberian Peninsula respond coherently –
with the same frequency and phase – to a single-node, noisy
perturbation in the Balkans, as do all 368 Balkan nodes to
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FIGURE 1. Top panel: linear combination of the slowest two modes of the
Laplacian of the PanTaGruEl model [10], [11]. The nodal mode amplitudes
are color-coded with maximal negative values in dark violet and maximal
positive values in yellow. The dashed lines indicate the boundary of the
Balkan and Iberian Peninsula areas that are connected via this inter-area
mode. Bottom panels: Coherent responses of the 981 nodes in the Iberian
Peninsula and the 368 nodes in the Balkans to a noisy power generation
disturbance in the opposite area. The applied disturbance is an
Ornstein-Uhlenbeck noise with a correlation time τ = 25 s and the
disturbance locations are indicated by crosses in the top panel. The mode
represented in the top panel is responsible for these coherent inter-area
oscillations.

a similar perturbation in the Iberian Peninsula. The system
of Fig. 1 operates well outside the regime of validity of the
standard singular perturbation theory [5], [8], [9].

Another viewpoint predicts the existence of inter-area
oscillations, regardless of the network connectivity. The
dynamics of voltage angles in power systems is commonly
modeled by the swing equations, which are a set of cou-
pled ordinary differential equations [12]. The coupling is
determined by a graph Laplacian matrix, whose eigenvectors
naturally define coherent areas. As a matter of fact, Courant’s
nodal domain theorem states that the k th eigenfunction of an
elliptic operator acting on a bounded domain � defines no
more than k nodal subdomains of�, where the eigenfunction
does not change sign [13]. To make a long story short, the
eigenmodes with lowest eigenvalues of an elliptic operator
such as, e.g., a Laplacian operator, define few large areas –
nodal subdomains – on which the sign of their components
does not change. When a single or very few eigenmodes
are excited, the resulting oscillations appear coherent inside

the corresponding nodal domains. The theorem has recently
been extended from continuous elliptic operators to graphs
represented by, e.g., a discrete Laplacian matrix [14]. In the
case of power systems, that Laplacian matrix represents a
quasi-planar graph and nodal domains are two-dimensional
areas. Courant’s nodal domain theorem states that these areas
are larger for slower eigenvectors of the graph Laplacian –
those with lower frequencies. Consequently, these modes
do not resolve inhomogeneities in the inertia and damp-
ing parameters, therefore the structure of the system’s true
inter-area modes is directly determined by the slowest eigen-
vectors of the Laplacian. Low frequency coherent oscillations
over large areas thus naturally emerge from a modal decom-
position of the graph Laplacian.

Our purpose in this manuscript is to connect the standard
singular perturbation theory approach to inter-area oscilla-
tions to this modal point of view, valid regardless of inter-
area coupling. We will use matrix perturbation theory [15]
to describe low frequency oscillations, extending our earlier
work [16]. We will show how an appropriate choice of areas
gives an excellent approximation for the modes responsible
for inter-area oscillations, which is only very weakly sensitive
to the inter-area coupling. This fills an important gap in the
theory of inter-area oscillations as it explains their persistence
in strongly connected power networks.

The manuscript is organized as follows. Section II intro-
duces the network model and motivates the focus on the net-
work Laplacian to describe the inter-area oscillations. Matrix
perturbation theory is discussed in Section III. After a sum-
mary of the general results of perturbation theory we define
our model for describing inter-area oscillations. In the rest of
the section the validity of perturbation theory is discussed in
terms of series convergence and the change of eigenvectors
due to avoided crossings. Applications of the theory to a
synthetic two-area network, the IEEE RTS 96 Test System,
and the PanTaGruEl model of the synchronous very high
voltage grid of continental Europe are shown in Section IV.
Results are discussed in Section V.

II. DYNAMICAL MODEL
A. SWING EQUATIONS
We use the structure-preserving model of Ref. [17] and con-
sider the voltage angle dynamics of a high voltage power grid
with N nodes. The dynamics of the voltage angle θi on gener-
ator nodes is determined by the swing equations [12]. In the
case of high voltage transmission grids, a standard approx-
imation is the lossless line approximation, which neglects
Ohmic losses. The swing equations then read

miθ̈i + diθ̇i = Pi −
∑
j

Bij sin(θi − θj) , (1)

with the inertiami and damping di parameters of the generator
and their active power Pi > 0. Loads are assumed frequency-
dependent, and the power they draw is given by a constant
Pi < 0 and a frequency-dependent term, diθ̇i. Load voltage
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angles then obey [17]

diθ̇i = Pi −
∑
j

Bij sin(θi − θj) , (2)

where the frequency dependence of the loads is determined
by the parameter [17]

di =
α

ω0
|P0i |, (3)

with P0i the power consumption at the nominal frequency ω0.
The parameter α has been evaluated experimentally,
α ∈ [0.8, 2] [18], [19]. In Eqs. (1) and (2), Bij denotes
the product of the voltage magnitudes at nodes i and j with
the line susceptance. In the lossless line approximation, line
conductances are neglected.

We investigate the generation of inter-area oscillations
through small signal stability analysis. Accordingly, we lin-
earize Eqs. (1) and (2) about the operational synchronous
state with θi = θ

(0)
i + δθi and Pi = P(0)i + δPi,

Mδθ̈ + Dδθ̇ = δP − Lδθ , (4)

where we grouped the voltage angle deviations into a vec-
tor δθ , and introduced the diagonal inertia and damping
matrices, M = diag(mi) (with mi = 0 on load nodes),
D = diag(di) as well as the network Laplacian matrix L,

Lij =

{
−Bij cos(θ

(0)
i − θ

(0)
j ) for i 6= j∑

k Bik cos(θ
(0)
i − θ

(0)
j ) for i = j.

(5)

Eq. (4) is often written as a linear system of ordinary differ-
ential equations with stability matrix A,

ẋ = Ax+5, (6)

where angles, frequencies and power injections are grouped
into x and5 as

x =

δθgδθ l
δθ̇g

 , 5 =

 0
δP l
δPg

 , (7)

which defines the A-matrix

A =

 0 0 I
−D−1ll Llg −D−1ll Lll 0

−M−1gg Lgg −M−1gg Lgl −M−1gg Dgg

 . (8)

Above, 0 denotes either the matrix or the vector with all
components equal to zero, and I is the identity matrix,
subindices g and l denote generators and loads respectively.
Inter-area oscillations correspond to the slowest eigenmodes
of A. From Eqs. (4) and (6), they are determined by the
Laplacian, the inertia, and the damping matrices.

B. EIGENVECTORS AND EIGENVALUES
Eigenvectors and -values of A are easily obtained in the case
of homogeneous damping di = d and inertia mi = m. For
each mode, the oscillation frequency reads

ωα =
1
2

√
4
m
λα − γ 2 , (9)

FIGURE 2. Top panel: oscillation frequencies f of the Kron reduced
version of PanTaGruEl vs. the inhomogeneity parameter χ defined in
Eq. (10). Bottom panel: overlap |ψ>a (χ)ψa(0)| of the five lowest right
eigenvectors ψa of A vs. the inhomogeneity parameter χ defined
in Eq. (10). Colors in both panels refer to the same eigenvectors.

where λα is an eigenvalue of L and γ = d/m [20].
Furthermore, both the angle and frequency components of
each eigenmode ofA are given by those of an eigenmode ofL.
Thus, the oscillation frequency and the mode structure are
related to the eigenvalues and -vectors of L, when damping
and inertia are homogeneous.

The homogeneity assumption is not present in real electric
power grids, not even after a Kron reduction of the iner-
tialess load nodes. A question of central interest is there-
fore how much do inertia and damping inhomogeneities
affect the structure of the eigenmodes of A. Our matrix
perturbation approach to be presented below shows that long
wavelength, slow modes are only weakly affected by such
inhomogeneities. We illustrate this numerically on
PanTaGruEl in Fig. 2. We write damping and inertia as

mi = m̄+ χδmi, di = d̄ + χδdi, (10)

where the bar indicates the average over the nodes in the
network, δxi = xi − x̄ with the real value xi = mi or di in
the system, and χ ∈ [0, 1] is a continuous parameter tuning
the system from the homogeneous configuration (χ = 0)
to its real configuration (χ = 1). The top panel of Fig. 2
shows that the oscillation frequencies of the slowest modes of
PanTaGruEl are only weakly sensitive to inertia and damping
inhomogeneities. The overlap |ψ>α (χ )ψα(0)| of the lowest
five right eigenvectors at χ = 0 and χ ∈ [0, 1] is next shown
in the bottom panel of Fig. 2. The data illustrate nicely that
inhomogeneities have only a minor effect on the oscillation
frequency and the spatial structure of the lowest-lying eigen-
vectors – those of interest in this manuscript.

This can be explained by the long-wavelength nature
of these modes, which effectively averages damping and
inertia over areas that are so large that the modes do not
resolve their inhomogeneities. Ref. [21] found that the change
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of ωα with χ is to leading order proportional to
∑

i u
2
αiδγi,

where uα is the eigenvector of the Laplacian corresponding
to λα and δγi = (di/mi− γ ). For the lowest modes which are
approximately constant over large areas, u2αi can be factored
out and

∑
i∈area δγi ≈ 0, assuming that the distribution of

δγi is independent of the geographical location. A similar
argument holds for the eigenvectors. The corrections to the
right eigenvectorψα of the stability matrix are given by a sum
over all the other eigenvectors ψβ , β 6= α, each weighted
by a factor proportional to

∑
i uβiuαiδγi. Assuming again

that the lowest modes are mostly constant over large areas,
the contributions from the highly fluctuating higher modes
average out.

Higher up in the spectrum, modes have a shorter wave-
length and hence better geographical resolution, and these
statements obviously break down. This is of no consequence
for the validity of our approach to slow, large-wavelength
modes.

III. MATRIX PERTURBATION THEORY
Consider a matrix, which we are able to diagonalize exactly.
Suppose we perturb that matrix as L0 → L(ε) = L0 + εL1,
with a perturbation matrix L1 that does not commute with L0.
Matrix perturbation theory [22] is a method for describing
the change of eigenvalues and -vectors of L(ε) as a series
expansion in the dimensionless parameter ε. It is a standard
method of theoretical physics [23] that has recently been
exported to electric power and other network systems. It has
been used to investigate the change in oscillation frequencies
under small changes of certain slow modes in [24]. It has
been used in Ref. [25] to construct a control scheme for the
output of generators and enhance power grid stability. The
optimal placement of inertia and damping has further been
investigated using perturbation theory in Ref. [21]. In a more
general context, Ref. [26] uses matrix perturbation theory to
investigate a network of networks.

Taken as a whole, perturbation theory is valid as long as
ε � 1. However, we argue below that, when applied to a
restricted range of low-frequency modes – such as few of the
slowest modes represented in color in Fig. 2 – the validity
range generally becomes significantly larger and may even
include the ε → 1 limit. Before we apply it to our problem,
we first give a brief general description of non-degenerate and
degenerate perturbation theory in the next paragraph.

A. GENERAL FRAMEWORK
1) NON-DEGENERATE PERTURBATION THEORY
Take a real symmetric matrix L0 with known eigenvalues λ

(0)
α

and eigenvectors u(0)α . This matrix is subjected to a pertur-
bation εL1, where L1 is a symmetric matrix which does not
commute with L0 and ε is a dimensionless scalar parameter.
Perturbation theory expands the eigenvalues λα and -vectors
uα of L(ε) = L0 + εL1 in a power series in ε,

λα ≈ λ
(0)
α + ελ

(1)
α + ε

2λ(2)α +O(ε3), (11a)

uα ≈ u(0)α + εu
(1)
α + ε

2u(2)α +O(ε3). (11b)

We call λ(n)α (u(n)α ) the nth order correction to the eigenvalue
(-vector). The first and second order corrections of the eigen-
values read

λ(1)α = u(0)>α L1u(0)α , λ(2)α =
∑
β 6=α

|u(0)>β L1u
(0)
α |

2

λ
(0)
α − λ

(0)
β

, (12)

while the first order correction of the eigenvectors reads

u(1)α =
∑
β 6=α

u(0)>β L1u
(0)
α

λ
(0)
α − λ

(0)
β

u(0)β . (13)

Higher order corrections can be obtained recursively from the
eigenvalue problem

(L0 + εL1)uα = λαuα (14)

using the series expansion (11). For more details, the reader
is referred to Refs. [15], [22], [23].

2) DEGENERATE PERTURBATION THEORY
Eqs. (12) and (13) are only valid as long as the αth unper-
turbed eigenvalue λ(0)α has multiplicity one. We call this the
nondegenerate case. Special care needs to be taken when con-
sidering corrections to eigenvalues with multiplicity larger
than one. In this case the corresponding eigenvectors are not
unique and span the degenerate subspace D. This degenerate
subspace has to be considered separately from the rest of
the vector space. The eigenbasis spanning D is a priori not
uniquely defined, since any normalized linear combination of
the degenerate eigenvectors is also an eigenvector. However
there is one and only one linear combination for which the
change in eigenvectors is smooth as the perturbation is turned
on. Degenerate perturbation theory dictates to choose that
linear combination as a starting point. It diagonalizes L1
within D and is defined by the conditions

u(0)>α L1u
(0)
β = λ

(1)
α δαβ and u(0)>α u(0)β = δαβ , ∀αβ ∈ D.

(15)

The first condition in Eq. (15) readily gives the first-order
correction to the degenerate set of eigenvalues. Higher-order
corrections to eigenvalues and eigenvectors ofD are given by
Eqs. (12) and (13), with the substitution β 6= α→ β /∈ D.

B. SPECIFIC SET-UP
We consider a network partitioned into p, initially discon-
nected areas labeled a, each containing na nodes and repre-
sented by a na × na Laplacian matrix La. The unperturbed
Laplacian L0 = diag[La] is a block-diagonal matrix. Because
each area is connected, to each block a corresponds a single
eigenvalue λ(0)a = 0, associated to an eigenvector being
constant in area a and zero everywhere else

ũa =
1
√
na

(0, . . . , 0,1>na , 0, . . . , 0)
> , (16)

where 1 is the vector of ones, and the tilde means that these
eigenvectors do not satisfy (15) yet. From now on, we refer
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to these eigenvectors as zero-modes. They correspond to each
area oscillating coherently on its own, and we are interested
in finding out how they change when the inter-area coupling
is turned on. If they do not change significantly, the area will
engage in coherent oscillations, and we will see that this is the
case for well chosen areas. We therefore focus on the set D
spanned by the zero-modes from here on.

The perturbation εL1 contains the lines that connect the dif-
ferent areas and ε tunes the network from having unconnected
areas at ε = 0 to recovering the real, fully connected network
at ε = 1. To obtain the linear combination of eigenvectors
that satisfy (15) we project L1 onto D and linearize it. The
projected matrix Lproj is given by

(
Lproj

)
ab =

{
−Bab/

√
nanb for a 6= b

(
∑

c
Bac)/na for a = b

, (17)

where Bab =
∑

i∈a;j∈b Bij is the sum of all connections
between area a and b. Lproj has a zero eigenvalue with
eigenvector

v1 =
(√

n1/N ,
√
n2/N , . . . ,

√
np/N

)>
. (18)

The corresponding linear combination then gives
∑

a v0aũa =
1N /
√
N , i.e., the global zero-mode of the full network. The

p − 1 other eigenvectors of Lproj define p − 1 other linear
combinations of zero-modes constituting the unperturbed
basis in which the perturbation expansions are constructed.
We call these linear combinations ‘‘hybridized zero-modes’’.
Our theory to be presented below focuses on them and on
how they evolve as the inter-area connections increase.

The hybridized zero-modes acquire nonzero first-order
eigenvalues which are linear in ε, with a slope determined
by (15). Second-order corrections to their eigenvalues emerge
due to the interaction with non-zero-modes triggered by εL1.
These corrections read

λ(2)α = −
∑
β /∈D

|u(0)>β L1u
(0)
α |

2

λ
(0)
β

. (19)

Because λ
(0)
α = 0 for the hybridized zero-modes, the

second-order corrections are in particular negative, reflecting
the eigenvalue repulsion [27] between the hybridized and the
non-zero-modes. Simultaneously, Gershgorin’s circle theo-
rem guarantees that eigenvalues of L0 + εL1 are nonneg-
ative [22]. These two effects result in the behavior of the
hybridized eigenvalues shown in Fig. 3. The eigenvalues of
the hybridized modes are shown in color. We see that after
a short linear rise captured by first-order perturbation theory,
they all quickly bend downward to reach what looks like a
horizontal asymptotic. Furthermore, only the upper one (dark
blue curve) gets close to the non-zero modes (gray curves)
as ε increases. In the following paragraphs we analyze this
behavior in more detail and connect it to the evolution of the
structure of the corresponding modes.

C. EIGENVECTOR MIXING AND AVOIDED CROSSINGS
Our conjecture is that inter-area oscillations directly originate
from the set of zero-modes just described, corresponding to
an appropriately chosen network partition. One key point is to
show that, at least for few of the lowest-lying hybridized zero-
modes diagonalizing the projection of L1 onto the degener-
ate zero-subspace D, the linear combination is only weakly
sensitive to the connection parameter ε ∈ [0, 1], i.e., well
beyond the expected validity range of both perturbation the-
ory and the standard theory of inter-area oscillations. To qual-
itatively understand why that is so, we first recall that, unless
some underlying symmetry is present, the eigenvalues of
a parameter-dependent matrix such as L(ε) generically do
not cross as ε is varied. This resistance of eigenvalues to
crossings is illustrated in Fig. 3 which shows that eigenvalues
of L(ε) for a seven-area partition of the PanTaGruEl model
exhibit avoided crossings [27] – they can get very close to one
another but generically do not cross. To further demonstrate
this, zoom-ins on three characteristic avoided crossings are
shown in the top right panels of Fig. 3. Second, we recall
von Neumann and Wigner’s argument that an eigenvector of
a parameter-dependent matrix remains essentially the same
as this parameter is varied, as long as its eigenvalue stays
away from avoided crossings [28]. We conclude then that,
if an eigenvalue L(ε) does not go through an avoided crossing
as ε increases from 0 to 1, the structure of the corresponding
eigenvector does not change much

This argument is corroborated by the data in Fig. 3. The
change in eigenvector structure can be measured by the over-
lap ηα(ε) = |u>α (0) · uα(ε)| of an eigenvector at ε = 0 and at
finite ε. Fig. 3 clearly shows that the lowest two hybridized
modes (green and red curves) do not change their structure.
The effect of an avoided crossing on eigenmode structure is
clearly illustrated in Fig. 3. In the top panel, one sees that
the seventh hybridized (blue curve) and first non-hybridized
eigenmodes get close to each other at around ε ' 0.18
(indicated by the red circle), but do not cross. Simultaneously,
a drop in η for the seventh hybridized eigenmode is observed
in the bottom panel at the same value of ε. This reflects a
scrambling of the eigenmode due to the avoided crossing.
The same behavior is observed for the fourth (violet) and
fifth (beige) hybridized modes, coincidentally at about the
same value of ε.

The occurrence of avoided crossings as ε increases signals
the onset of eigenvector mixing, beyond which the eigenvec-
tors of L(0) are no longer representative of the eigenvectors
of L(ε). Before we discuss such occurrences, we first derive
a general criterion for the breakdown of perturbation theory
for eigenvalues.

D. PERTURBATION SERIES CONVERGENCE CRITERIA
According to d’Alembert’s ratio criterion the convergence
radius r of a series f (x) =

∑
∞

n=0 cnx
n is given by r =

limn→∞|
cn
cn+1
|. For the perturbation expansion of Eqs. (11)

to converge up to ε → 1, the corrections need to be smaller
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FIGURE 3. Top panel: Eigenvalues of the Laplacian of the PanTaGruEl
model initially partitioned into seven areas as a function of the inter-area
coupling parameter. The global zero-mode and the six hybridized
zero-modes are shown in color and several of the lowest non-degenerate
modes in gray. Circles mark three typical avoided crossings. The three
right panels make it clear that levels avoid crossing each other. Bottom
panel: evolution of the scalar product ηα(ε) = |u>α (0) · uα(ε)| of the
hybridized zero-modes at ε = 0 and at finite ε. The avoided crossing at
around ε = 0.2 between the seventh (blue) mode and the lowest
non-degenerate mode (gray) leads to an abrupt drop in η for the blue
mode. Almost simultaneously, there is an avoided crossing between the
fourth (violet) and fifth (beige) eigenvalues, giving a noticeable drop in η
for both modes. The first two hybridized modes (green and red) barely
change their structure all the way up to ε = 1.

with each order. For the eigenvalue expansion this translates
into ∣∣∣∣∣λ(k+1)α

λ
(k)
α

∣∣∣∣∣ < 1. (20)

We approximate the expression on the left-hand side, assum-
ing that u(0)>α L1u

(0)
β '

1
N−p

∑
γ uαL1uγ is close to its aver-

age value for α ∈ D and for all β /∈ D. Under this assumption,
Eq. (12) reads

λ(2)α ≈ −S̄α
∑
β /∈D

1

λ
(0)
β

, (21)

with

S̄α =
1

N − p

∑
β /∈D

|u(0)>β L1u(0)α |
2. (22)

We can get rid of the sum over β using∑
α/∈D

u(0)α u(0)>α = I−
∑
α∈D

u(0)α u(0)>α , (23)

from which we obtain, with a little bit of algebra,

S̄α =
1

N − p

(
u(0)>α L21u

(0)
α − (λ(1)α )2

)
. (24)

This expression is helpful, because it no longer contains a
sum over β /∈ D and expresses λ(2)α only as a function of λ(1)α
and the expectation value of the squared interaction Laplacian
over the eigenvector u(0)α . Note that the latter, despite fulfill-
ing (15) are not eigenvectors of L1, so that u>α L

2
1uα 6= (λ(1)α )2.

The second order correction finally becomes

λ(2)α ≈ −S̄α
∑
β /∈D

1

λ
(0)
β

= −S̄α

p∑
a=1

1
na

Kf(a)1 , (25)

where we introduced the generalized Kirchhoff indices of the
disconnected subgraphs [29],

Kf(a)m = na
∑

α∈area a
α/∈D

(
λ(0)α

)−m
. (26)

From this analysis we find the following criterion for con-
vergence ∣∣∣∣∣λ(2)αλ(1)α

∣∣∣∣∣ =
∣∣∣∣∣ S̄αλ(1)α

p∑
a=1

1
na

Kf(a)1

∣∣∣∣∣ < 1. (27)

The criterion combines an overall network characteris-
tic with a mode-specific characteristic. To be satisfied,
Eq. (27) requires that either (i)

∑p
a=1

1
na
Kf(a)1 � 1 or

(ii) S̄α/λ
(1)
α � 1, or both. The first condition, that

the weighted sum of subgraph Kirchhoff indices is small,
requires that intraconnections are strong within subgraphs.
This is so, because the Kirchhoff index is the average resis-
tance distance in the graph. This first condition is consistent
with recent works which find that the coherence of net-
works increases with the first non-zero eigenvalue of the net-
work Laplacian, even for higher-order generator models [30].
The second condition requires that the inter-area connection
strength felt by the αth hybridizedmode is small. In this sense,
Eq. (27) is qualitatively similar to the conditions for validity
of singular perturbation theory and time-scale separation [5],
[8], [9], [31], [32]. There is however a significant difference in
that the condition of Eq. (27) applies to each hybridized zero-
mode individually. In particular, perturbation theory may
capture certain modes efficiently, while failing for others.
This difference is of key importance, as we will see that for
modes at the bottom edge of the spectrum – corresponding
to the low frequency inter-area oscillations – perturbation
theory remains valid at higher ε, whereas the theory breaks
down earlier for other modes higher up in the spectrum. The
standard criteria for validity of singular perturbation theory
and time-scale separation are global, therefore they implicitly
request that the theory is applicable to all states. They are
therefore too restrictive.

The criterion of Eq. (27) is helpful; however, it still needs
to be computed numerically. It shows that the breakdown
of perturbative approaches is mode-specific. Similar crite-
ria can be found for higher orders of perturbation theory.
Even though we cannot evaluate d’Alembert’s criterion for
n→∞ we find that the first few orders already give a good
approximation of the convergence.
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E. AVOIDED CROSSINGS
The criteria for validity of perturbation theory derived in the
previous section are mode-dependent. They raise the impor-
tant issue of determining which modes are best captured
by perturbation theory for larger ε. To that end we recall
what is sometimes referred to as the von Neumann-Wigner
theorem [28], which states in our case that, as ε varies, pairs
of eigenvalues ofL(ε) = L0+εL1may undergo close encoun-
ters, however, they will generally avoid crossing each other’s
path. Von Neumann and Wigner further argued that it is at
these avoided crossings that eigenvectors get mixed and that
their structure changes fundamentally. Conversely, as long as
an eigenmode is not undergoing any avoided crossing, then
its structure does not change much. Therefore, predicting the
first occurrence of an avoided crossing among the lowest
eigenvectors is key to understand how far ε can grow, without
altering the structure of an eigenmode. Stated otherwise,
if the first few hybridized zero-modes do not undergo any
avoided crossing until ε = 1, then the initial area partition at
ε = 0 predicts the inter-area mode structure at ε = 1 with
great precision. We analyze the situation for the case of two
and of more than two areas.

1) CASE OF TWO AREAS
With two areas, there is one global zero-mode and one
hybridized zero-mode. We want to derive a condition for the
eigenvalue of the latter not to undergo an avoided crossing
with the third eigenvalue, corresponding to the lowest non-
zero-mode. To that end we first show that the first order

correction λ
(1)
2 to the hybridized zero-mode gives an upper

bound to its true eigenvalue. Consider the first non-zero
eigenvalue λ2(ε) at position ε̃ and ε̃+ δε̃ where 0 < δε̃ � 1.
The slope at both points is given by the first order perturbation
theory

∂λ2

∂ε

∣∣∣∣
ε̃

= u2(ε̃)>L1u2(ε̃), (28a)

∂λ2

∂ε

∣∣∣∣
ε̃+δε̃

= u2(ε̃ + δε̃)>L1u2(ε̃ + δε̃). (28b)

The eigenvector at ε̃ + δε̃ can be expressed in terms of the
eigenvectors at ε̃ using (13)

u2(ε̃ + δε̃) = u2(ε̃)+ δε̃
∑
α>2

uα(ε̃)L1u2(ε̃)
λ2(ε̃)− λα(ε̃)

uα +O(δε̃2)

(29)

Eq. (28b) then becomes

∂λ2

∂ε
|ε̃+δε̃ = u2(ε̃)>L1u2(ε̃)

+2δε̃
∑
α>2

|uα(ε̃)L1u2(ε̃)|2

λ2(ε̃)− λα(ε̃)
+O(δε̃2). (30)

The second term on the right-hand side of Eq. (30) is always
negative, because the denominator of each term is negative

while the numerator is positive. We therefore conclude

0 <
∂λ2

∂ε

∣∣∣∣
ε̃+δε̃

≤
∂λ2

∂ε

∣∣∣∣
ε̃

, (31)

where the lower bound is due to L1 being Laplacian. Thus,
λ2(ε) is concave and it is upper bounded by its first order
perturbation theory correction at ε = 0. Note that Eq. (31)
remains valid, regardless of the number of areas.

Second, we derive a lower limit for the third smallest
eigenvalue. Weyl’s theorem [22] for the eigenvalues of the
sum of two symmetric matrices states that

λα(A+ B) ≥ λα(A)+ λ1(B). (32)

With A = L0 and B = εL1, this gives λ3(ε) ≥ λ3(ε = 0).
Thus, a sufficient condition that there is no avoided crossing
between λ2 and λ3 up to ε = 1 is

u2(ε = 0)>L1u2(ε = 0) < λ3(L1). (33)

This condition underestimates the validity of perturbation
theory.

2) CASE OF MORE THAN TWO AREAS
When there are more than two areas, hybridized zero-modes
may interact with one another via avoided crossings of their
respective eigenvalues. The occurrence of these crossings
is harder to predict than those between a single hybridized
mode and the first non-zero mode treated in the previous
paragraph. Here we focus on the occurrence of an avoided
crossing between the first and second hybridized zero-mode.
Eq. (31) remains valid and λ2 is a concave and monotonously
increasing function of ε. This behavior is captured only at
small enough values of ε by a truncated perturbative series.
This is not too big a restriction, since one expects avoided
crossings to occur at low values of ε, because it is there that
the largest changes to the topology of the network occur –
going from unconnected to connected. Here we restrict our
discussions to series truncated at (and including) second order
in ε and construct conditions under which there is no avoided
crossing between λ2 and λ3 before εmax = −λ

(1)
2 /2λ

(2)
2 ,

where the truncated series reaches its maximum.
There are then two separate conditions under which there is

no avoided crossing between λ2 and λ3. The first one is when
λ
(2)
2 < λ

(2)
3 , because then second order corrections increase

the already increasing distance between λ2 and λ3 in first
order perturbation theory. The second one is when the sec-
ond order corrections are not sufficient to induce a crossing
between the series for λ2 and λ3 truncated at second order
before εmax . These two conditions read

λ
(1)
2 − λ

(1)
3

λ
(2)
3 − λ

(2)
2

< 0 , and
λ
(1)
2 − λ

(1)
3

λ
(2)
3 − λ

(2)
2

> a εmax. (34)

While the argument above leads to a = 1, we found numeri-
cally that a value of a = 1.5 gives better predictions.
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IV. NUMERICAL VALIDATION
We validate the perturbation theory presented above
by numerical investigations on three different networks:
(i) a synthetic two area network, (ii) the IEEE RTS 96 test
system, and (iii) the PanTaGruEl model of the synchronous
grid of continental Europe.

A. SYNTHETIC TWO AREA NETWORK
We generate two Erdős-Rényi graphs, each with 50 nodes and
a connection probability of p = 0.1, resulting in each node
being connected to a bit less than 5 other nodes on average.
All lines in these graphs have the same capacity, Bij ≡ 1, and
we next connect them via (i) 5 and (ii) 25 lines, each with the
same capacity Bij ≡ ε ∈ [0, 1]. The networks are shown in
Fig. 4. The additional connections change the number of lines
from 228 to 233 in the first case and to 253 in the second case.
In both instances, two areas are still clearly defined, yet in the
second case, we will see that the occurrence of an avoided
crossing as ε increases totally mixes the structure of the single
hybridized zero mode in this two-area set-up.

In the first case, we introduce five random connections
between the two areas. We find that the left-hand side in
Eq. (27) is significantly smaller than one, so that perturbation
theory should be valid and the slowest inter-area mode should
reflect the structure of the network. This analysis is confirmed
by calculating the actual perturbational corrections up to third
order (not discussed above, for details, see Ref. [22]) and
noticing that with each order the approximation converges
to larger ε. We furthermore check that Eq. (33) is satisfied,
therefore we expect that the first eigenmode is well captured.
This is the case with η(ε = 1) = 0.99 indicating that the
eigenvector barely changes with increasing ε. The top right
panel in Fig. 4 shows that in this case, λ2(ε) undergoes no
avoided crossing.

In the second case, twenty-five random connections are
introduced between the two areas, so that every other node has
a connection to the other area on average. The bottom right
panel in Fig. 4 shows that, again in this case, perturbation
theory approximates the eigenvalue well even for ε → 1.
However, this time we find that Eq. (33) is not met. We there-
fore expect the lowest eigenmode to undergo an avoided
crossing, and this is confirmed in the bottom right panel of
Fig. 4, where an avoided crossing is visible at ε ≈ 0.7.

B. IEEE RTS 96 TEST SYSTEM
The IEEE RTS 96 test system consists of 73 nodes divided
into three well-defined areas as shown in Fig. 5 [33]. We con-
sider two different initial aggregations, first along the obvious
area boundaries, second along three lines cutting across each
area.

In the first case, we find that the slow eigenvalues are well
captured by perturbation theory, and that moreover there is
no avoided crossing affecting the two lowest non-zero eigen-
values corresponding to the hybridized zero-modes. Accord-
ingly, the corresponding modes retain the structure of the
initial aggregation.

FIGURE 4. Left column: Synthetic two area network with five (top) and
twenty-five (bottom) inter-area connection lines. In both cases, the
lowest eigenmode at ε = 1 is color-coded on the network nodes. Right
column: evolution of the spectrum as the connecting line capacities
increase. The eigenvalues of L(ε) are shown as solid lines, the first order
perturbation corrections as black dashed lines, and the corrections up to
third order as dotted-dashed lines. λ3(ε = 0) is shown as a dashed blue
line. For five connections (top), there is no avoided crossing in the
spectrum, accordingly, the structure of the lowest eigenmode reflects the
two network areas. This can be seen by the eigenmode being almost
constant on each area (positive on the left, light-green area and negative
on the right, dark-purple area). For twenty-five connections (bottom) the
situation is clearly different, which is due to the presence of an avoided
crossing between the first and second non-zero modes around ε ' 0.7
(observable by the bending of the second and third eigenvalues in the
bottom-right panel). This dramatically changes the structure of the
eigenmode which no longer resolves the two areas. The avoided crossing
is predicted by first-order perturbation theory (crossing of the dashed
lines).

FIGURE 5. a) IEEE RTS 96 test system, with the obvious three-area
aggregation (red, blue and green polygons), and a counterintuitive
aggregation (red, blue and green nodes). b) ε-dependence of the three
lowest eigenvalues for the correct aggregation. There is no avoided
crossing and the eigenmode preserve their structure all the way to ε = 1.
c) Color-coded structure of the lowest mode of the Laplacian for ε = 1. Its
structure is already well predicted by our first-order perturbation theory
with the correct aggregation, giving an overlap η2(ε) = |u>2 (ε = 0) ·
u2(ε = 1)| ' 0.96. d) ε-dependence of the three lowest eigenvalues for
the counterintuitive aggregation. There is an avoided crossing between
the second and the third eigenvalues and their structure is significantly
changed well before ε = 1. The second order corrections are shown as
dashed lines to visualize Eq. (34).

In the second case, the chosen initial aggregation results
in large perturbative corrections and eventually to the lowest
eigenvalues undergoing an avoided crossing, as predicted by
Eq. (34). The avoided crossing is shown in the bottom right
panel of Fig. 5. This shows that an incorrect initial aggre-
gation leads to avoided crossings, which are the mechanism
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for mode mixing. Numerical investigations show that indeed
the structure of both eigenvectors arising from the degenerate
subspace changes almost completely (η(ε = 1) < 0.06).

C. PanTaGruEl
The PanTaGruEl model of the synchronous grid of continen-
tal Europe consists of 3809 nodes connected by 4944 power
lines [11], [21]. With the dispatch used for this paper, there
are 468 generators. To illustrate the validity of the theory
presented above, we used the standard aggregation algorithm
of Ref. [31]. We found that, to capture the inter-area oscilla-
tions, an aggregation into seven areas works well, and that the
number and structure of these modes does not change as the
number of areas increases.

PanTaGruEl is a strongly connected network with no obvi-
ous area separation (except perhaps the Iberian Peninsula)
and, not surprisingly, the convergence criterion (27) is by far
not met. Yet, the slowest eigenvectors are not much affected
by the inter-area connections. This is predicted by the criteria
of Eqs. (34), which are met, and corroborated by numerical
data. First, Fig. 6 shows the lowest nonzero eigenvector of the
network Laplacian at ε = 0.1 and ε = 1. Clearly the general
structure remains the same, regardless of the inter-area cou-
pling strength. This is corroborated by the overlap data shown
in Fig. 3.

FIGURE 6. Structure of the first (α = 2) and the second (α = 3) hybridized
zero-mode of PanTaGruEl in the weakly (top panel) and fully (bottom)
connected cases. The colors correspond to the value of the eigenvector
uα,i on the corresponding node i . The mode structure remains the same
as ε goes to ε = 1.

Interesting is the behavior of the fourth and fifth eigen-
vectors which undergo an avoided crossing shown in Fig. 3
at ε ' 0.2. Their behavior illustrates the eigenvector mix-
ing process discussed above, as after the avoided crossing,
ε > 0.2, the actual eigenvectors are given by u4,5 ≈
(ũ4 ± ũ5)/

√
2, where ũi denotes the eigenvector before the

FIGURE 7. Top and middle: frequency response of the 368 nodes in the
Balkan area (green) and the 981 nodes in the Iberian Peninsula (blue) to
a 900 MW power loss in the opposing area. The faults occur at the
generators indicated by crosses in Fig 1. The frequency response of a
generator in the corresponding perturbed area is shown in each panel to
demonstrate the inter-area character. Bottom: Fourier transform of the
frequency response in the Iberian Peninsula with the average removed.
The red lines indicate the eigenfrequencies of the full system. It is visible
that the inter-area oscillations are mainly carried by the two lowest
frequencies.

avoided crossing. This results in overlaps η4,5(ε = 1) ≈
0.45 at ε = 1 for both eigenvectors. The seventh eigen-
vector also undergoes an avoided crossing at ε ' 0.2,
which mixes it with the high-lying eigenvectors. From Fig. 3
we see that this is accompanied by an abrupt decrease
of η7. These phenomena nicely illustrate the direct connection
between avoided crossings and changes in the eigenvectors
structure.

Figs. 1 and 6 show that the lowest hybridized zero-mode
essentially resides in the Iberian Peninsula and in the Balkans.
These are two of the seven areas in our aggregation.We found
that oscillations between these two areas are triggered by a
perturbation in either one. This is shown in Fig. 1 in the case
of a noisy power injection. The chosen noise is an Ornstein-
Uhlenbeck noise with a correlation time much larger than the
oscillation frequency, and we found that the latter is close
to the oscillation frequencies of the two lowest hybridized
zero-modes and not related to any perturbation time scale.
These two modes are excited by the perturbation, and the
addition of their components evidently resolves the two areas
as shown in Fig. 1.

As another example, we finally investigate the reaction of
the system to a 900MWpower loss. Fig. 7 shows the response
of the Balkan area and the Iberian Peninsula to a fault in the
opposing area. As before, all nodes within one area respond
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coherently – with the same frequency and phase – to a fault
in the opposing area, with only moderate variations of the
response amplitude. The Fourier transform of the oscillation
response in the Iberian Peninsula is further shown in the
bottom panel. Superimposed on it are the locations of the
eigenfrequencies of the A-matrix, and the Fourier spectrum
indicates that only the first two eigenmodes are excited, with
a broadening originating from the damping in Eq. (4). This
confirms our above claim that inter-area oscillations in the
PanTaGruEl network are mainly carried by the two lowest
modes of the system.

V. CONCLUSION
The standard approach to slow coherency successfully pre-
dicts the structure of slowly oscillating, long-wavelength
inter-area modes, even in strongly connected power net-
works that lie outside its range of validity. The theory pre-
sented above puts this theory on solid grounds even in such
well connected networks. Our line of reasoning goes as
follows.

First, we recalled that in homogeneous systems with
constant inertia and damping, small-signal oscillations in
the swing equations (1) are carried by eigenmodes of the
A-matrix of Eq. (6). The structure of these modes is solely
determined by the eigenmodes of the Laplacian matrix of the
network [20].

Second, when dealing with slow coherency/inter-area
oscillations, the focus is on the slowly oscillating modes.
A recent extension of Courant’s nodal domain theorem [13]
shows that the slow modes have large nodal domains [14].
Because of that, these slow modes are only poorly resolving
inhomogeneities in inertia and damping and are therefore
much less sensitive to them. Perturbation theory makes this
quantitative and shows that, while in the presence of sig-
nificant inhomogeneities, most eigenmodes of the A-matrix
acquire a structure not necessarily captured by those of the
network Laplacian L. The long-wavelength modes ofA retain
the structure of the slow modes of L.
Third, using perturbation theory, we showed that an appro-

priate choice of disaggregation of the network into ini-
tially disconnected areas captures the slow modes from the
hybridization of the zero modes of each area Laplacian, even
when the inter-area couplings are restored. This clarifies the
origin of the slow coherency, inter-area modes, and in par-
ticular explains how they often are quasi-homogeneous over
large areas – they originate from area-Laplacian zero-modes
that are exactly constant there.

The aim of our theory was not to identify the optimal initial
aggregation. We found numerically that standard numerical
aggregation algorithms do a good job at predicting that. Our
theory fills an important theoretical gap, in that it explains
(i) the origin of the slow inter-area modes and (ii) why the
standard approach to inter-area oscillations still works well
outside its range of validity. Doing so, we closed a number of
loopholes in the theory of inter-area oscillations in transmis-
sion power networks.
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