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Abstract. In the framework of the new feed-in-tariff system in Switzerland for Small 
Hydropower Plants (SHP), the aim of the SmallFLEX project, led by HES-SO Valais and 
performed in collaboration with EPFL, WSL, EAWAG, PVE, and FMV, is to show how SHP 
can provide winter peak energy and ancillary services, whilst remaining eco-compatible. The 
pilot and demonstrator site selected is the new small hydropower plant of Gletsch-Oberwald 
(KWGO) owned by FMV and commissioned end of 2017. This run-of-river power plant is 
equipped with two six-jet Pelton turbine units featuring a maximum power of 7 MW each. 
The addition of flexibility can be reached by using existing volumes of the power plant: the 
settling basin, the forebay chamber as well as part of the headrace tunnel. By consequence, the 
turbine head will undergo variations. To ensure that these variations will not cause any damages 
to the Pelton runner, the influence of the available head is investigated by numerical simulations. 
The simulations are carried out using two different software. OpenFOAM, which is based on a 
Finite Volume Method (FVM), is used for computing the flow inside the distributor until the jet. 
GPU-SPHEROS, which is based on Arbitrary Lagrangian-Eulerian (ALE) Finite Volume 
Particle Method (FVPM) is utilized to compute the interaction between the jet and Pelton 
buckets. 
Mixing the two aforementioned approaches, i.e. mesh-based FVM and particle-based FVPM, 
the overall torque T of the present six-jet Pelton runner can be reconstructed for different rated 
heads and discharges. The predicted torque fluctuations can then be considered for an estimation 
of the structural fatigue damage of the runner. 
 

1. Introduction  
In the current trend of the electricity market, the flexibility of the production is more and more required. 
Switzerland has adapted its legislation in 2018 by changing the feed-in-tariff system [1]. One of the 
consequences is the requirement to produce the right amount of power at the right time. For small run-off river 
power plants, such a requirement is challenging to tackle. In the framework of the SmallFLEX project, led by 
HES-SO Valais and performed in collaboration with EPFL, WSL, EAWAG, PVE, and FMV, the goal is to 
show how Small Hydropower Plant (SHP) can provide winter peak energy and ancillary services, whilst 
remaining eco-compatible. The chosen pilot site is the new small hydropower plant of Gletsch-Oberwald 
(KWGO) owned by FMV and commissioned end of 2017. This run-of-river power plant is equipped with two 
six-jet Pelton turbine units featuring a maximum power of 7 MW each. 

The increase in flexibility for this power plant can be achieved by using all the storage volumes available 
such as the settling basin, the forebay chamber, and part of the headrace channel [2]. However, the use of such 
volumes will lead to operating the Pelton turbines under various head values, for which they are not specifically 
designed. 

Numerical simulations are performed to investigate the influence of the head on the quality of the jet and 
the torque. The quality of the jet is a key feature for the operation of the turbine [3] and can influence the fatigue 



30th IAHR Symposium on Hydraulic Machinery and Systems
IOP Conf. Series: Earth and Environmental Science 774 (2021) 012033

IOP Publishing
doi:10.1088/1755-1315/774/1/012033

2

 
Figure 1.  Domains simulated with the mesh-based and particle-based method. The 

data in section 2 is extracted from the mesh-based simulation which is 
performed with OpenFOAM to be used as an inlet for particle-based 
simulation performed with GPU-SPHEROS. 

 
and the efficiency of the runner. However, the physics of the flow in a Pelton turbine is very complex [4] since 
it involves both a single-phase internal flow inside the distributor and a free surface flow inside the casing. 
Besides, the flow is characterized by the presence of high velocity and density gradients. Finally, the jet interacts 
with a rotating part, i.e. the runner and themselves. All these features are not straightforward to be captured by 
using only one numerical tool, e.g. a mesh-based Eulerian solver [5]. 

In the present work, a Finite Volume Method (FVM), provided by the OpenFOAM toolbox, is used to 
compute the flow from the distributor to the jet without considering the buckets. Then, an Arbitrary Lagrangian-
Eulerian (ALE) Finite Volume Particle Method (FVPM) accelerated by GPU is utilized to investigate the 
interaction between the jets and the buckets and computing the torque recovered by the runner (see Figure 1). 
The solver is called GPU-SPHEROS developed in EPFL-LMH since 2015. The reader is referred to [6], [7], 
[8], [9], and [10] for more information regarding GPU-SPHEROS development and implementations. 
 
2. Numerical tools 

2.1. OpenFOAM 
The OpenFOAM toolbox provides several Reynolds-Averaged Navier-Stokes (RANS) solvers based on an 
FVM framework. The interFoam solver allows for computing turbulent two-phase flows without phase change. 
For the present test case, this solver is used to compute the Pelton water jet from the inlet of the nozzle to an 
arbitrary outlet box (see Figure 2).  

The mesh is almost hexahedral generated with snappyHexMesh tool provided by the OpenFOAM toolbox. 
The number of cells is slightly above 5 million and wall layers are added along the no-slip walls to capture the 
boundary layer accurately. Specific refinements are imposed in the nozzle outlet region. 

The turbulence effects are modeled with the standard SST k-ω model and the total pressure corresponding 
to the targeted head and the liquid volume fraction are imposed at the inlet of the nozzle. No-slip walls are 
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specified for the internal walls of the nozzle. On the contrary, free-slip walls are specified for the surrounding 
walls of the outlet box excepted at the outlet section where the static pressure is imposed. Therefore, the 
discharge Q is an output of the simulation. 
 

 
Figure 2. View of the computational domain (left) and the generated mesh (right) 

used to compute the Pelton water jet with OpenFOAM. 

2.2. GPU-SPHEROS 
GPU-SPHEROS is based on FVPM discretized equations [6] that can be interpreted as a generalization of the 
conventional mesh-based FVM. In FVM, the computational domain is partitioned into finite control volumes 
with defined surfaces. The area vector of the surfaces is used as a weight for the flux exchanged between the 
control volumes. In FVPM, control volumes are replaced by overlapping particles and the exchange occurs 
through the interfaces defined by overlapping regions. For each pair (i,j) of overlapping particles (referred to as 
neighbors), two interaction vectors ijΓ  and jiΓ  are defined and their difference ij ij ji= −Δ Γ Γ  is analogous to 
the area vector in FVM. Readers are referred to [1] and [7] for more details.  

The method has also been developed, implemented, and accelerated on Graphics Processing Unit (GPU) as 
a particle-based conservative and consistent fluid solver. The solver is called GPU-SPHEROS and has been 
already validated against the experimental data for an impinging jet on a flat plate and a Pelton turbine. The 
reader is referred to [10] and [11] for more details on GPU-SPHEROS validation.  

The schematic of a six-jet Pelton runner simulation setup is shown in Figure 3. The buckets rotate about the 
Z-axis and θ  is the angle between the intermediate bucket and the Y-axis. The six-jet simulation setup is 
simplified by injecting only two adjacent jets with an angle of 60° between them to decrease the computational 
cost by taking advantage of geometric periodicity.  

For the two jets, the discharge velocity of the water jet, as well as turbulence variables including turbulence 
kinetic energy k and turbulence dissipation rate ε, are imposed using the solution of the OpenFOAM simulations 
in section 2 (see Figure 2). Since there is no volume fraction parameter in GPU-SPHEROS as a single-phase 
FVPM solver, the particles’ velocity profile extracted from the FVM solution is weighted by the water volume 
fraction and the jet diameter is then found in the sense of having the same water discharge as the OpenFOAM 
data. Since the velocity profile is changed by weighting the velocity by volume fraction keeping the momentum 
the same as water jet momentum computed with OpenFoam, the discharge will be different. However, for the 
torque computations, the water jet momentum is kept conserved rather than the discharge. The standard k-ε 
model is implemented and utilized in GPU-SPHEROS to model the turbulence effects. The simulations have 
been performed for different heads and discharges (see Table 1). An example of the inlet particles is shown in 
Figure 4. The particle size for the simulation is chosen based on the previous convergence study performed in 
[11]. For the largest jet diameter, i.e. the largest discharge and needle stroke, the inlet boundary has D2  / Xref  = 30 
particles to provide acceptable accuracy in a reasonable time. D2 is the jet diameter and Xref  is the distance 
between two adjacent particles. Although the jet diameter is changed with the change in nozzle stroke opening 

Section 2 
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S and discharge Q, the particle size is kept identical for all the simulations to have the same spatial discretization 
error. The reader is referred to [11] for more details on the convergence study.  

 
Figure 3. Simplified double-jet numerical simulation setup with only two adjacent 

jets with 60° between them. θ  is the angle between the middle bucket and 
the Y-axis.  

 
Figure 4. The velocity profile computed with OpenFOAM (right) and the 

corresponding extracted profile used as inlet boundary in GPU-SPHEROS 
(left). 

 
3. Results 

3.1. Operating points and jet velocity profile 
12 operating points are considered covering four different heads. i.e. H/Hmax= 1.0, 0.888, 0.749, 0.662 
and three different needle stroke openings, i.e. 20%, 49%, and 90%. The four heads correspond to the 
maximum head, the lowest possible head in the settling basin keeping the headrace tunnel filling by water, 
and two lower heads corresponding to a partial emptying of the headrace tunnel.  
In Table 1, for each simulation, the discharge is compared with the discharge extracted from the Hydro-
Clone of the power plant (provided by Power Vision Engineering1, one of the partners of the project). 
The relative difference between the two approaches is lower than ±2.5%. 
                                                 
1 http://www.powervision-eng.ch/hydro-clone-software/ 
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Table 1. Simulated operating points and predicted discharges. OpenFOAM simulations. 

Case# S [%] H/Hmax [-] Q/Qmax [-] 
CFD 

Q/Qmax [-] 
Hydro-Clone 

The relative difference [%] 

1 

20 

1.0 0.343 0.332 2.4 
2 0.982 0.339 0.328 2.4 
3 0.958 0.335 0.324 2.3 
4 0.888 0.322 0.312 2.2 
5 

49 

1.0 0.704 0.700 -0.5 
6 0.982 0.697 0.694 -0.8 
7 0.958 0.687 0.685 -0.8 
8 0.888 0.662 0.660 -0.8 
9 

90 

1.0 1.0 1.0 -1.0 
10 0.982 0.989 0.989 -1.1 
11 0.958 0.978 0.978 -1.1 
12 0.888 0.939 0.942 -1.3 

 
Figure 5. The axial jet velocity profile in section 2 for each operating point provided 

by OpenFOAM simulation.  
 
The axial jet velocity profiles in section 2, located at 1.42 × Dnozzle downstream of the nozzle outlet, are 
plotted in Figure 5 for each operating point. For each head, the maximum velocity agrees with the 
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Torricelli formula. The reference velocity Cref is the velocity that is set at the distributor inlet based on 
the inlet discharge Qinlet. By increasing the opening of the needle stroke, the velocity deficit in the wake 
of the needle valve decreases, it reaches 20% of the maximum velocity for the smallest opening and only 
8% for the largest opening. Also, the span of the jet increases slightly by increasing the opening. 

 

3.2. Torque time-history and torque fluctuations 

The runner torque time-history computations are then performed with GPU-SPHEROS with the velocity profiles 
extracted from the OpenFOAM simulations in section 2 as inlet boundary conditions. 

The interaction between the two jets and the three runner buckets is illustrated in Figure 6. In a Pelton runner, 
the interaction between the jet and bucket can be decomposed along the following stages. First, the jet interferes 
with the bucket at the splitter tip zone. The water jet is then split by the splitter tip and cutout zone and starts to 
impact the internal surface of the bucket. An immediate primary jump in torque time-history can be seen which 
corresponds to the beginning of this impact moment. Part of the water jet then enters the adjacent bucket in the 
next stage. However, the jet still enters the current bucket and torque reaches its maximum value, i.e. the peak. 
By increasing the angle between the jet and bucket, the jet starts to evacuate the bucket, and the torque is 
gradually decreased. The dimensionless torque factor time-history 3 2

1 20.5Tk T D Cρ= against the bucket angular 
position is shown in Figure 7. T, D1, and C2 are the torque, runner diameter, and jet velocity, respectively, and 
ρ is the water density. As can be seen, the torque generated by jet 2 is affected by the flow injected by jet 1 
which is not entirely discharged when the next jet enters. The magnitude of the torque peak increases for higher 
head values since a larger momentum is transferred by the water to the runner when the rated head is higher. 
The Savitzky-Golay filter is utilized to fit a smooth curve from the raw data.  

The sudden jump shown in torque time-history can cause high-amplitude torque fluctuations. The 
magnitude of this jump is affected by the bucket geometry. The geometry, especially around the cutout, can 
splash and disturb the water flow when the jet is cut by the splitter entering the bucket. The disturbed water 
particles cannot catch up with the bucket as if they are jumping and the torque suddenly increases when these 
water particles land and impact the internal surface of the bucket. This is intensified by increasing the nozzle 
opening size since the jet diameter increases and a larger momentum is contributed to those disturbed particles 
impacting the bucket surface. For smaller jet diameters, this phenomenon is weakened. The large jump in torque 
can lead to large torque fluctuations. 

 

 
Figure 6. Water particles deviated by rotating Pelton buckets. GPU-SPHEROS 

simulation. 
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Figure 7. The middle bucket torque time-history for the 12 operating points. The 

black curve is fitted from the raw data in blue using the Savitzky-Golay 
filter. 

The overall torque time-history is also computed for all the operating points to assess the effect of head  H 
and discharge Q variations on torque fluctuations. The results are shown in Figure 8, which are based on time-
shifted and superimposed torque copies of jet 2 in which the effect of jet interference and disturbance are 
covered. The time-averaged torque and the amplitude of the fluctuations for each case are shown in Figure 9. 
The time-averaged torque is increased by increasing the rated head and the torque fluctuations amplitude is 
intensified by increasing the needle stroke opening for larger discharges. The larger torque fluctuations are due 
to a larger jump in torque time-history for larger jet diameters. A similar trend for torque fluctuations is shown 
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Figure 8.  The computed overall torque time-histories of the six-jet Pelton based on 

the isolated torque time-history generated by jet 2. 
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by Perrig et al. [13] validated by experimental results. Installing pressure sensors inside the bucket to measure 
the pressure fluctuations can be a reliable way to validate the present results. 

Since the torque fluctuations are equivalent to pressure fluctuations, the stress, which is the most important 
factor in fatigue damage, is intensified with higher torque fluctuations. Although the number of cycles required 
to cause fatigue failure at particular peak stress is significantly high, it decreases when the stress amplitude is 
increased [12]. Therefore the torque fluctuations amplitude is directly linked to structural fatigue and higher 
fluctuations will significantly accelerate the fatigue damage process in the runner. Nevertheless, the fluctuations 
predicted with the simulations seem to be higher than expected and should be taken with caution. A comparison 
with experimental results will be necessary to confirm the observations. Numerical instabilities linked to the 
capacity of the numerical scheme to capture the shock generated by the jet impact must be first excluded. 

 
Figure 9.  Time-averaged torque and fluctuations amplitude for different heads and 

needle stroke opening size. 
 
4. Conclusion 
In the framework of the SmallFLEX project, the effect of large head variations on the jet velocity and torque 
time-history of a Pelton turbine has been studied considering 12 operating points varying the rated head and the 
nozzle stroke opening. OpenFOAM was used for the turbulent internal flow simulation inside the nozzle and 
compute the jet velocity profiles at different operating points. The results have been used as input for particle-
based simulations of the interactions between the jets and buckets. As a particle-based solver, GPU-SPHEROS 
is robust to handle rotating Pelton turbine simulation as a free-surface problem with large deformations in 
boundaries, in which the mesh-based methods can face difficulty. Mixing the two approaches provides the 
ability of a full Pelton turbine simulation.  

The internal flow inside the nozzle, as until the injected jet, have been simulated using OpenFOAM mesh-
based solver to compute the discharge and predict the water velocity profiles for 12 operating conditions. For 
the free surface part where the jet is injected from the nozzle on the runner, the VOF method has been used for 
air-water two-phase flow simulation with the OpenFOAM solver. The extracted velocity profiles computed by 
OpenFOAM have been used as an inlet boundary for GPU-SPHEROS simulations to predict the bucket torque 
time-history for each operating point. The overall torque is then computed based on the torque generated by jet 
2 in which the effect of any interference between the adjacent jets is covered. 
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The results show that by increasing the opening of the needle stroke, the velocity deficit in the wake of the 
needle valve decreases, reaching 20% of the maximum velocity for the smallest opening and only 8% for the 
largest opening. Also, the span of the jet increases slightly by increasing the opening. 

Moreover, the torque fluctuations amplitude is significantly intensified by increasing the needle stroke 
opening. High torque fluctuations have been observed and must be confirmed by comparison with 
measurements. which are mostly due to a sudden jump in bucket torque time-history which becomes larger for 
larger jet diameters. Such torque fluctuations can significantly accelerate the fatigue damage process in the 
runner applying repair and outage costs. The computed torque fluctuations amplitude and frequency can be 
used for runner fatigue analysis.  
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