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~ Abstract—In a recent work, a frequency method based on to SISO multi-model systems having two models in the set
linear programming was proposed to design fixed-order linearly  or to certain classes of SISO LPV systems. The extension

parameterized controllers for stable linear multi-model SISO ¢ ihe method to multi-model systems having more than two
systems. The method is based on the shaping of the open- - -
models is the subject of future work.

loop transfer functions in the Nyquist diagram under a set of - ] ) ] )
linear constraints guaranteeing a lower bound on the crossover ~ This paper is organized as follows: in Section Il the class
frequency and a linear stability margin. In this paper, this of plant and controllers are defined and a summary of the
method is extended to guarantee quadratic stability. For this frequency method based on linear programming is given.
purpose, new linear constraints based on the phase difference 1q thegrem used to make the link between the time domain
of the characteristic polynomials of the closed-loop systems are . " - .
added in the Nyquist diagram. A simulation example illustrates "’Tn_d frequen_cy domain condmo_ns and_the linear constraints
the effectiveness of the proposed approach. rising from it are developped in Section Ill. To show the
effectiveness of the method, it is applied to a switched system
. INTRODUCTION in section IV. Finally, Section V gives some concluding
In a previous work [1], a frequency-domain controllerremarks.
design method based on linear programming was proposed.
The open-loop transfer function is shaped in the Nyquist !!- PRELIMINARIES AND PROBLEM FORMULATION
diagram using a set of linear constraints for robustness a#d Plant model

for the_ lower bound of the crossover frequgncy. This method The class of stable SISO multi-model systems consisting
can directly compute controllers for multi-model systemgy yyo continuous-time linear model is considered. Each

assuring robust stability. As the loop-shaping of QFT cons,qdel is defined by a transfer function of the form:
trollers [2], this frequency-domain method does not ensure

quadratic stability. It means that the closed-loop system is Gils) = Ghn,i(s) i=1.9 (1)
stable for anyone of the model belonging to the multi-model Ga,i(s) ’

set as long as this model is fixed during operation. If thghere; refers to the first or the second model. In this paper
model varies during operation, the stability is not guaranteggle consider continuous-time models, but it should be noted

anymore. An extension of this method is proposed in [3] tghat the proposed approach can also be applied to discrete-
design gain-scheduled controller. Once again, the stability {$ne models straightforwardly.

guaranteed only for slow variation of models.
In the literature, a lot of methods can be found guarB. Controller parameterization

anteeing the quadratic stability of multi-model systems or The class of linearly parameterized controllers is consid-

the global stability of LPV systems (see the survey papetsed:

[4] and [5]). Most of these methods are based on a time-

T
domain analysis using a quadratic Lyapunov function ap- K(s) = Ka(s) P ls) @
proach or a parameter-dependant quadratic Lyapunov fun\ﬁhere
tion approach to reduce the conservativeness. Since these T _ [ ] 3)
approaches are time-domain based, they are not compatible P propzee pm
with our frequency-domain based method. ¢"(s) = [p1(s) d2(s) ... dm(s)]. 4)

In this paper, we propose to use a theorem making the
link between the small gain theorem and SPRness propertigsiS the number of controller parameters ands), | =
in order to transform conditions of quadratic stability inl: - -, are transfer functions with no RHP pole. The main
the time domain into conditions in the frequency domainPropPerty of this parameterization is that every point on the
Then, these frequency conditions are transformed into lineAyauist diagram ofL; (jw) = K (jw)Gi(jw) can be written
constraints. Thus, it is possible to use the frequency meth&@§ @ linear function of the controller parametgrs
proposed in [1] and [3] to design controllers guaranteeing K (jwi)Gi(wr) = pT d(jwe)Gi(jwr)
guadratic stability simply by adding linear constraints in the T . T
Nyquist diagram. For the moment, this method is restricted =P Ri(w) +jp" Liws)

) ) . . wherewy, is a particular value of the frequency, R;(wg)
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Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland andZ;(w) are, respectively, the real and imaginary parts of
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Optimizing the load disturbance rejection is considered
as the desired performance for the closed-loop system. In
general, to reject low-frequency disturbances, the cdatro
gain at low-frequencies should be maximized. For a rational
continuous-time controller of order, with fixed denomina-
tor K4(s),

/{nSnC—F...—F/{lS—FkO
K(s) = —= 6
(s) Ka(s) (6)

it corresponds to maximizingey. According to (2), ko
is a linear combination of the parameters of the linearly
parameterized controller:

m
ko= upi (7)

=1
where~; are the coefficients of the linear combination which
Fig. 1. Linear constraints for robustness and performamdth four —depend on the basis functions.
regions: |, I, lll and IV. The linear stability margin, theassover frequency For example, optimizing the load disturbance rejection of
2ntfi the lower bound on the crossover frequency are, regelct, w. and a multi-model system Composed of two models with onIy

one integrator inL;(jw) is expressed by:

C. Summary of the Frequency Method Based on Linear maximize ko

Programming subject to: (8)
Classical gain, phase and modulus margins as well as?’ (cot aZy(wi) — Ri(wp)) +£ <1 Vwy, i =1,2.
crossover frequency. are nonlinear functions of the con- |t corresponds to constraining (jwy)G;(jwr) to be in
troller parameters. Optimization methods with constsdmt  region | or IV (see Fig. 1) for all frequencies.
these values lead to non-convex optimization problems. The
frequency method based on linear programming introducdl- FREQUENCYDOMAIN CONDITIONS FORQUADRATIC
a new stability margin and a lower bound on the crossover STABILITY
frequency which lead to linear constraints for an optimiarat A. Quadratic stability of two systems
problem in which robustness or performance are maximized. et a stable polynomial of ordet be defined as:
This optimization problem can be solved efficiently by a " 1
linear programming method. The following is a summary c(s) =" +es" T ..t (©)
and the reader can see [1] to have a full description of thg/e can assign to this polynomial a vecter
method.
1) Linear robustness margin: Consider a straight lind; C=la ez ... ci (10)
in the complex plane crossing the negative real axis betwegfRd a matrixA:
0 and -1 with an anglex € (0°,90°] (see Fig. 1). The

linear stability margir? € (0,1) is the distance between the 161 002 o Cg_l gn

critical point -1 andi; where it crosses the negative real axis. 0 1 0 0

If the Nyquist plot of the open-loop transfer function lies o A= (11)
the right-hand side of;, a lower bound on the conventional : : : :

robustness margins is ensured. 0 0o ... 1 0

2) Lower bound on the crossover frequency: Consider Then the relation between strictly positive realness aed th
another straight lin@l, in the complex plane tangent to the

. o ’ - quadratic stability can be stated in the following theorem.
unit circle centered at the origin which crosses the negativ. Theorem 1: Considere, (s) andes(s), two stable polyno-

real axis with an anglg (see Fig. 1). The part of; between miais of ordern, then the following are equivalent:

d; and the imaginary axis is a linear approximation of the 1) c1(5) and 22¢) are Strictly Positive Real (SPR)
unit circle in this region. Now, assume that the open-loop c2(s) c1(s) '

Nyquist plot intersectd, at a frequency called,,. From Fig. 2) |arg(er(jw)) — arg(cQ(].w))l <3 W . .

_ . 3) A; and A, are quadratically stable meaning that:
1itis clear that the crossover frequenayis always greater T nxn

e JP=P" >0€R such that

than or equal tav,. Hence,w,, a lower approximation of
the crossover frequency, can be used as a measure of the ATP+pPA <0 , ATP+PA, <.
time-domain performance or the closed-loop bandwidth. Proof: See Appendix A. [ |

3) Optimization for robustness and performance: Opti-  This theorem is useful to create new linear constraintsén th
mizing the robustness consists of maximizing the lineaklyquist diagram to ensure the quadratic stability of multi-
robustness margin. model systems.




B. Linear Constraints to Ensure Quadratic Stability

To ensure the quadratic stability of multi-model systems,
the idea is to transform the properties given in Theorem 1
into linear constraints on the open-loop Nyquist curves. Le
us consider the following ratio:

1+ K(s)G1(s)

14 K(s)Ga(s)
(Ka(s)Gaa(s) + Kn(5)Gn,(5)) Gaa(s)
(Ka(5)Ga2(s) + Kn(s)Gna(s)) Gaals)

It should be noted thak';(s)Gq.1(s) + Kn(s)Gn1(s) is the
characteristic polynomial of one of the stable closed-loop
system thus, it can be replaced hys) and K4(s)Ga,2(s) +

K, (s)Gn2(s) is the characteristic polynomial of the other
stable closed-loop system and can be replaced:dy).
Thus, (12) can be written as:

1+ K(s)Gi(s)  ci(s) Gaa(s) (13) r&%u; Stla_libr}fiete;rgo)nstraints for quadratic stability whér{w) = 0 and for
= . ).

1+ K(s)Ga(s)  ca(s) Gaa(s)
By simple manipulations we get:
ci(s) 14 K(s)Gi(s) Gaa(s) to be tQ assure r_obust and quadratic_ _stability is smallar tha
= . (14)  the region assuring only robust stability.
c2(s) 14+ K(s)G2(s) Gaz2(s) . . .
) Since the open-loop transfer functions are strictly prpper
Using the second property of Theorem 1, the closed-logpjs impossible to respect the constraints definedipyand
system is quadratically stable iff: d; at high frequency as depicted in Fig. 2. At high frequency,
) ) ) ) the region defined by, andd; should include the origin of
|arg(1+ K (jw)G1(jw)) — arg(l + K (jw)Ga(jw))+ the Nyquist diagram. This problem is solved by defining the
arg(Gg1(jw)) — arg(Ga2(jw))| < T Y. (15) linesd, andd; as a function of the frequency. To do it, a

_ 2 desired open-loop transfer functidr(s) is introduced. For
Replacing arg(Ga,1(jw)) — arg(Gaz2(jw)) by A(w), we each frequencyy, andd, are defined such that the vector

(12)

d; ¥

K (jw)Ga(jw)

have: 1+ L4(jw) is the angle bisector of the two lines. In other
T ) ) words, d; and d,, have a phase difference of, respectively,
3 Aw) < arg(l + K(jw)Gi(jw)) - —7/4 and /4 with respect tol + L4(jw).

; ; T_ This idea works for the simple case whéx(w) is zero
arg(l + K (jw)Ga(iw)) < 2 Aw) Ve (16) but, for the more general case whariw) is ci!frferent from
It should be noted thah (w) is known since the parametric Z€ro, K (jw)G1(jw) and K (jw)G2(jw) have to be located
models of the systems are known. These inequalities cémdifferent regions. Examining Inequality (16), theseioeg
be simply transformed into linear constraints in the Nyguisshould have an offset of\(w) between them. This is why
diagram. K (jw)G1 (jw) should be between the linds;, andd,, 1 (d; 1
Let us consider the simple case whaiw) is zero for all andd,,: have a phase difference of, respectivelyr /4 —
frequencies (the denominators of the two models are equad}(w)/2 and7/4 — A(w) /2 with respect tol + L,(jw)) and

then (16) becomes: K (jw)G2(jw) between the lined; » andd,, 2 (d;,2 andd,,»
have a phase difference of, respectively;,/4+ A(w)/2 and
larg(1l + K (jw)G1(jw)) — arg(l + K (jw)G2(jw))] /4 + A(w)/2 with respect tol + Ly(jw)) (see Fig. 3).
< ng_ (17) The lined,,; can be described by:

In this case, the idea is to add to the lihg assuring the Y= mu1 ()T —my(w) =0 (18)

robust stability, two perpendicular lines, andd; passing \yhere - and y are, respectively, the coordinates of the
through the—1 point to assure the quadratic stability (Se§eg| and imaginary axes anth, (w) the slope ofd,
Fig. 2). If K(jw)G1(jw) and K(jw)Go(jw) are between g the frequencyw. When —37/4 < A(w)/2 < 7/4,
these two lines;y, the difference between the argumentsK(jw)Gl(jw) and Ly(jw) must be on the same side of

of 1 + K(jw)Gi(jw) and 1 + K(jw)G2(jw), is always g ' Thus, this can be expressed by the following linear
less thanr/2, thus respecting Inequality (17). By the way,qnstraint:

it should be noted that Fig. 2 is a good illustration of
the restrictions added by the quadratic stability. Indekd, (Zry (W) = mup (W) R L, (W) — My (w)) (19)
region whereK (jw)G1 (jw) and K (jw)G2(jw) are allowed (PT (71 (W) = M1 (W)R1 (W) = My 1 (w)) >0



Fig. 3.
diagram.

Linear constraints to ensure quadratic stabilitythe Nyquist

whereZ;,(w) and R, (w) are, respectively, the imaginary
and real parts of ;(jw). By examining Fig. 3, we can notice

that, if 7/4 < A(w)/2 < 57/4, K(jw)G1(jw) and Ly(jw)
must not be on the same side &f;, so > in (19) should

be replaced by . For the sake of simplicity, we define the

following function:

fi(Aw)) = Sgn(cos (# + g))

which is negative whem/4 < A(w)/2 < 5n/4. Thus, the

(20)

following linear constraint is defined whatever the value of

Aw)/2 is:
iAW) [Zr, (w) = mui(W)RL, (W) — mu,1(w)]
(0" (1 (w) = M1 (W) R (@) = 1 ()] > 0
(21)
For similar reason we define:
fa) =san(oos (S - T)) (@)

Thus, linear constraints can be written for linés;, d
andd; o:

fa(AW)[Zr, (@)

u,2

—my1 (W) RL, (W) — my1(w)]

(0" (T1 (w) — mu1 (W) Ry (w)) —mya(w)] >0 (23)
Fo(AW)[Zr,(w) = Mu2(w)Rr, (w) — my2(w)]
(0" (Z2(w) = Mu2(W)Ra(w)) — mu2(w)] =0 (24)

fi(Aw))[Zr, (w)
[p" (T2 (w) — My 2(w)Ra(w))

wherem; 1(w), my2(w) andm;2(w) are, respectively, the
slopes ofd; 1, d,, 2 andd, » at the frequencw. It should be

—mya(w)Rr, (W) — my2(w)]
—m2(w)] =0 (25)

noted that when one of these lines is vertical at a particular
frequency, the slope becomes infinity. Thus, the ineqealiti
given above should not be used. For example, (21) should
be replaced by:

FAW)RL, @) +1][p" Ra(w) +

The choice ofL,(s) plays a crucial role since the con-
straints depend on it. There are some simple choices that
usually leads to good results for simple models. For example
Ly = w./s is an appropriate choice for low-order stable
systems.

Finally, these new constraints should simply be added to
the optimization problems defined in [1]. For this purpose, a
sufficient number of frequencies should be chosen between
0 and infinity. For example, when the quadratic stability is
needed, the optimization problem (8) becomes:

1>0. (26)

maximizekg

subject to:
pT (cot a T (wp
fi(A(wr)) I,
[ (Z1(w) —
[

k) +€<1 Ywg, i=1,2.
mu,l( k)R L (Wi) — M1 (wr)]
— My 1(wg)] >0 Vg

f2(A(wr)) ILd(wk) Rig(wi) — mu(we)]

" (1 (wi) — mu1 (W) R (wi)) — mu(wi)] >0 Yy,
f2(A(wp))[Zr, (wi) — M, — muy2(wk)]
[ (Iz(wk) my,2(W k)Rz(wk)) wi)] =0 Vuwy

[ ) —my2(wi)]

wk)] >0 VYwi
(27)

) = Ri(w
(wk)

[ (

In this section, the theory is developed to guarantee the
quadratic stability of multi-model systems composed of two
models. It should be noted that this method can also be
applied to the following class of systems:

« LPV systems with affine dependency on one scheduling
parameter can be quadratically stabilized with a fixed
controller by the proposed approach. It is sufficient to
impose the quadratic stability constraints on the two
open-loop systems corresponding to the extremities of
the range of the scheduling parameter to ensure global
stability.

« LPV systems with affine dependency on one scheduling
parameter only in the denominator can be quadrat-
ically stabilized with an LPV controller with affine
dependency on one scheduling parameter only in the
numerator. Once again, it is sufficient to impose the
quadratic stability constraints on the two open-loop
systems corresponding to the extremities of the range
of the scheduling parameter to ensure global stability.

« Switched systems composed of two subsystems. It is
possible to design a specific controller for each sub-
system. The only constraint is that the two controllers
should have the same basis functions. This is illustrated
in the following section.
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Fig. 4. Nyquist plots of the open-loop transfer functiolis (jw)G1 (jw) Fig. 5. Phase difference between the two characteristignpatials of the
(solid) and K2 (jw)G2(jw) (dashed). closed-loop subsystems.

IV. SIMULATION RESULTS 03
To show the effectiveness of the method, it is applied to 0
the following switched system composed of two subsystems
0.5 1.5 -0.5¢
G == G =
1) = 550105 0 9T G011

The objective is to design a PID controller with the
following structure:

Imaginary axis
I
N

-15
Kgs* + Kps + K;
K(s) = L 28
() s(1+Ts) (28) 2
for each subsystem that maximizes the load disturbanc s ‘ il ‘
rejection. Two cases are treated: first, two controllerd wil I AR

be designed without taking care of quadratic stabilitynthe
two controllers will be designed with the additional lineargig 6. nyquist plots of the open-loop transfer functiokis (jw) G (jw)
constraints, thus assuring quadratic stability. (solid) and K> (jw)G2(jw) (dashed) guaranteeing quadratic stability.

For the first case, the linear programming approach, that
maximizes the load disturbance rejection is used to design
the two controllers. The design variabléss set to 0.8 and desired open-loop transfer functidn;(s) has to be chosen.
o to 75 to get a good modulus margin and a well-damped-a(s) is chosen equal to./(s(1+7's)) wherew, is equal to
closed loop-system. The time constdhof the filter of the 2.5 rad/s. This value is the largest for which the optimati
PID controller is set to 0.1. To be able to use the proposdtioblem is feasible.
method, the subsystents; (s) and G(s) are evaluated at The Nyquist plots of the open-loop transfer functions of
50 logarithmically spaced points between 0.1 and 100 rade two subsystems with the two controllers are shown in
The Nyquist plots of the open-loop transfer functions of th&ig. 6. It can be observed that the Nyquist plots respect
two subsystems with the two controllers are shown in Fig. 4he linear robustness constraint (red line). Finally, thase
It can be observed that the Nyquist plots respect the linedifference between the two characteristic polynomialshef t
robustness constraint (red line). Finally, the phase iffetwo closed-loop subsystems is shown in Fig. 7. It can be
ence between the two characteristic polynomials of the twebserved that for all the frequencies, the phase is smaber t
closed-loop subsystems is shown in Fig. 5. It can be observad?2 in absolute value. It means that the switched system is
that for certain frequencies, the phase difference is greaglobally stable. This is confirmed by the fact that a common
than 7 /2. This means that the switched system composdg/apunov function could be found for the two subsystems.
of these two subsystems is not quadratically stable. This is
confirmed by the fact that no common Lyapunov function
could be found for the two subsystems. In this paper, an extension of the frequency method based

For the second case, the same optimization problem @ linear programming is proposed to design fixed-order
used with the difference that the constraints to ensure tti@aearly parameterized controllers for multi-model sysse
quadratic stability are added. To add these constraints,camposed of two models guaranteeing quadratic stability.

V. CONCLUSIONS



Using a controllable canonical form, (29) leads to the fol-

90
sl lowing state space realization:
As B
70r
{ Ci—Cy |1 } (30)
60r
3 sol with B=[1 0 ... 0]".
? a0l Using the KYP lemma, (30) is SPR iff:
[}
T 30 3P =P" > 0s.t.
201 ATP+PA PB— (C; — Cy)T
2 2 1 2
10 |: BTp_— (Cl _ Cg) _9 < 0. (31)
or Using the Schur lemma, we have:
-10- : : 1
10" 10° 10" 10° ATP+PA+-[PB—(C,—Cy)T|[BTP—(C1 - ()] < 0.
Frequency (rad/s) 2 (32)
Fig. 7. Phase difference between the two characteristnpatials of the ~Adding and substractingPB(Cy —C2)+ 3 (C1 —C2)T BT P
closed-loop subsystems guaranteeing quadratic stability to (32), we get:

(A — B(Cy — C2))TP + P(Ay — B(Cy — Cy))+
The method is based on frequency loop shaping in the 1 TN T
Nyquist diagram. Classical robustness and performanae spe Q(PB +(C1 =) )(B P+ (C1 = () <0. (33)
ifications are represented by linear constraints. The @ui@dr knowing thatA, = A, — B(Cy — Cs) gives:
stability is ensured by adding linear constraints based on
the phase difference of the two characteristic polynontéls A7 P+ PA;+
the closed-loop systems. This method can also be appliedto 1 TN f T
switched systems composed of two subsystems and to LPV Q(PB —(C2 =) )(B P~ (C2 = (1)) <0. (34)
systems whose scheduling parameter has an affine depsjhce the third terms in (32) and (34) are positive semi-
dency in the closed-loop expression. Future work consists gefinite, we obtaiMTP + PA; < 0 and AT P + PA, < 0.
extending this method to multi-model systems composed qfis proves thatd; and 4, are quadratically stable.
more than two models. (38) = (1): This equivalence is proved using the bounded

real lemma. IfA; and A, are quadratically stable, it means
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