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Abstract—Edge devices must support computationally demand-
ing algorithms, such as neural networks, within tight area/energy
budgets. While approximate computing may alleviate these con-
straints, limiting induced errors remains an open challenge. In
this paper, we propose a hardware/software co-design solution
via an inexact multiplier, reducing area/power-delay-product
requirements by 73/43%, respectively, while still computing exact
results when one input is a Fibonacci encoded value. We introduce a
retraining strategy to quantize neural network weights to Fibonacci
encoded values, ensuring exact computation during inference. We
benchmark our strategy on Squeezenet 1.0, DenseNet-121, and
ResNet-18, measuring accuracy degradations of only 0.4/1.1/1.7%.

Index Terms—neural networks, quantization, accelerators, ap-
proximate computing

I. INTRODUCTION

With the continued expansion of the Internet of Things,
computationally intensive applications are becoming ubiquitous
on embedded devices [1]. Particularly, Deep Neural Networks
(DNNs) are nowadays applied to a wide range of applications,
including image recognition [2], object detection [3], and
natural language processing [4]. To support complex DNNs
within the tight constraints characterizing IoT systems, a wide
range of optimization strategies have been proposed, including
algorithmic [5], [6] and hardware [7], [8] approaches.

From the hardware perspective, approximate computing is
well suited to DNNs, as they are naturally robust against
minor runtime perturbations [9]. As such, various approximate
computing architectures have been proposed for enhancing DNN
efficiency. Even so, approximation error still degrades accuracy,
necessitating an assortment of solutions such as limited neuron
approximation [10], [11], or ensemble networks [12]. Accuracy
degradation can also be mitigated through retraining while
simulating the functionality of the Approximate Multiplier (AM);
however, such retraining cannot be efficiently accelerated by,
for example, GPUs, thus increasing training time by hours or
days [13]. Further, many works do not utilize AMs uniformly
across the network [11], [13], reducing generalizability in the
case of hardware implementation.

In this work, we address the challenges of DNN retraining
and uniformity via a hardware/software co-design solution,
coupling hardware approximation with DNN optimization. We
first propose a carryless partial sum AM to increase DNN matrix
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multiplication efficiency. By discarding the carry bit during
partial product summation, we convert 58% of the multiplier’s
full adders into xor or or gates, greatly reducing area, power
consumption, and delay. This AM has the unique benefit of
computing exact values if at least one input is Fibonacci encoded;
that is, its binary form contains no consecutive ones.

To eliminate accuracy degradation due to error injected by
the AM, we then propose a weight quantization strategy to
guarantee exact multiplication results during inference. First,
Fibonacci Code Quantization (FCQ) encodes weights to the
closest Fibonacci code word, thus eliminating errors during
partial product summation. We then use Incremental Network
Quantization (INQ) and retraining to eliminate accuracy loss due
to FCQ. As FCQ guarantees exact outputs from our inexact AM,
we can perform retraining without AM simulation, drastically
reducing retraining time. We explore three INQ strategies across
three DNNs, namely, ResNet-18, DenseNet-121, and Squeezenet
1.0, on the CIFAR-100 dataset. Our results demonstrate the
possibility to achieve full FCQ with only 0.4%, 1.1%, and 1.7%
accuracy degradation, respectively.

The contributions of this paper are as follows:

• We propose a carryless partial sum Approximate Multiplier
(AM) that replaces 58% of an 8-bit standard multiplier’s
full adder operations with or logic. We implement our AM
in 65nm TSMC CMOS and analyze its area and power-
delay-product reductions (73/43%, respectively), as well as
its mean relative error distance (0.054) against other AMs.

• We propose Fibonacci Code Quantization (FCQ), a strategy
for weight quantization such that weights produce exact re-
sults when multiplied via our AM. FCQ reduces retraining
time by 300x compared to retraining with other AMs.

• We utilize Incremental Network Quantization (INQ) to
recover accuracy lost due to FCQ. We explore multiple INQ
strategies across three benchmarks, namely, Squeezenet 1.0,
DenseNet-121, and ResNet-18, demonstrating full FCQ
with accuracy losses of 0.4%/1.1%/1.7%, respectively.

The remainder of this paper is organized as follows. Sec-
tion II discusses background work. Section III details our AM
implementation. Section IV explains how FCQ eliminates AM
errors. Section V details our INQ strategy for regaining accuracy.
Sections VI and VII detail our benchmarking process and
analysis, and contextualizes this work among other approximate
DNN publications. Finally, Section VIII concludes the paper.
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Fig. 1. Karnaugh maps for an exact half adder, as well as or and xor gates.
While xor gates compute the sum value exactly in all instances, or gates
provide the least error when the carry value is considered.

II. BACKGROUND LITERATURE

This section introduces background concepts relating to this
work. Section VII-C will contextualize this work among previous
works proposing AMs for use in DNNs.

A. Approximate Multiplication

The objective of approximate multiplication is to reduce
the area footprint, power consumption, and delay of a multi-
plier by approximating/simplifying aspects of the architecture.
Kulkarni et al. [14], for example, modifies the Karnaugh Map
of a 2x2 building block multiplier to halve its area. Another
approximation method is the reduction of the partial product
summation tree complexity, e.g., by performing partial product
summation for only a portion of product MSBs, while combining
the LSBs via a low cost combinatorial method [9]. Thirdly, the
full adder blocks can be approximated through a variety of
methods [15]. Finally, use of genetic algorithms to generate
Pareto optimal AMs has been demonstrated to be effective [11],
[13]. This work belongs to the third category, as it modifies the
partial product adder array by replacing a portion of full adder
elements with simpler gates to reduce area, power, and latency.

B. Neural Network Quantization

Previous works have proposed various neural network weight
quantization schemes to better meet the power, performance, and
memory constraints of embedded devices. Low precision quan-
tization of weights to fixed-point integers could be considered a
baseline [16], but more aggressive weight quantization strategies
have been proposed, such as power of 2 quantization [5] or
weight+activation quantization [17]. Aggressive quantization
strategies require care to maintain acceptable accuracy. One
such method that maintains high accuracy under aggressive
quantization is Incremental Network Quantization (INQ) [5].
INQ quantizes a fraction of weights at each training epoch,
before retraining the remaining weights to regain lost accuracy.
In this work, we utilize INQ to quantize DNN weights to values
that do not incur error when utilized with our AM.

III. CARRYLESS PARTIAL SUM APPROXIMATE MULTIPLIER

In the scope of improving DNN efficiency via approximate
computing, we introduce a carryless partial sum multiplier.
We accomplish this by simplifying a portion of Full Adders
(FAs) within the adder tree to or or xor logic, as shown in
Figure 2-a. This modification greatly reduces multiplier area,
power consumption, and delay, at the cost of potentially intro-
ducing approximation error. We describe a weight quantization
methodology for avoiding such errors in Section IV.
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Fig. 2. (a) 4-bit multiplication with carryless partial product summation enabled
by or gates. (b) 8x8 adder array with FA gates replaced by or gates to reduce
area and power consumption. The ratio of replaced adders approaches a limit
of 50% as bit width increases.

A. Selection of Reduction Operator

When simplifying the FAs, two viable replacement options
consist of or and xor gates. A xor gate advantageously
produces only one incorrect bit with inputs ab = 11, as seen
in Figure 1. In contrast, or gates require fewer transistors and
produce a closer exact value for ab = 11. Indeed, we find that
for all input combinations for an 8-bit multiplier, the Mean
Relative Error Distance (MRED), or average distance for every
approximate and expected product, is 0.99 for a xor based AM,
while the MRED of an or based AM is only 0.054. This work
therefore utilizes or gates for partial product reduction [18].

B. Approximate Multiplier with Partial Product Or Reduction

Figure 2-b illustrates our AM architecture applied to a carry
save multiplier. Initially, an n-bit carry save architecture contains
(n − 2) ∗ n FAs and n − 1 half adders. To implement our
AM, we replace the adders responsible for partial product
summation with or gates, visible as green boxes. The remainder
of adders, symbolized by blue and orange boxes, accumulate the
intermediate values into the final product and are left unchanged.
Hence, the number of FAs replaced can be calculated via the
equation n2−n

2 . At 4 bits, the ratio of replaced FAs is 75%; this
ratio decreases to 50% as multiplier width is increased.

One setback of this (and indeed, most) AMs is their injection
of approximation errors into applications. It would be preferable
to be able to predict for which inputs an AM will produce
exact or erroneous results. For a carryless partial sum AM, such
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Fig. 3. Naive carryless partial sum multiplication will lead to errors and reduced
accuracy (a). Such errors can be avoided by quantizing NN weights according
to Fibonacci code words (b).

prediction is possible, a fact which we exploit in the next section
to enhance neural networks with approximate multiplication
while maintaining a high output accuracy.

IV. FIBONACCI CODE WORD QUANTIZATION FOR DNNS

A. Motivation

The AM proposed in Section III provides significant re-
ductions in area, power consumption, and delay, which will
be quantified in Section VII; however, it’s naive utilization
in a neural network would introduce unacceptable accuracy
degradation. It has been demonstrated previously that retraining
an AM-enhanced DNN recoups lost accuracy [19]. However,
in order to retrain the network, it is necessary to simulate the
functionality of the AM, for example via a lookup table [13].
AM simulation while retraining prohibitively increases training
time (15 days for ResNet-18 retraining [13]) by precluding the
use of hardware components such as vector processors or GPUs.
While this has proven a challenge for previous works, the AM
proposed in this paper enables a novel method of retraining
without AM simulation via Fibonacci code word quantization.

B. Countering Approximation Errors Via Weight Fibonacci
Coding Quantization

Approximate multipliers by their nature introduce errors into
the product of the operation. For the AM proposed in Section III,
the introduced error is illustrated in Figure 3-a, namely, if two
partial products contain overlapping ones, the resulting value
will be incorrect. To avoid such errors, we propose to quantize
weights such that errors will not occur when reducing partial
products. This is accomplished by quantizing weight values to
the closest Fibonacci code word [20], that is, the closest value
such that no consecutive ones appear in the binary representation
of at least one of the operands, as illustrated in Figure 2. The
result of such a quantization is that the sum of any two partial
products is equivalent to a bitwise or operation between them,
enabling them to be summed exactly. Such a quantization and
multiplication is illustrated in Figure 3-b. Importantly, only one
multiplier input need be a Fibonacci code word to guarantee
an exact output; the other input can be any value between 0
and 2n − 1. This qualification is necessary for utilization in a
DNN without needing to also modify layer inputs. We coin this
method of quantization Fibonacci Coding Quantization (FCQ).

Algorithm 1 Incremental Fibonacci code quantization and
retraining flow.
Input: f model: Float Model, strategy: INQ Strategy,
q steps: INQ Steps, r epochs: # Retraining Epochs
Output: Fibonacci Code Quantized Model

1: def fib quantize(f model, strategy, q steps, r epochs):
2: q model = quantize(f model)
3: for i = 0; i < len(q steps); i++ do
4: q model = fib enc and freeze(q model, q steps[i])
5: f model = dequantize(q model)
6: for j = 0; j < r epochs; j++ do
7: f model = train(f model)
8: end for
9: q model = quantize(f model)

10: end for
11: return q model

C. Quantization Parameters for Fibonacci Code Quantization

FCQ is based on the low-precision general matrix multipli-
cation (gemmlowp [16]) method. In gemmlowp, a scale and
zero-point value for the weights of each layer are calculated
such that the weight matrix can be scaled between minimum
and maximum fixed-point values and the real value of 0 is
exactly representable. FCQ builds on gemmlowp by further
quantizing the fixed-point values to Fibonacci code words. A
few considerations must be made to ensure that FCQ can be
co-implemented with gemmlowp.

First, when quantizing a network, the range of values to which
the weights are quantized must be considered. In gemmlowp, this
is typically the range of signed values a given n-bit binary value
can represent, e.g. -128 to 127 for 8-bit signed values. In the
case of FCQ, asymmetric quantization is used, with a minimum
value of 0 and a maximum value quantmax of 2n − 1. This is
necessary as small two’s complement negative values contain
many consecutive ones and thus are poorly represented as
Fibonacci code words. Bias values are not encoded to Fibonacci
code words as they are not involved in multiplication.

FCQ imposes further constraints on the upper range of
quantizable values, as the maximum possible unsigned n-bit
value Fmax a weight can take is ’10’ repeating for n/2 bits
(e.g. 10101010 or 170 for 8-bit values), with any value above
this being clamped to Fmax. In order to maintain weight value
variance while preventing an excessive quantity of weights from
being clamped to this maximum value, we select a qmax value
of (quantmax+Fmax)

2 , midway between the max quantized and
max Fibonacci values (212 for 8-bit values).

Finally, in conjunction with asymmetric quantization, we find
that using max pooling layers in contrast with average pooling
layers provides higher network accuracy, as such layers are less
impacted by the elimination of negative values.

Extreme forms of quantization, e.g. FCQ as presented
here, typically induce unacceptable levels of accuracy loss if
implemented in isolation. We overcome this barrier through the
use of Incremental Network Quantization (INQ) [5] to recover
lost accuracy due to FCQ.
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Fig. 4. Three incremental quantization strategies for Fibonacci incremental
retraining; (a) Random, (b) Proximal, and (c) Distant. In each retraining step, a
fraction of weight values are quantized to the nearest Fibonacci code word and
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V. IMPROVING ACCURACY THROUGH INCREMENTAL
NETWORK QUANTIZATION

A. FCQ as an Enabler for Approximate INQ

In INQ, weight values are incrementally quantized to a range
or set of values and then frozen while the remainder of the
network is retrained to mitigate the subsequent loss in accuracy.
In previous works, INQ as a method to recover lost accuracy due
to approximate multiplication would lead to prohibitively long
training times, as the AM must be simulated via a lookup table
during training [13]. However, as discussed in Section IV-B,
the AM presented in Section III necessitates that only one input
value be a Fibonacci code word, while the other input may take
any value. This characteristic enables us to retrain the network
without needing to simulate the AM, as Fibonacci quantized
weights are guaranteed to produce exact products.

Algorithm 1 illustrates our methodology for performing FCQ
via INQ. At each iteration, we quantize the network to 8-bits,
perform FCQ on a fraction of the weights, freeze their values,
then convert the model back to floating point. We then retrain
the remaining values to regain accuracy. These steps are repeated
until FCQ has been applied to all weights.

B. Incremental Quantization Strategies

In order to implement INQ, a strategy to iteratively quantize
weights must be selected. We propose three such strategies,
random, proximal, and distant, as illustrated in Figure 4.
Random allocates weights randomly to quantization steps. This
has the advantage of being easy to implement, but is simplistic.
Proximal allocation orders weights for quantization by proximity
to the nearest Fibonacci code word. This strategy results in the
least perturbation in the early stages of training, reducing the
chance of placing the network in an unrecoverable state.
Distant allocation quantizes weights in reverse order of the
proximal strategy. This strategy performs most retraining in the
early steps, allowing more potential for recovering lost accuracy
as fewer weights are frozen during steps of greatest quantization.

TABLE I
CUMULATIVE FRACTION OF WEIGHTS TO QUANTIZE AT EACH

INCREMENTAL QUANTIZE-AND-RETRAIN STEP

Strategy Cumulative Fraction of Weights Quantized

Random [0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,
0.55,0.60,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0]

Proximal [0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.98,0.99,
0.995,0.998,0.999,0.9995,0.9998,0.9999,1.0]

Distant [0.001,0.0025,0.005,0.01,0.025,0.05,0.1,0.15,
0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

For each quantization strategy, we define the cumulative
fraction of weights to be quantized at each step. For the random
strategy, the fraction of weights increases uniformly from 0.0
to 1.0. For proximal, we take an aggressive approach towards
initial quantization, as the first weights quantized are closer to
a Fibonacci code word. Conversely, for the distant strategy, we
perform initial quantization conservatively, as weights furthest
from a Fibonacci code word are first encoded. Table I details
the fraction of weights to quantize at each step for random,
proximal, and distant FCQ strategies.

VI. EXPERIMENTAL SETUP

We perform a hardware assessment of our proposed AM
via implementation in 65nm TSMC CMOS [21] to allow area,
Power-Delay-Product (PDP), and MRED comparisons against
state-of-the-art AM multipliers [15]. We also compare against
a subset of AMs from the EvoApprox8b [22] library which
are optimized with respect to MRED and power consumption.
EvoApprox8b is a set of Pareto-optimal evolved AMs generated
by genetic algorithms that have been utilized in previous works
to improve neural network efficiency [13]. Finally, we compare
against a 6-bit incrementally quantized network, as 6 bit weights
enable 64 unique values, comparable to the 55 weight values
enabled by FCQ quantization.

To assess our weight quantization and retraining strategy, we
implement FCQ-INQ on the DenseNet-121 [23], Squeezenet
1.0 [24], and ResNet-18 [25] DNNs in PyTorch, over the CIFAR-
100 database, and analyze accuracy over random, proximal, and
distant quantization strategies against standard 8-bit quantization.
We also perform OneShot FCQ in which we quantize all weights
in one go. We add a hyperparameter, Iterative Steps (IS), which
contains the fraction of weights to quantize at each step, defined
by the values detailed in Section V. We start the retraining stage
with a learning rate of 8E-4 and decrease it by a factor of 0.2
when the loss value plateaus, stopping once either the learning
rate drops below 1E-6 or 24 epochs are completed. All trainings
and inferences are performed with an NVIDIA Tesla T4 GPU.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hardware Synthesis and Analysis

As we are modifying the partial product adder tree, we
compare our design against those described in [15], hereafter
called the FA Approx library, as well as AMs from the
EvoApprox8b library. Area and PDP results are illustrated in
Figure 5-a. It should be noted that the EvoApprox library is
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Fig. 5. (a) Area and Power-Delay-Product (PDP) reduction comparison between
this work against other AMs for 8x8 multiplier architectures. (b) Mean Relative
Error Distance (MRED) of this work in comparison to other AMs. This work
presents high area and PDP reductions in relation to its low MRED.

implemented in 45nm CMOS; however, the relative area/PDP
reductions are still relevant to this analysis. Red points belong to
the FA Approx library, which contains two subsets of AMs, one
with a fully approximated adder tree, and the other with only
LSB approximation. Blue points represent the EvoApprox8b
AMs. As can be seen, our AM design provides area/PDP
reductions of 73/43%, respectively, with greater area reduction
than any FA Approx AM and all but the smallest Evo AM.
These reductions are impressive given that only 58% of the FAs
were converted into or gates, whereas the works in comparison
with better reductions consist entirely of approximate FAs.

Figure 5-b illustrates the MRED of the AMs in comparison.
As can be seen, this work outperforms all fully and most partially
approximate AMs from the FA Approx library. Most EvoApprox
AMs provide better MRED; however, when taken in conjunction
with Figure 5-a, this work provides a stronger trade-off between
area, PDP, and MRED. Even with a low MRED, retraining is
still necessary to recoup lost accuracy. We therefore analyze
FCQ-INQ retraining features in the next section.

B. Retraining Analysis

In order to demonstrate the importance of FCQ, we perform
inference with DenseNet-121 on a set of 10000 images divided
into 40 batches of 256 images per batch, while simulating an
AM from the FA Approx library via the technique described
by Mrazeck et al. [13]. To complete the entire set with AM
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Fig. 6. DenseNet-121 accuracy during the quantization/retraining process
utilizing the distant retraining strategy. Retraining enables to recoup nearly all
accuracy loss. Weights are quantized conservatively, as described in Section V-B.
The blue line represents the percentage of weights quantized at each step.

TABLE II
ACCURACY DEGRADATION FOR QUANTIZATION STRATEGIES AFTER

INCREMENTAL QUANTIZATION

Network ResNet-18 DenseNet-121 Squeezenet
1.0

Float Acc. (%) 75.28 77.47 69.24
Quantized Acc. (%) 75.16 (-0.43) 76.37 (-0.10) 68.85 (-0.39)
6b Quant. Acc. (%) 73.78 (-1.5) 67.28 (-1.96) 71.42 (-6.05)

OneShot Acc. (%) 72.42 (-2.86) 64.76 (-12.71) 60.2 (-9.04)
Random Acc. (%) 73.05 (-2.23) 74.62 (-2.85) 66.83 (-2.41)
Proximal Acc. (%) 73.04 (-2.24) 71.64 (-5.83) 65.25 (-3.99)
Distant Acc. (%) 73.54 (-1.74) 76.37 (-1.1) 68.86 (-0.38)

simulation takes ∼20 minutes. In comparison, the same set of
inferences without AM simulation takes only 4-5 seconds, or
240-300x faster. Through FCQ, we avoid AM simulation, and,
hence, we can retrain our network without drastic slowdown.

Figure 6 illustrates the accuracy loss during FCQ and
subsequent recovery during retraining for DenseNet-121. It is
clear that retraining is necessary to maintain network accuracy,
as even FCQ for 0.1% of weight values reduces accuracy by
62%. Via fast retraining, however, we recover almost all lost
accuracy. The ability to fast retrain is nearly unique to the
AM presented in this work; all AMs in the FA Approx library,
and all but 2 AMs in whole EvoApprox8b library (totaling 46
multipliers) depend on both inputs to ascertain the accuracy
of the output, with the 2 Evo AMs providing only 4/7% and
0.7/5% area/power reductions.

Table II details the results of FCQ on the selected benchmarks.
As can be seen, 8-bit weight quantization leads to little accuracy
degradation. We then perform FCQ using the aforementioned
ICQ strategies. Accuracy degradation for the OneShot strategy
is predictably poor, as only bias and batchnorm hyperparameters
can be retrained. Next, the random strategy provides reasonable
results across all networks. Interestingly, random FCQ performs
better than the proximal strategy, due to the aforementioned
fact that little training is done in the early retraining stages. In
contrast, the distant strategy recovers nearly all lost accuracy
across all networks, resulting in degradations of only 0.4%, 1.1%,
and 1.7%. FCQ also generally outperforms 6-bit quantization
as the variance of quantized values is higher in FCQ.



TABLE III
COMPARISON OF THIS WORK TO OTHER APPROXIMATE MULTIPLIER DNNS

Work Dataset Retrain/Uni./ Energy Accuracy
Depth Reduction Loss

ApproxANN [10] MNIST Slow / No / -35% -0.5%
2015 CIFAR-10 Unspecified -51% -0.5%

Jiao [26] MNIST No / Yes / Low -48% -1.0%
2018

ALWANN [13]
2019

CIFAR-10 No / No / High -30%
-0.6%
-0.9%
-1.7%

This work CIFAR-100 Fast / Yes / High -39%
-0.4%
-1.1%
-1.7%

C. Comparison to the State-of-the-Art

As the multiplication operation consumes a sizable portion of
total energy cost of inference [13], significant research has been
performed to implement approximate multiplication for DNNs.
Several works [11], [13] utilize genetic algorithms to explore the
multiplier design space and simulate the impact of approximation
on each layer and neuron of the neural network. These works
utilize non-uniform AM architectures across the network as well
as in some examples mixing AM architectures within a network,
demonstrating impressive energy, area, and delay values for the
network and dataset but eliminating flexibility to other networks
and datasets when implemented in hardware. Many works also
require retraining during or after insertion of AMs [10], [11].
Such retraining requires that the approximate multiplier be
simulated, precluding the use of hardware optimizations for
vectorized multiplication and increasing inference time to hours
or days for deeper networks [13]. Finally, partly as a result
of the prohibitive cost of retraining, most works thus far have
targeted simpler datasets such as MNIST, CIFAR-10, or SVHN.

Therefore, our work differs from the majority of AM based
neural networks in 3 aspects: 1) Our AM architecture guarantees
exact outputs when weight values are properly quantized. This
means that it is not necessary to simulate the AM, which leads
to the second benefit of this work, 2) network retraining can be
performed with hardware optimizations via standard vectorized
multiplication. This enables for much deeper approximated
networks than has been demonstrated in the state-of-the-art, as
well as fast exploration of the hyperparameter design space,
while still providing large area and power reductions. Finally,
3) The design is applied uniformly across the network, and has
thus been demonstrated as generalizable to networks of various
depths and feature types such as Squeezenet’s Fire modules and
ResNet’s residual functions.

Table III compares this work with other state-of-the-art works
across various features, such as dataset, necessity of retraining,
uniformity and network depth. As can be seen, the presented
work demonstrates state-of-the-art accuracy while maintaining
hardware uniformity across the network. While incremental
retraining is utilized, it is performed with hardware acceleration,
enabling approximation even in deep networks.

VIII. CONCLUSION

In this work, we have presented a hardware/software co-
design solution for reducing the area, power, and delay costs of
DNN multiplications. Our carryless partial sum AM replaces
over half of a multiplier’s full adders with or gates, reducing
area and PDP by 73/43%. This AM also performs exact multi-
plications when one input is a Fibonacci code word. We exploit
this characteristic by incrementally Fibonacci quantizing and
retraining DNN weights. Our methodology reduces inference
runtime during retraining by 240-300x, while our benchmarks,
Squeezenet 1.0, DenseNet-121, and ResNet-18, incur very small
accuracy losses of 0.4/1.1/1.7% for the CIFAR-100 dataset,
while still benefiting from approximate multiplication.
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