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Abstract— A linear programming approach is proposed to
tune fixed-order linearly parameterized gain-scheduled con-
trollers for stable SISO linear parameter varying (LPV) plants.
The method is based on the shaping of the open-loop transfer
functions in the Nyquist diagram with constraints on the robust-
ness margins and on the lower bound of the crossover frequency.
Two optimization problems are considered: optimization for
robustness and optimization for performance. This method
directly computes an LPV controller from a set of frequency
domain models in different operating points or from an LPV
model and no interpolation is needed. In terms of closed-loop
performance, this approach leads to extremely good results.
However, closed-loop stability is ensured only locally and for
slow variations of the scheduling parameters. An application to
a high-precision double-axis positioning system illustrates the
effectiveness of the proposed approach.

I. INTRODUCTION

A large class of nonlinear systems can be represented by
a set of linear models that approximate the dynamics of the
systems in different operating points. The dynamic behavior
of such systems varies as a function of some scheduling
parameters. Many electromechanical systems, such as for
example component mounters, H-drives and electromagnetic
levitation systems belong to this class of systems. For these
examples, the scheduling parameter is the position, as their
dynamics change as a function of the position.

Such time-varying behavior cannot be controlled by classi-
cal linear control methods, as these methods require a linear
time invariant (LTI) model of the system. One solution to this
problem is to design an LTI controller that is robust against
these varying dynamics. Such a solution can be obtained
using a method based on H∞-optimization or µ-synthesis
(see for example [1]). This kind of approaches assures
the global stability of the closed-loop system. The major
drawback is that the variation of the dynamics as a function
of the scheduling parameters is treated as uncertainty. This
often leads to poor closed-loop performance.

The performance of the controlled system can be improved
if the knowledge of the scheduling parameters is included in
the controller by making it dependent on these parameters.
The corresponding synthesis procedure is commonly referred
as gain-scheduling (see the survey papers [2] and [3]).
Basically two classes of methods can be distinguished: one
is called the classical gain-scheduling methods and the other
one the direct linear parameter varying (LPV) controller
design methods.

The classical gain-scheduling methods proceed in two
steps. First, a finite grid of operating points is chosen within
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the whole range of operating points and a controller is
designed for each of these selected operating points based
on the local model. Secondly, an interpolation between the
controllers is done to get a gain-scheduled or LPV controller.
Different methods can be used to interpolate between the
controllers, for example in [4] an affine interpolation between
the poles, zeros and gains of the local controllers is done,
resulting in an affine state-space representation of the LPV
controller. The classical gain-scheduling methods give good
closed-loop performance and are simple to use: no LPV
model is needed; controllers can be designed easily using for
example a classical loop shaping method; the implementation
of the controller is straightforward. The major drawback lies
in the fact that the global stability of the closed-loop system
is not always assured, in particular for fast variations of the
scheduling parameters.

The direct LPV controller design methods are based
on LPV models. These approaches are different from the
classical gain-scheduling methods since they involve the
direct synthesis of a controller rather than its construction
from a family of local linear controllers designed by linear
time invariant methods. The direct methods can be divided
into two main categories: methods using a small-gain linear
fractional transformation (LFT) approach [5] and methods
using a Lyapunov-based approach. The major advantage of
these methods is that they assure the global stability of the
closed-loop system. Unfortunately, they are more conserva-
tive than the classical gain-scheduling methods, leading to
poorer closed-loop performance. Moreover, as mentioned in
[6], they are often affected by numerical conditioning and
by practical implementation problems.

In this paper, a classical gain-scheduling method is pro-
posed based on an extension of the linear programming
method presented in [7]. The proposed method tunes fixed-
order linearly parameterized gain-scheduled controllers for
stable LPV plants by shaping the open-loop transfer function
in the Nyquist diagram. This method is direct in the sense
that an LPV controller is directly computed from an LPV
model or a set of models in different operating points and
no interpolation step is required. A linear stability margin,
which guarantees for the frozen parameters a lower bound
for the gain, phase and modulus margins and a lower bound
on the crossover frequency are used as constraints. These
constraints are linear with respect to the parameters of
the linearly parameterized controller. Thus, an optimization
problem that maximizes the robustness or the closed-loop
performance in terms of load disturbance rejection can be
solved by linear programming. Since the approach is based
on the frequency domain characteristic of the model, only
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local stability is guaranteed. Global stability is not studied
in this paper and is the subject of future work.

This paper is organized as follows. In Section II the class
of models and controllers are defined and a summary of the
linear programming method presented in [7] is given. Section
III shows the extensions to design gain-scheduled controllers.
Simulation results are given in Section IV. The proposed
method is applied to a double-axis linear permanent magnet
synchronous motor (LPMSM) in Section V. Finally, Section
VI gives some concluding remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Plant model

The class of SISO LPV systems, varying according to a
nθ-dimensional vector θ of scheduling parameters, is consid-
ered. The linear systems for frozen scheduling parameters are
supposed to have no RHP pole. It is assumed that a set of
non-parametric models in the frequency domain is available.
This set is obtained by doing several identification experi-
ments for different values of θ. Suppose that the dynamics
of the system can be captured by a sufficiently large finite
number of frequency points N and that a sufficiently large
number of models m is available to have a fine grid with
respect to θ. Then, the set can be presented by:

M , {G(jωk, θl) | k = 1, . . . , N ; l = 1, . . . , m}, (1)

where ωk and θl are, respectively, particular values of the
frequency ω and of the scheduling parameters θ.

B. Controller parameterization

A class of linearly parameterized controllers is considered:

K(s, θ) = ρT (θ)φ(s), (2)

where
ρT (θ) = [ρ1(θ), ρ2(θ), . . . , ρnp

(θ)], (3)

φT (s) = [φ1(s), φ2(s), . . . , φnp
(s)], (4)

np is the dimension of ρ and φi(s), i = 1, . . ., np, are
rational basis functions with no RHP pole. As the aim is to
design an LPV controller, the controller parameters depend
on θ (see (3)). Let us assume that ρi(θ) is a polynomial in
θ of order pc, i.e.:

ρi(θ) = (ρi,pc
)T θpc + . . . + (ρi,1)

T θ + (ρi,0)
T~1, (5)

where ~1 is an nθ-dimensional vector of ones and θk denotes
element-by-element power of k of vector θ. Thus, the con-
troller is completely characterized by the real vectors ρi,pc

,
. . ., ρi,1, ρi,0.

As an example, the parameterization of a PID controller
depending on a scalar θ could take the following form:

ρT (θ) = [Kp(θ), Ki(θ), Kd(θ)], (6)

φT (s) = [
1

1 + Ts
,

1

s(1 + Ts)
,

s

1 + Ts
], (7)
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Fig. 1. Linear constraints for robustness and performance, with four
regions: I, II, III and IV. The linear stability margin, the crossover frequency
and the lower bound on the crossover frequency are, respectively, `, ωc and
ωx.

where T (known) is the time constant of the noise filter. The
parameters could be polynomials in θ of order 2:

Kp(θ) = Kp,2θ
2 + Kp,1θ + Kp,0, (8)

Ki(θ) = Ki,2θ
2 + Ki,1θ + Ki,0. (9)

Kd(θ) = Kd,2θ
2 + Kd,1θ + Kd,0, (10)

C. Summary of the linear programming method

Classical gain, phase and modulus margins as well
as crossover frequency ωc are nonlinear functions of the
controller parameters. Optimization methods with constraints
on these values lead to non-convex optimization problems.
The linear programming method introduces a new stability
margin and a lower bound on the crossover frequency which
lead to linear constraints for an optimization problem in
which robustness or performance are maximized [7]. This
optimization problem can be solved efficiently by a linear
programming method. The following is a summary and the
reader can see [7] to have a full description of the method.

1) Linear robustness margin: Consider a straight line
d1 in the complex plane crossing the negative real axis
between 0 and -1 with an angle α ∈ ]0◦ 90◦] (see Fig. 1).
The linear stability margin ` ∈ ]0 1[ is the distance between
the critical point -1 and d1 where it crosses the negative real
axis. If the Nyquist plot of the open-loop transfer function
lies on the right-hand side of d1, a lower bound on the
conventional robustness margins is ensured.

2) Lower bound on the crossover frequency: Consider
another straight line d2 in the complex plane tangent to the
unit circle centered at the origin which crosses the negative
real axis with an angle β (see Fig. 1). The part of d2

between d1 and the imaginary axis is a linear approximation
of the unit circle in this region. Now, assume that the



open-loop Nyquist plot intersects d2 at a frequency called
ωx. From Fig. 1 it is clear that the crossover frequency ωc

is always greater than or equal to ωx. Hence, ωx, which is
a lower approximation of the crossover frequency, can be
used as a measure of the time-domain performance or the
closed-loop bandwidth.

3) Optimization for robustness: Optimizing the robustness
consists of maximizing the linear robustness margin `.

4) Optimization for performance: Optimizing the load
disturbance rejection is considered as the desired perfor-
mance for the closed-loop system. In general, to reject
low-frequency disturbances, the controller gain at low-
frequencies should be maximized. For a rational continuous-
time controller of order nc with fixed denominator R(s),

K(s, θ) =
knc

(θ)snc + . . . + k1(θ)s + k0(θ)

R(s)
, (11)

it corresponds to maximizing k0(θ). According to (2), k0(θ)
is a linear combination of the parameters of the linearly
parameterized controller:

k0(θ) =

np
∑

i=1

γiρi(θ), (12)

where γi are the coefficients of the linear combination which
depend on the basis functions.

III. EXTENSION TO DESIGN LPV CONTROLLERS

When a set of non-parametric models is available, the
parameterization of the controller (see (2)) allows us to
write every point on the Nyquist plot of the open-loop
L(jω, θl) = K(jω, θl)G(jω, θl) as a linear function of the
parameters of the vectors ρi,pc

, . . ., ρi,1, ρi,0:

K(jωk, θl)G(jωk, θl) = ρT (θl)φ(jωk)G(jωk, θl)

= ρT (θl)R(ωk , θl) + jρT (θl)I(ωk, θl)

= (Mθ̄l)
TR(ωk, θl) + j(Mθ̄l)

TI(ωk, θl),

(13)

where

M =







(ρ1,pc
)T . . . (ρ1,1)

T (ρ1,0)
T

...
. . .

...
...

(ρnp,pc
)T . . . (ρnp,1)

T (ρnp,0)
T






, (14)

θ̄l = [θpc

l . . . θl
~1]T , (15)

R(ωk, θl) and I(ωk , θl) are, respectively, the real and the
imaginary parts of φ(jωk)G(jωk, θl).

Before explaining two different optimization problems, it
should be noted that the number of integral terms in the
open-loop transfer function L(s, θl) determines where the
low frequency points of L(s, θl) are located. For example, if
L(s, θl) contains two integral terms, the low frequency part
of the Nyquist diagram will be located in region III (see
Fig. 1). The number of integral terms will determine the
constraints of the optimization problems. For this reason,
the LPV plants considered should have a fixed number of
integral terms.

A. Optimization for robustness

In this part, it is supposed that a desired crossover fre-
quency ωc is given and the objective is to find the best
controller in terms of the robustness margins. The design
variables for the optimization problem are ωx, α and β. To
guarantee an achieved crossover frequency greater than the
desired one, ωx is chosen equal to ωc. The design method is
the same whether the open-loop transfer function L(s, θl)
contains one or two integrators. The Nyquist diagram of
L(jω, θl) at very low frequencies is located in region III
or IV and at very high frequencies in region I (see Fig. 1).
In order to ensure a certain distance from the critical point,
the Nyquist curve should not enter region II. On the other
hand, the Nyquist curve necessarily intersects d2 at ωx. As
a result, the open-loop Nyquist curve L(jω, θl) should lie in
region III or IV for frequencies less than ωx and in region
I for frequencies greater than ωx. Thus, the following linear
optimization problem is considered:

max
M

`

s. t. (Mθ̄l)
T (cotα I(ωk, θl) −R(ωk, θl)) + ` 6 1

for ωk > ωx, l = 1, . . . , m,

(Mθ̄l)
T (cosβ I(ωk, θl) + sin β R(ωk , θl)) > −1

for ωk > ωx, l = 1, . . . , m,

(Mθ̄l)
T (cosβ I(ωk, θl) + sin β R(ωk , θl)) 6 −1

for ωk 6 ωx, l = 1, . . . , m.
(16)

B. Optimization for performance

Another control objective is to consider some constraints
for the robustness margins and maximize the closed-loop
performance in terms of the load disturbance rejection. This
can be done by maximizing

min
l=1,...,m

np
∑

i=1

γiρi(θl). (17)

The design variables are limited to the linear robustness
margin ` and α. When L(s, θl) contains only one integrator,
the open-loop Nyquist curve should lie in region I or IV. Thus
a simple optimization problem can be defined as follows:

max
M

Kmin

s. t. (Mθ̄l)
T (cot α I(ωk, θl) −R(ωk, θl)) + ` 6 1

for all ωk, l = 1, . . . , m,
np
∑

i=1

γiρi(θl) − Kmin > 0 for l = 1, . . . , m,

(18)

For the case of two integrators in L(s, θl), the constraints
should be modified such that L(jω, θl) at low frequencies can
be located in region III. This can be obtained using a straight
line in the complex plane. The line d2 can be used again
to divide the complex plane in four regions. The Nyquist
diagram of L(jω, θl) should lie in region I or IV for the



frequencies greater than ωx and in region III or IV for the
frequencies less than ωx. Thus, the optimization problem can
be formulated as

max
M

Kmin

s. t. (Mθ̄l)
T (cotα I(ωk, θl) −R(ωk, θl)) + ` 6 1

for ωk > ωx, l = 1, . . . , m,

(Mθ̄l)
T (cosβ I(ωk, θl) + sin β R(ωk , θl)) 6 −1

for ωk 6 ωx, l = 1, . . . , m,
np
∑

i=1

γiρi(θl) − Kmin > 0 for l = 1, . . . , m,

(19)

where ωx is this time not a lower approximation, but a
lower bound for the crossover frequency as it can be located
anywhere in region IV, and not necessarily at the intersection
with d2.

C. LPV parametric model

When a set of non-parametric models is available, the
optimization methods presented above can be directly ap-
plied to compute an LPV controller as the number of models
and the number of frequency points are finite. On the other
hand, if an LPV parametric model is available, the number of
models corresponding to different values of the scheduling
parameters and the number of frequency points are infinite,
leading to an infinite number of linear constraints if using
the proposed method. To solve this problem, the first step
is to go from an infinite number of frequency points to a
finite number of frequency points by gridding the frequency
domain. If the gridding of the frequency domain is not
desired, it is still possible to use the generalized KYP method
proposed in [8] at the cost of more complexity. At this point
the number of constraints is still infinite, since the number of
models corresponding to different values of the scheduling
parameters θ is still infinite. This problem can be solved
using two different ways:

• Gridding θ. If the number of parameters in θ is not large,
this approach is feasible since the linear programming
method handles efficiently a very large number of
constraints.

• Discretizing θ using a randomized approach [9], [10].
This method allows to get a finite number of constraints.
It means that the solution found satisfies the original
set of constraints (infinite number of constraints) with
a certain probabilistic level.

There are two advantages for the use of LPV models:
• One can use a finer grid on the operating points to be

sure that between the identified models the constraints
are satisfied.

• The global stability analysis is possible.

IV. SIMULATION RESULTS

The design method is tested on a system having a reso-
nance whose frequency changes as a function of a scheduling
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Fig. 2. Nyquist plot of the open-loop transfer function of the PID controller
and the nominal model of G.

parameter θ. Consider the following LPV plant model:

G(s, θ) =
ω2

0
(θ)

s2 + 2ζω0(θ)s + ω2

0
(θ)

, (20)

where
ω0(θ) = 2 + 0.2θ, (21)

ζ = 0.1, (22)

θ ∈ [−1, 1]. (23)

This model could represent the dynamics of a mechatronic
system, where the frequency of the resonance is a function of
the moving mass. The objective is to design a PID controller
with the following structure

K(s) =
Kds

2 + Kps + Ki

s(1 + Ts)
(24)

that maximizes the robustness of the closed-loop system with
a crossover frequency of about 3.3 rad/s. This crossover
frequency is chosen because it is about 20% greater than the
crossover frequency of the nominal model (θ = 0) in open-
loop. The optimization problem (16) is considered. To soften
a little bit the constraints, a tolerance on ωx is used, meaning
that the frequencies near ωx (up to 2.5 %) can be anywhere
and not necessarily in region I, III or IV. The design variable
ωx is fixed to 3.3 rad/s, α to 90◦ and β to 20◦. The time
constant T of the filter of the PID controller is set to 0.1 s.

First, a PID controller is designed for the nominal model.
To be able to use the optimization problem (16), G(s, 0)
is evaluated at N = 3000 equally spaced points between 0
and 30 rad/s. The Nyquist plot of the open-loop transfer
function obtained by the design is shown in Fig. 2. It can
be observed that the Nyquist plot respects the constraints
represented by the two lines and leads to a linear margin `
of 0.743. The response of the closed-loop system to a set
point change is shown in Fig. 3. It can be seen that the
response is satisfactory (small overshoot).
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Fig. 3. Set point response of the PID controller and the nominal model of
G.

Now, a robust PID controller is designed for the LPV
model. 21 equally spaced discrete values of θ are taken
between -1 and 1. Once again, for each discretized value
θl, G(s, θl) is evaluated at N = 3000 equally spaced points
between 0 and 30 rad/s. No solution is obtained from the
optimization problem for the whole range of θ. A solution is
obtained only if θ ∈ [−0.18, 0.18]. This shows the relevance
to design a gain-scheduled controller.

Thus, a gain-scheduled PID controller with the following
form

K(s, θ) =
1

s(1 + Ts)

[

(Kd,1θ+Kd,0)s
2+(Kp,1θ+Kp,0)s

+ (Ki,1θ + Ki,0)
]

(25)

is designed. As it can be seen in (25), the order pc of the
polynomial in θ describing the parameters of the controller
is set to 1. As before, 21 equally spaced discrete values of
θ are taken between -1 and 1 and G(s, θl) is evaluated at N
= 3000 equally spaced points between 0 and 30 rad/s. The
controller parameters are shown in Table I. The Nyquist plots
of the open-loop transfer functions obtained by the design
are shown in Fig. 4 for three particular values of θ (-1, 0
and 1). It can be observed that the Nyquist plots respect
the constraints represented by the two lines and lead to a
linear margin ` of 0.733. The responses of the closed-loop
system to a set point change using the gain-scheduled PID
controller are shown in Fig. 5 for three particular values of θ
(-1, 0 and 1). It can be seen that the responses to a set point
change are very good (small overshoots). The response of
the closed-loop system to a set point change using the PID
controller designed for the nominal model is also shown in
Fig. 5 for θ = -1. The response is more oscillatory, which
justifies the use of the gain-scheduled controller. Thanks to
the gain-scheduled PID controller, it is possible to have about
the same performances and robustness for different values of
θ, which is not possible using a robust PID controller.

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

Real axis

Im
ag

in
ar

y 
ax

is

Fig. 4. Nyquist plots of the open-loop transfer functions of the gain-
scheduled PID controller and G for θ = -1 (solid), θ = 0 (dashed) and θ =
1 (dashed-dotted).
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Fig. 5. Set point responses of the gain-scheduled PID controller and G
for θ = -1 (solid), θ = 0 (dashed) and θ = 1 (dashed-dotted) compared to
the set point response of the PID controller designed for the nominal model
and G for θ = -1 (dotted).

V. EXPERIMENTAL RESULTS

The gain-scheduled controller design method is applied
to a double-axis LPMSM. The objective is to control the
position of such a system, which is shown in Fig. 6. The
advantages of this system are high dynamics (high accelera-
tion and deceleration capabilities), high mechanical stiffness,
reduced friction and high accuracy. The high accuracy is
due to the fact that it has no mechanical transmission and,
therefore, does not suffer from backlash. The particularity of
this application is that the dynamics of each axis vary with
the position of the two axes. For example, it is clear that
the dynamics of the lower axis change as a function of the
position of the moving part of the higher axis. If the moving
part of the higher axis is at an extremity, it is connected to
the lower axis with a different rigidity from the case that the



TABLE I
PARAMETERS OF THE GAIN-SCHEDULED PID CONTROLLER.

Kd,1 Kd,0 Kp,1 Kp,0 Ki,1 Ki,0

-0.1832 0.8825 0.0049 0.2156 -0.1017 3.4154

PSfrag replacements

xy

Fig. 6. Double-axis linear permanent magnet synchronous motor (with
courtesy of ETEL).

moving part is at the center. Thus, in this application, it is
clear that the scheduling parameters are x and y, respectively
the positions of the higher and lower axes. For reason of
brevity, this section will only discuss the model and control
design of the higher axis when x is centered and y varies
from -0.16 m to 0.16 m .

A. Non-parametric identification of the dynamics of the
higher axis

In order to be able to design a gain-scheduled controller for
the higher axis, a set of non-parametric models is necessary.

To measure the frequency response functions (FRF), the
stroke of the lower axis (0.32 m) is divided into 16 equally
spaced partitions. The higher axis is positioned at x = 0 m
and is excited with a sum of sinusoidal signals from 4.4
to 9000 Hz for each position of the lower axis and thus, 17
non-parametric models in the frequency domain are obtained.
Fig. 7 shows the magnitude Bode diagram of the identified
non-parametric models for the higher axis when x = 0 m
and y varies from -0.16 m to 0.16 m. This figure shows
clearly that the dynamics depend on the position. For low
frequencies the higher axis behaves as a single mass system,
namely the amplitude plot shows a slope of -40 dB/decade.
Between 100 and 140 Hz, the first decoupling of mass can be
seen (zeros, poles). At 500 and 900 Hz the same phenomenon
happens. From 1000 Hz, the magnitude Bode diagram is not
plotted, since it has mainly a slope of -40 dB/decade with
no important informations.

It should be noted that no LPV model is necessary to
compute the gain-scheduled controller. This is an advantage
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Fig. 7. Magnitude Bode diagram of 17 identified non-parametric models
for the higher axis at x = 0 m and y = [-0.16:0.02:0.16] m.

as it shortens the procedure of identification.

B. Gain-scheduled controller design of the higher axis

As a set of non-parametric models is available, it is now
possible to design a gain-scheduled controller. The aim is to
design a low-order controller that maximizes the robustness
with a closed-loop bandwidth of 180 Hz (specified by the
industrial partner). A gain-scheduled PID controller with the
following form

K(s, y) =
Kd(y)s2 + Kp(y)s + Ki(y)

s(1 + Ts)
(26)

is designed, where y is the scheduling parameter. The order
pc of the polynomial in y describing the paramters of the con-
troller is set to 2. To design the controller a modified version
of the optimization problem (16) is used. The modification
is due to the double integrator behavior of the system: as the
controller also contains an integral term, the Nyquist diagram
has to be located in region II (but very far from the critical
point) at very low frequencies. Thus, for the frequencies
lower than ωl, the curve is not constrained to be in regions III
or IV anymore. Moreover, when the robustness is maximized,
this may lead to canceling the integral term of the controller.
To be sure to keep the integral term (which is needed to reject
the load disturbances), the following constraints are added:

np
∑

i=1

γiρi(θl) > Kmin for l = 1, . . . , m. (27)

The design variables are ωx, ωl, α, β, Kmin and T . The
lower bound of the crossover frequency ωx is set to 180 Hz
and ωl to 60 Hz. The value of 60◦ is used for α and β is
set to 30◦. By practical expertise, Kmin is set to 50. Finally,
T is set to 1/(2π1000). It should also be noted that, as for
the simulation, a tolerance of 3 % on ωx is used to soften
the constraints.

The Nyquist plots of the open-loop transfer functions
obtained by the design are shown in Fig. 8 for three particular
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Fig. 8. Nyquist plots of the open-loop transfer functions of the gain-
scheduled PID controller and the system for y = -0.16 m (solid), y = 0 m
(dashed) and y = 0.16 m (dashed-dotted).

values of y (-0.16 m, 0 m and 0.16 m). It can be observed
that the Nyquist plots respect the constraints represented by
the two lines and lead to a linear margin ` of 0.431. If a
robust controller is designed with the same specifications,
the linear robustness margin ` obtained is equal to 0.402.
So, the gain-scheduled controller allows an improvement of
the linear robustness margin of 7.2 %.

VI. CONCLUSIONS

Fixed-order linearly parameterized gain-scheduled con-
troller design is formulated as a linear optimization problem.
The proposed method is based on frequency loop shaping in
the Nyquist diagram. Classical robustness and performance
specifications are represented by linear constraints in the
Nyquist diagram. The control objective is to maximize the
robustness margin or to maximize the closed-loop perfor-
mance in terms of the load disturbance rejection. This
method requires only the frequency response of LPV plants
in different operating points and need no interpolation to get
the LPV controller, which constitutes a real advantage, since
the procedure of designing local controllers and interpolating
between them can be very difficult.

Simulation results showed that the method can compute
a gain-scheduled controller with robustness margins that are
unachievable with a classical robust controller.

The application of the proposed method on a system,
whose resonance varies as a function of the position, showed
that the robustness margins could be improved using a gain-
scheduled controller.

Future work consists of analyzing the global stability of
the designed gain-scheduled controller.
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