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Abstract. In many clinical applications, 3D reconstruction of patient-specific 
structures is of major interest. Despite great effort put in 2D-3D reconstruction, 
gold standard bone reconstruction obtained by segmentation on CT images is still 
mostly used – at the expense of exposing patients to significant ionizing radiation 
and increased health costs. State-of-the-art 2D-3D reconstruction methods are 
based on non-rigid registration of digitally reconstructed radiographs (DRR) – 
aiming at full automation – but with varying accuracy often exceeding clinical 
requirements. Conversely, contour-based approaches can lead to accurate results 
but strongly depend on the quality of extracted contours and have been left aside 
in recent years. In this study, we revisit a patient-specific 2D-3D reconstruction 
method for the proximal femur based on contours, image cues, and knowledge-
based deformable models. 3D statistical shape models were built using 199 CT 
scans from THA patients that were used to generate pairs of high fidelity DRRs. 
Convolutional neural networks were trained using the DRRs to investigate auto-
matic contouring. Experiments were conducted on the DRRs, and calibrated ra-
diographs of a pelvis phantom and volunteers – with an analysis of the quality of 
contouring and its automatization. Using manual contours and DRR, the best re-
construction error was 1.02 mm. With state-of-the-art results for 2D-3D recon-
struction of the proximal femur, we highlighted the relevance and challenges of 
using contour-driven reconstruction to yield patient-specific models. 
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1 Introduction and related work 

3D reconstruction of patient-specific bone anatomy is of growing interest in many clin-
ical applications, such as surgery planning, personalized implant design, and postoper-
ative analysis [1], [2]. Focusing on total hip arthroplasty (THA), 3D reconstruction of 
the proximal femur enables better surgical planning and design of patient-specific sur-
gical instruments – ultimately leading to more positive outcome for the patient. Today, 
gold standard reconstruction of bones is mainly obtained by segmentation on computed 
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tomography (CT) images [3] for planification purpose. However, this comes at the ex-
pense of exposing patients to significant ionizing radiation and increased health costs 
[1]. Alternatively, 2D-3D reconstruction offers a cost-efficient mean of obtaining pa-
tient 3D models from a few calibrated 2D X-ray images, while reducing ionizing dose.  

2D-3D reconstruction tries to solve the challenging problem of recovering 3D infor-
mation from partial 2D information. In orthopedic surgery, the shape and pose of 3D 
bony structures need to be recovered from single or multiple X-ray images [2]. If the 
3D shape is known, 2D-3D reconstruction is equivalent to a rigid registration problem 
solved by optimization techniques [4]. Otherwise, shape and pose are estimated by non-
rigid registration techniques often coupled with statistical models of shape and intensity 
appearance of the structures [5]. Most of these methods assume that X-ray imaging is 
calibrated1 or implement a calibration procedure. Though it is the case in our study, we 
will not cover the calibration process – being out of the scope of this publication. 

Non-rigid 2D-3D reconstruction approaches encode prior information about the 3D 
shape and appearance of the targeted structure in deformable models. These 
knowledge-based models can be manipulated to best fit the patient’s target structure in 
the 2D images. Most approaches use a reference template of the structure features, 
whose variations are modeled by analytical [2], [6] but mostly statistical [5], [7]–[15] 
representations. To obtain patient-specific 3D reconstructions, deformable models are 
transformed using information inferred from X-ray images using two possible strate-
gies: (a) correspondence of features or (b) simulated X-ray images. (a) tries to minimize 
the distance between features (e.g., contours) extracted on both the deformable model 
and the X-ray images – making the strategy particularly sensitive to the quality of ex-
tracted features [16]. (b) generates DRR from the deformable model and optimizes the 
image similarity between the DRR and X-ray images [5]. This strategy bypasses ex-
plicit feature extraction but is computationally time-consuming and usually requires 
close initialization.  

Historically, 2D-3D reconstruction methods only took shape into account, using sta-
tistical shape models (SSMs). Since then, models including intensity or appearance – 
referred to as statistical shape and intensity models (SSIMs) – have been studied to 
include bone density. Lately, deep learning (DL) algorithms have also been applied to 
2D-3D reconstruction of bones [17], [18]. 

In terms of reconstruction accuracy, state-of-the-art SSIMs methods yield recon-
struction errors ranging from 1.18 to 4.24 mm [5]. A bone reconstruction error of 1 to 
1.5 mm with successful registration in 95% of the time has been suggested as a good 
performance indicator [5], [19]. However, the maximum tolerated error depends on the 
target application, as e.g., this suggested maximum error can be excessive to design 
patient-specific implants and surgical instruments in case of THA. Lastly, comparison 
of bone reconstruction errors on different bony areas should be considered with care – 
the degree of superimposition of confounding structures in X-ray images being differ-
ent (e.g., more challenging for the hip compared to the knee).  

 
1  Calibration parameters include e.g., source-detector distance, pixel size, central point, relative 

transformations between multiple images, etc. 
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These observations motivated us to revisit the development of a patient-specific 2D-
3D reconstruction method for the proximal femur based on a novel combination of 
contours, image cues, and knowledge-based deformable models, with a focus on the 
detailed analysis of the quality of the contours, their impact on the reconstruction and 
their possible automation. Another contribution also lies in the preparation and evalua-
tion of a high-quality synthetic dataset derived from a large number of real pathological 
cases of the hip joints prior to THA surgeries.  

2 Method and material 

In the following, we present our methodology with the processed datasets to train and 
evaluate our approach.  

Statistical shape models. We collected 199 anonymized CT images of the hips from 
THA patients (aged 16 to 94, median 71 years) including gold-standard bone recon-
structions performed semi-automatically by expert radiographers – resulting in 115 
right and 84 left proximal femurs. Using R3DS Wrap software, we fit, for left or right, 
a same triangular mesh (left: 4585 vertices, right: 4626 vertices) of the proximal femur 
to the gold-standard reconstructions – yielding point correspondence across wrapped 
shapes. Using Generalized Procrustes similarity alignment, all shapes were co-aligned, 
and a subsampled version of each aligned shape was produced (1153 and 1156 vertices 
for left and right sides). Using Principal Components Analysis, left and right multireso-
lution SSMs were finally built using the fine and coarse resolutions [20]. In the follow-
ing, the mean shapes of the SSMs will be denoted as the template shapes.  

Contour definition. Image contours can be manually delineated, estimated by an au-
tomatic approach, or derived from a ground-truth. In any case, we consider contours as 
a collection of 2D pixel points. However, to inject knowledge and robustify the seg-
mentation process, we also produce mapped contours. The idea is to associate groups 
of 3D vertices 𝑀𝑀𝑗𝑗 of the template shape to specific subsets of contour points 𝑚𝑚𝑗𝑗 – re-
sulting in a 2D-3D mapping. For the proximal femur, we defined 6 groups correspond-
ing to the femoral head and neck, the greater and lesser trochanters, and the intertro-
chanteric line and crest. To automatically derive contours, we used a state-of-the-art  
DL architecture, the U-Net++ model [21] that improves the established U-Net approach 
and that we coupled with a RegNetY encoder [22]. Contours were extracted as the 
boundaries of inferred segmentations.  

Knowledge-based deformable model. Model reconstruction aims at deforming the 
template shapes using the calibrated X-ray images to recover the unknown femoral 
shape and pose with respect to the imaging system. Our approach follows the Newto-
nian dynamics-driven model deformation described in [20], in which a shape is de-
formed over time under the effect of forces applied to its vertices. Internal forces 
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enforce model smoothness, local compliance to the initial shape (“shape memory”) and 
similarity to the closest shape generated from the corresponding SSM.  

Image forces ensure meaningful deformation using image gradient and contours. 
Based on the calibrated geometry information, we can identify which shape vertex 𝑃𝑃𝑖𝑖  
contributes to salient image edges, known as the silhouette [23], and project them on 
the X-ray images as image positions 𝑝𝑝𝑖𝑖 . Then, a sampling strategy in a neighborhood 
centered on 𝑝𝑝𝑖𝑖  and directed by the projected mesh normal at 𝑃𝑃𝑖𝑖  is used to probe image 
candidate positions 𝑟𝑟𝑖𝑖 that maximize, gradient direction and magnitude [20] for the im-
age force, and the proximity to contours for the contour force. If the contours are 
mapped, we only consider candidate positions mapped with the group of the corre-
sponding 3D vertex 𝑃𝑃𝑖𝑖  – preventing the incorrect attraction to confounding edges not 
easily distinguishable by gradient information. Image candidates in X-ray image 𝐼𝐼𝑘𝑘 for 
gradient 𝑟𝑟𝑖𝑖

𝑔𝑔 and contour 𝑟𝑟𝑖𝑖𝑐𝑐 forces are then back-projected as 3D lines 𝑙𝑙𝑖𝑖
𝑔𝑔 = �𝑂𝑂𝑘𝑘 , 𝑟𝑟𝑖𝑖

𝑔𝑔� 
and 𝑙𝑙𝑖𝑖𝑐𝑐 = �𝑂𝑂𝑘𝑘 , 𝑟𝑟𝑖𝑖

𝑔𝑔�, where 𝑂𝑂𝑘𝑘  denotes the X-ray source position. Finally, gradient and 
contour forces are defined as spring forces attracting the vertex 𝑃𝑃𝑖𝑖  to the closest points 
on lines  𝑙𝑙𝑖𝑖

𝑔𝑔 and 𝑙𝑙𝑖𝑖𝑐𝑐  [20], with a parameter 𝛼𝛼 weighting the force intensity.  
3D landmarks are computed as the closest points to back-projected lines of 2D land-

marks manually clicked in the images. By defining once the same landmarks on the 
template shapes, we can initialize the pose and global scale of the coarse shape in the 
calibrated geometry coordinate system by similarity alignment of corresponding 3D 
landmarks.  In our case, landmarks were placed on the greater and lesser trochanters, 
and the center and fovea capitis of the femoral head. 

Synthetic X-ray dataset. Since CT images were acquired and used for patient-specific 
THA planning, X-ray images were not included in the dataset. We thus generated for 
each patient a pair of high fidelity DRRs from their CT scan – using a DL approach 
able to model polychromatic X-ray spectra as well as stochastic noise and X-ray scat-
tering [24]. We extended the approach to better model detector response and the effect 
of anti-scatter grids. All acquisition parameters were controlled, leading to a perfect 
calibration for the 398 synthetic images produced. AP and lateral (LAT) views at a 
relative 75° angle were computed with a focal length of 120 cm, a resolution of 
3000x3000 px and a square pixel spacing of 0.15 mm. The simulated X-ray beam char-
acteristics were: 2.5 mm Al filtration, 80 kV and 25 mAs (AP), and 90 kV and 40 mAs 
(LAT). An anti-scatter grid with a 16:1 ratio was modelled. Though DRRs are not per-
fect X-ray images, the adopted DL method produces more realistic results than simple 
ray-casting approaches. An example of data for one patient is shown in Fig. 1a&b. By 
projecting the silhouette of the reconstructed models onto the DRRs, high quality 2D 
contours were created for both views. Since we wrapped a template model for building 
the SSM, we could identify by closest distance the mapped regions on reconstructed 
models – leading to projected mapped contours. Initialization landmarks were also 
available in 3D segmented models and were projected similarly.  

Real X-ray dataset. Real X-ray images were acquired for a pelvis phantom and three 
volunteers (3 healthy males, aged 32, 37 and 44). After duly filled informed consent, a 
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pair of calibrated X-ray images were shot for each volunteer in AP and LAT views (75° 
angle) in a clinical setup – using a designed protocol aiming at not disrupting the clin-
ical routine, while including a calibration device, and a rotative platform for ensuring 
angle accuracy and minimal leg movement between the shots. Acquisition parameters 
were set to 120 cm, 70 kV (AP) and 75 kV (LAT) with automatic exposure control. 
Femoral bone models were derived from previous MRI acquisitions.  

For the pelvis phantom – containing human bones – a CT scan and manual recon-
struction of the bones were produced. Three AP/LAT acquisitions were performed in 
different setups with varying calibration device position and parameters settings. An 
example of AP X-ray image for the phantom is shown in Fig. 1c.  

 
Fig. 1. Example of synthetic X-ray in AP (a.) and LAT (b.) views, and of real X-ray in AP view 
for the pelvis phantom (c.). The calibration device composed of metallic spheres can be spotted. 

3 Results and discussion 

Experiments for 2D-3D reconstruction of the proximal femur were conducted on both 
synthetic (DRRs) and real X-ray datasets. To thoroughly assess our method accuracy 
with different contouring strategies, we compared the use of reference contours vs au-
tomatically estimated contours, in presence or absence of mapped contours.  

Evaluation metrics and implementation details. For the reconstruction metric, aver-
age absolute surface distance (ASD) was used and statistical significance between dif-
ferent strategy results were assessed using the two-sided Wilcoxon signed-rank test 
with a significance level of 0.01 – results not being normally distributed. Dice similarity 
coefficient (DSC) was used to assess the 2D image segmentation accuracy of the DL 
approach. In synthetic experiments, we used a leave-one-out strategy to train the SSMs, 
while a 10-fold cross-validation was chosen to evaluate the DL segmentation. An au-
tomatic image augmentation [25] was applied to enlarge the training dataset, and a 20-
80% validation-training split was used for each fold.  

Following [20], we empirically set the force parameters based on a fine-tuning with 
3 randomly chosen DRR cases. Deformation took place during 3 stages with 500, 400 
and 300 iterations respectively, during which the coarse shape resolution was used at 
the first stage, and the fine resolution for the remaining stages. Internal forces were 
weighted at each stage according to a specific schedule [20]: shape memory force 𝛼𝛼 =
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0.5; 0.1; 0.3, SSM force 𝛼𝛼 = 0.1; 0.4; 0.1 and smoothing force 𝛼𝛼 = 0.1. For image 
forces, parameters were dependent on the use or not of DL-derived contours (Table 1).  

Table 1. Parameters of image forces in experiments, s being in mm [20]. 

 Without DL-based contours With DL-based contours 
 Gradient force Contour  force Gradient force Contour  force 

stage 𝛼𝛼 𝐿𝐿 𝑠𝑠  𝛼𝛼 𝐿𝐿 𝑠𝑠  𝛼𝛼 𝐿𝐿 𝑠𝑠  𝛼𝛼 𝐿𝐿 𝑠𝑠  
1 - - - 0.1 201 0.2 - - - 0.1 201 0.2 
2 - - - 0.2 141 0.2 - - - 0.2 141 0.2 
3 0.1 21 0.1 0.2 141 0.2 0.2 21 0.1 0.05 141 0.2 

 
Tests were performed on a computer running under Windows 10 with an AMD 

Ryzen 5 3600 6-Core 3.6GHz processor and 32GB RAM. The deformable model was 
implemented in C++ while the U-Net++ approach used Python 3.9 and PyTorch 1.7.1.  

Synthetic dataset results. On the large DRR dataset our 2D-3D reconstruction method 
was tested in optimal (perfect calibration and reference contours, as exemplified in Fig. 
2a. in green) and automatic (DL method for extraction of contours) conditions. The 
higher complexity of LAT view prevented for this view the use of the DL approach. 
Hence, for experiments on automatic contours, AP contours were extracted with DL 
(e.g., Fig. 2a. in red) while reference LAT contours obtained by projection were used. 
In this case, the contours were not mapped.  

Table 2. Mean ASD errors with standard deviations for the different contouring strategies tested 
on the synthetic dataset.  

Reference contours Automatic contours 
not mapped mapped not mapped not mapped, gradient boost  

1.16±1.01 mm 1.02±0.89 mm 1.98±1.89 mm 1.68±1.57 mm 
 
Table 2 presents the results of our method applied on the synthetic dataset with ref-

erence and automatic contours. We obtained the best 3D reconstructions (ASD 
1.02±0.89 mm) when using the mapped reference contours (e.g., Fig. 2b.&d.) – the 
most complete approach. The use of mapped contours improved reconstruction accu-
racy (p-value<1e-12). Despite a satisfactory 2D DSC error of 0.957 (CI at 
95%:[0.95,0.965]), automatic contours were less accurate and led to greater 3D ASD 
error, but still within the range of results of published works. To counterbalance the 
quality of the contours, our approach also takes advantage of image gradients. In the 
case of less accurate contours - as here for automatic contours - the gradient force 
should make it possible to catch up to a certain precision. To verify this, we repeated 
an experiment using the automatic contours with a “boosted” gradient by adding a gra-
dient force at stage 2 (𝛼𝛼 = 0.1, 𝐿𝐿 = 31, 𝑠𝑠 = 0.5) and by increasing the gradient force 
coverage at stage 3 (𝑠𝑠 = 0.2). These results (ASD 1.68±1.57 mm vs 1.98±1.89 mm, p-
value<1e-11) highlight the relevance of using image gradients to improve the robustness 
of the overall approach (cf., Fig. 2c.&e.). From the clinical THA point of view, the 
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highest reconstruction errors were located on the femoral head, which is of a lesser 
interest since it will be resected. The pathological "quality" of a random sample of 58 
femurs (e.g., presence of several or severe osteophytes) was visually checked by 3 ra-
diographers and classified into 3 balanced categories: "good" (19), "fair" (15) and 
"poor" (24). Our manual (mean ASD of 0.98, 1.03 and 0.96) and automatic (DSC of 
0.96, 0.94 and 0.97) approaches appear to be robust to pathological variations. 

 
Fig. 2. Example of (a.) reference (in green) and DL-based (in red) input contours and the projec-
tion of their 3D reconstruction result silhouette in AP for (b.) reference contours and (c.) auto-
matic contours. 3D models with mean ASD error for 115 right femurs are shown for (d.) mapped 
reference contours (ASD 1.06±0.97 mm) and (e.) automatic contours (ASD 1.63±1.53 mm). 

Real X-ray dataset results. Our method has also been tested on six pairs of real X-ray 
images. First on the phantom data, then on the less controlled volunteers’ data. 

For the pelvis phantom, acquisitions were repeated three times with some variations 
of the attached calibration device (visible in Fig. 1c). Contours and landmarks were 
drawn manually. Results on the pelvis phantom for the different setups and with 
mapped and unmapped contours strategies are reported in Table 3. The mapping im-
proved the results for setups 1 and 3 (p-value < 1e-16), while the difference was not 
statistically significative for setup 2 (p-value = 0.013).  

Table 3. Mean ASD errors with standard deviations for the different setups and with and with-
out mapped contours for the pelvis phantom real X-ray dataset 

 Setup 1 Setup 2 Setup 3 
not mapped 1.85 ± 1.65 mm 1.2 ± 1.03 mm 1.60 ± 1.39 mm 

mapped 1.13 ± 1.18 mm 1.21 ± 1.21 mm 1.21 ± 1.23 mm 
 
As for the phantom, the contours and landmarks were manually annotated for vol-

unteers’ data, and the impact of the contour mapping was analyzed. The results for 
mapped and not mapped contour strategies are displayed in Table 4 for all three vol-
unteers. Similarly, the mapping improved the results for volunteers 1 and 3 (p-value < 
1e-15), but for volunteer 2 the difference was not significant (p-value = 0.013).  
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Table 4. Mean ASD errors with standard deviations for the different contouring strategies 
tested on the volunteers’ real X-ray dataset. 

 Volunteer 1 Volunteer 2 Volunteer 3 
not mapped 2.06 ± 1.87 mm 1.42 ± 1.19 mm 1.45 ± 1.15 mm 

mapped 1.84 ± 1.99 mm 1.39 ± 1.19 mm 1.29 ± 1.19 mm 
 
We noticed that acquisitions on volunteers were made by radiographers not suffi-

ciently informed on the procedure – resulting in X-ray images acquired without strictly 
following the provided guidelines, mainly concerning the importance of not moving the 
subject between the two shots. This may explain the inferior results obtained with re-
spect to the phantom. Indeed, phantom bones are fully static between shots, which con-
vinces us of the potential of the method on real patients by better complying with the 
acquisition protocol. 

4 Conclusion 

Under optimal calibration conditions and with precise contours, our method has demon-
strated a reconstruction accuracy (ASD 1.02±0.89 mm) comparable or even superior to 
state-of-the-art methods. Methods reporting accurate results were either tested on syn-
thetic results [9] or dry bones [7], [9], [12], [26], in perfect calibration setup [7], [9], or 
for the anatomically simpler distal femur [8], [15]. Yu et al. 2016 [9] reported an ASD 
error of 0.9 mm on synthetic proximal femurs using manual contouring on two fluor-
oscopy images, but for a database of 40 patients. When switching to real X-ray, in the 
case of simpler dry femur bone acquired with a C-arm greatly easing the calibration, 
their error increased to 1.2 mm. Our experiments carried out on a large database of 
pathological cases support the robustness of the method and its ability to successfully 
reconstruct complex cases.   

To achieve accurate results on clinically interesting cases – in opposition to dry 
bones for example – the manual segmentation of a pair of 2D mapped contours do not 
seem a price too high to pay. With an appropriate ergonomic tool, such a task would be 
less tedious and could replace semi-automatic segmentation on CT scans used today 
for patient-specific THA planning – benefiting the patient’s health and the health costs. 
However, aware of the importance of automatic tools in the clinical context, we have 
investigated a DL method for the automatic extraction of AP contours in DRRs with 
encouraging results (1.68±1.57 mm). The extensive contour analysis has proven their 
usefulness in achieving accurate results, and their automation has been demonstrated 
on DRRs with results, albeit not as good, but already usable. The reconstruction is also 
fast – with a runtime below 30 sec (including 1.8 sec for DL segmentation) – and pro-
duces ready-to-use 3D models (e.g., anatomical markers for surgical planning can be 
predefined on the template models and be immediately available on the reconstructed 
structures). We particularly envision future work in the automatic and accurate extrac-
tion of mapped contours and landmarks from real radiographs albeit the collection of 
lateral views, less common in clinical practice, may be an interesting yet challenging 
problem in the context of data hungry algorithms such as deep learning approaches.  
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