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ABSTRACT

Data centers are huge power consumers and have very high operational costs. Both industry and academia
have proposed strategies at multiple levels (server, room layout, cooling, workload allocation, etc.) to in-
crease the efficiency of these facilities. Testing the impact of variables so different in nature such as layout
or workload allocation can only be managed by simulators. Current simulation infrastructures are either
focused on data room thermal dynamics, or target only a specific stage of data center operations, such as
workload allocation. Moreover, they are geared for specific use-cases such as HPC or cloud computing. In
this paper we present a data center modeling and simulation framework, for both HPC and cloud applica-
tions, to assess data center performance, thermal behavior, energy efficiency and operational cost. Our goal
is to show the possibilities of the current data center modeling and simulation framework. Furthermore, as
we provide a fully configurable, flexible and scalable infrastructure any kind of policy, data center size or
workload amount could easily be implemented over the simulator. We also provide the data sets used to
validate our models and policies, obtained from real servers and data centers, so as to enable researchers to
test their strategies in a realistic setup.

Keywords: DEVS, Data Center Simulation, Optimization, Smart Grid.

1 INTRODUCTION AND RELATED WORK

Nowadays, data center contribution to European electricity consumption is estimated to be between 2 and
2.5%, with an annual growth from 10 to 15% (Engbers and Taen 2014). The growing popularity of Cloud
computing, together with the development of next-generation applications such as e-Health, and the explo-
sion of the Internet of Things (IoT) has increased exponentially the services provided, generating a huge
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amount of data that needs to be processed, analyzed and provided to users in a meaningful way. The un-
sustained energy consumption of these facilities, together with the proliferation and growth of data centers
represents an important challenge and is the top concern for reaching exascale computing (DOE ASCAC
Subcommittee 2014).

Traditionally, data centers have been roughly divided between Cloud computing and High Performance
Computing (HPC) infrastructures. In Cloud computing facilities we can find traditional virtualized appli-
cations, i.e. Virtual Machine (VM) hosting, together with scale-out applications, i.e. data serving. Tra-
ditional cloud applications have low computational demand and enhance energy efficiency by sharing re-
sources among users, i.e. increasing server utilization by using virtualization and consolidation techniques.
Scale-out applications, on the contrary, are latency-critical or memory bounded applications that handle in-
dependent requests distributed across servers, and need to maximize per-server throughput. Finally, HPC
applications need to deal efficiently with computationally-intensive tasks, i.e., CPU and memory bounded
applications. These can be split in parameter-sweep applications that run many instances of independent
jobs, and data analytics and number crunching jobs in which data communication and sharing across threads
cannot be neglected.

The evolution of data centers is highly constrained to the current computing paradigm. Next-generation
applications need to deal efficiently with computationally-intensive tasks to process and analyze the retrieved
data, but must also provide efficient Cloud platforms. Regardless of the application being executed, data
centers must provide dynamic and flexible services, offering guaranteed performance or strict Quality of
Service (QoS) to users. And both HPC and Cloud applications need to provide the best performance with
the lower energy and operational cost possible. For years, energy reduction has focused on maximizing data
center efficiency, usually computed using the Power Usage Effectiveness (PUE) metric, defined as the ratio
between total facility power and IT power. In year 2013, world average PUE reached 1.65 (Matt Stansberry
2013), whereas some major players such as Google are already reporting PUE values of around 1.13 (Inc.
2017).

Even in highly-efficient next-generation data centers, with low PUE values and reduced cooling waste,
power density and energy consumption remain to be an important challenge. To further improve efficiency,
there is a need to develop new data center models and optimization policies. Gathering the required in-
formation to train and test models is complex. Adopting untested policies and algorithms in a real Data
Center is almost impossible. Given these constraints, simulation has become a great alternative to assess the
performance of data centers in terms of power, energy, performance, quality of service, operational costs,
etc. Optimizing decision variables so different in nature such as the data center physical layout or the bench-
marking of applications under variable conditions can only be managed by simulators. However, to offer
a useful tool for researchers, companies and data center operators, data center simulators need to provide
methods to incorporate accurate models tested on real equipment, as well as to test new optimization poli-
cies. This imposes the need for plugin-based simulators able to evolve as new cooling techniques and IT
equipment are introduced.

Current Data Centers simulators have not been designed to tackle the previous challenges. From the industry
perspective, simulation has traditionally focused on predicting the thermodynamics of data centers at design
time using Computational Fluid Dynamics (CFD) (Singh, Singh, Parvez, and Sivasubramaniam 2010). The
high economic cost of CFD software prevents re-running simulations to test changes such as the acquisition
of new equipment. In order to assess energy optimization policies, researchers have started to develop their
own simulation frameworks. However, these simulators tackle only thermal dynamics, or are application-
specific. On the one hand, simulators such as SimWare (Yeo and Lee 2012) or CoolSim (Software 2016)
focus only on the data room, disregarding performance, scheduling, allocation, and operational costs. Some
application-specific simulators focus on Cloud computing scenarios (such as Cloudsim (Calheiros, Ranjan,
Beloglazov, De Rose, and Buyya 2011)), raising their abstraction level to the virtual machine and disregard-

192



Penas, Zapater, Risco-Martin, Ayala, and Coskun

ing the data center room-level aspects such as layout, cooling, heat recirculation, etc. Others only focus on
the performance obtained via the scheduling and allocation of HPC tasks (such as the BSC Slurm Simula-
tor (Lucero 2011), or the SST simulator (Rodrigues, Bergman, Bunde, Cooper-Balis, Ferreira, Hemmert,
Barrett, Versaggi, Hendry, Jacob, Kim, Leung, Levenhagen, Rasquinha, Riesen, Rosenfeld, Del Carmen
Ruiz Varela, and Yalamanchili 2012)). A common drawback of these tools is the lack of well-defined inter-
faces, the inherent difficulty in configuration, and the orientation to software engineers. Even though some
simulators are widely spread in the community, they do not provide ways to easily configure the simulator,
and require the researcher or data center operator to develop new code to launch simulations. Among sim-
ulators, perhaps iCanCloud (Nifiez, Vazquez-Poletti, Caminero, Castafié, Carretero, and Llorente 2012) is
the one providing easier configuration tools, as it is a library for the OMNeT++ framework (Varga 2001).
The creators of Cloudsim have also recently released a new version of their simulator, called CloudNet-
Sim++ (Malik, Bilal, Malik, Anwar, Aziz, Kliazovich, Ghani, Khan, and Buyya 2015), which also uses
OMNet++, to tackle usability issues and include networking using the INET framework. However, in both
cases, the simulation engine of these tools is completely coupled with the models provided, making it diffi-
cult to incorporate new models and functionality into the simulator.

Our work proposes a data center simulation framework, named SFIDE (Simulation Framework and Infras-
tructure for Data cEnters), which allows service providers, third-party software developers and researchers
to test current or prototyping infrastructures and software packages in terms of performance, thermal effi-
ciency and operational cost. To this end, we need a practical and efficient way of applying Modeling and
Simulation (M&S) to the development of the system at an early stage. Moreover, we must separate the
models themselves from the simulation platform so that modeling experts can focus on model abstractions.
As a result, we have applied the Discrete EVent Systems (DEVS) formalism (Zeigler, Prachofer, and Kim
2000). Table 1 summarizes the main aspects of the above mentioned simulators and compares their features
against our proposed simulation framework.

In this paper, we propose a simulation framework for HPC and Cloud applications that enables researchers
to incorporate their developed models and optimizations and test the impact at the data center scale under
various configurations, without the need to develop new functionality, abstracting them from the simulator
internals. We also provide a fully configurable, flexible and scalable simulator infrastructure, specifically
tailored for new-generation data centers, where power, temperature and performance models can be easily
plugged-in, and resource management policies can be tested in terms of performance and energy. Finally, in
order for the research community to be able to work with realistic setups, we also provide the data sets used
to validate our models and policies.

The remainder of the paper is organized as follows: Section 2 describes the basic principles of the DEVS for-
malism. Section 3 provides the details of the model architecture. Section 4 briefly shows how the simulation
model works. Finally, the most important conclusions are drawn in Section 5.

2 DEVS MODELING AND SIMULATION

DEVS is a general formalism for discrete event system modeling based on set theory (Zeigler, Prachofer, and
Kim 2000). The DEVS formalism provides the framework for information modeling which gives several
advantages to analyze and design complex systems: completeness, verifiability, extensibility, and maintain-
ability. Once a system is described in terms of the DEVS theory, it can be easily implemented using an
existing computational library. After 15 years, the parallel DEVS (PDEVS) approach was introduced as a
revision of Classic DEVS. Currently, PDEVS is the prevalent DEVS, implemented in many libraries. In the
following, the use of DEVS implies PDEVS.
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CoolSim SimWare BigHouse SST CloudSim iCanCloud CloudNetSim++ SFIDE
Platform - - - - - OMNet++ OMNet++ OMNet++/DEVS

Language ? C++ Java C++ Java C++ C++ C++

Parallel No No No No No Limited No Yes (DEVS)

Distributed No No No No No No No Yes (DEVS)
Cloud support No No No No Yes Yes Yes Yes
HPC support No No Yes Yes No No No Yes
Performance No No Yes Yes No No No Yes
Server power No No No No Yes Yes Yes Yes
Server temperature No No No No No No No Yes

Networking models No No No Yes No Yes (INET) Yes (INET) Yes (INET)
Data room dynamics Yes Yes No No No No No Yes
Data center layout Yes No No No No No No Yes
New cooling techiques No No No No Yes No No Yes
Multi-DC No No No No Yes No Yes Yes

Table 1: Summary of features for most common simulators in the state-of-the-art
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DEVS enables the representation of a system by three sets and five functions: input set (X), output set (Y),
state set (S), external transition function (Jey;), internal transition function (&), confluent function (&op),
output function (A), and time advance function (ta).

DEVS models are of two types: atomic and coupled. Atomic models are directly expressed in the DEVS
formalism specified above. Atomic DEVS processes input events based on their model’s current state and
condition, generates output events and transition to the next state. The coupled model is the aggrega-
tion/composition of two or more atomic and coupled models connected by explicit couplings. Particularly,
an atomic model is defined by the following equation:

where:

A= <X7Y3S1 acxhamtaacon’z’sta) (1)

X is the set of inputs described in terms of pairs port-value: {p € IPorts,v € Xp}.
Y is the set of outputs, also described in terms of pairs port-value: {p € OPorts,v € Y,}.
S is the set of sequential states.
Oext : O XX b _y § is the external transition function. It is automatically executed when an external
event arrives to one of the input ports, changing the current state if needed.

- 0= (s,e)s € 5,0 < e<ta(s) is the total state set, where e is the time elapsed since the last

transition.

- X is the set of bags over elements in X.
Oint : S — S is the internal transition function. It is executed right after the output (4) function and is
used to change the state S.
Scon : @ X X2 — § is the confluent function, subject to &.oq(s,ta(s),0) = iy (s). This transition
decides the next state in cases of collision between external and internal events, i.e., an external event
is received and elapsed time equals time-advance. Typically, Scon(s,ta(s),x) = Gext(Oint(s),0,x).
A : S — Y? is the output function. Y? is the set of bags over elements in ¥. When the time elapsed
since the last output function is equal to ta(s), then A is automatically executed.
ta(s) : S — Ry Ueo is the time advance function.

The formal definition of a coupled model is described as:

where:

M = (X,Y,C,EIC,EOC,IC) )

X is the set of inputs described in terms of pairs port-value: {p € IPorts,v € X,}.

Y is the set of outputs, also described in terms of pairs port-value: {p € OPorts,v € Y,}.

C is a set of DEVS component models (atomic or coupled). Note that C makes this definition
recursive.

EIC is the external input coupling relation, from external inputs of M to component inputs of C.
EOC is the external output coupling relation, from component outputs of C to external outputs of M.
IC is the internal coupling relation, from component outputs of ¢; € C to component outputs of
cj € C, provided that i # j.

Given the recursive definition of M, a coupled model can itself be a part of a component in a larger coupled
model system giving rise to a hierarchical DEVS model construction.
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In the last decade, many DEVS M&S engines have come into existence. All of them offer a programmer-
friendly Application Programming Interface (API) to define new models using a high level language. To
implement our simulation models, we have used a cross-platform DEVS simulator, called xXDEVS (Risco-
Martin, , Mittal, Jiménez, Zapater, and Correa 2017).

3 SFIDE ARCHITECTURE

In this Section we show a top-down view of the data center DEVS model. From a real-world perspective, the
actual structure of our model is constituted by the instantaneous workload, the measurement of the outside
temperature, and a collection of R rooms. Each room contains a resource manager, and a set of  In Row
Coolers (IRCs). Each IRC is linked to K racks, and each rack to S servers. Finally, the set of R rooms are
working in conjunction to the cooling system, which is formed by a pump, a tower and the chiller.

In the following, we describe each one of the coupled models that compose the DEVS model, as well as
their components.

3.1 DataCenter: the root coupled model

Room #1

ojob |
Generator 1 ilob Room

iColdWaterTemp

Generator #1 olrcDaxal | [ iWeather
Room #R
Room
IJ; o\feather
Weather
ilrcData iircData oColdWaterTerhp Weather #1
Transducer #1| Transducer CoolSys iWeather g

iElectricPowgr| OElectricPower
iTowerPower | | — CoolSys #1

oTowerPower

Figure 1: DataCenter: the root coupled model.

Figure 1 represents the top view of the data center model. According to the DEVS coupled model definition
in equation 2, we may found the following components into this coupled model:

e Generator: The atomic component can work on two modes: on-line or off-line. In the off-line
mode, it takes the set of jobs from a job logger. In the on-line mode jobs are generated by real
applications and thus this atomic model acts as a wrapper.

Room: There are R Room coupled models. The Room coupled model is described in Section 3.2.
Weather: This atomic model takes the outside temperature, which is sent to other coupled or atomic
models, as is depicted in Figure 1.
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e CoolSys: This coupled model represents de cooling system. The CoolSys coupled model is de-
scribed in Section 3.5.
e Transducer: This atomic model has been designed to store all the results of the simulation.

Regarding the rest of the elements in equation 2, the DataCenter coupled model does not contain inputs
(X = 0), outputs (Y = 0), external input connections (EIC = 0) or external output connections (EOC = 0).
The set of internal connections is clearly depicted in Figure 1

3.2 Room

Figure 2(a) shows the Room coupled model. As stated above, a DataCenter coupled model contains
R instances of this type. Following equation 2, the set of inputs are provided through the ports iJob,
iColdWaterTemp and iWeather. These ports will contain the current job being allocated, the wa-
ter temperature and the outside temperature, respectively. The set of outputs are sent through the port
oIrcData, which basically consists of the energy consumed by all the components in the Rack coupled
model.

Server #1

oAIrFlow
Server
oTempCpu 3 (2)osirFlow
Server -
Rack #1
too msocaor 2y Rak oaifw T Server #5
CPower cTempCpuy
i
Ratk
|
| oPower oTempCpu
(a) Room coupled model (b) Rack coupled model
ircparefiz]
— IrData rcoes MO oawarer amiy
b g G IR Ll Ry cerronerlsCitetoner - PSS D ecaigveeTens
Pump Tower vieather [i¥eaner
O¥ emPoner) 0DISkPower) ofarData
oBectricPower oT owerkovwer| iweather
oPavar  oTempCpu csecncrower Dotomerpower
(c) Server coupled model (d) CoolSys coupled model

Figure 2: Room, Rack, Server and CoolSys coupled models

The set of external input connections, external output connections and internal connections can be easily
determined following Figure 2(a).
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The set of components of the Room coupled model is described in the following:

e Allocator: The Allocator atomic model assigns each job received to a given rack, server and
CPU. The assignment is performed trying to minimize the total energy consumption.

e Rack: A Room coupled model contains K racks. Thus, a DataCenter coupled model has R X K
Rack instances. This coupled model is explained in Section 3.3.

e IRC: The IRC atomic model is responsible of gathering all the information coming from servers
and racks, needed by the cooling system.

3.3 Rack

The Rack coupled model does not have behavior, i.e., does not have atomic models. As depicted in Figure
2(b), this coupled model contains just other coupled models.

It has one single input port, iJob, to receive the current processing job, and three output ports: oPower,
oTempCpu and oAirFlow. These ports send the total energy consumed by servers, CPU temperatures,
and the air flow produced by fans, respectively. The set of external input connections, external output
connections and internal connections are easy to obtain from Figure 2(b).

There is just one type of component inside the Rack coupled model, the Server coupled model. Indeed,
a Rack coupled model includes § Server instances. Thus, a DataCenter coupled model contains
R X K x § Server coupled models.

3.4 Server

Figure 2(c) shows the Server coupled model. This model is in charge of the calculation of energy
consumption coming from processing elements and fan speed.

There is one single input port iJob to inject the current processing job. There are three output ports:
oPower, oTempCpu and oAirFlow used to send the total energy consumed by CPU, memory, disks and
fans, the CPU temperature, and the air flow produced by fans, respectively. As always, the set of external
input connections, external output connections and internal connections are clearly shown in Figure 2(c).

The set of components of the Server coupled model are shown below:

e CPU: The CPU atomic model applies the corresponding power and temperature models to compute
the energy consumption and the current CPU temperature. It also adds the power consumed by the
other three components.

e MEM: This atomic model computes the energy consumed by the memory subsystem.

e DISK: The DISK atomic model computes the energy consumed by the set of disks installed in this
server.

e FAN: This atomic model computes both the energy consumed by the fans and the air flow.

3.5 CoolSys

Figure 2(d) shows the coupled model implemented to simulate the Cooling System.
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DC Size | Number of Logs | Racks | Servers | Cores
Small 421554 6 108 1728
Medium | 751775 18 324 5184
Large 1812667 54 972 15552

Table 2: Simulation scenarios

[

s

[
[Jinfrastructure cooling

00 02 04 06 08 10 12 14 16 18 20 22
Hours

Figure 3: Small DC consumption

There are two input ports: i IrcData, with all the power consumed by all the rooms, and iWeather with
the outside temperature. There are three output ports: oColdWaterTemp with the water temperature, and
oTowerPower and oElectricPower with the power consumed by the whole cooling system.

As in previous coupled models, the set of external input connections, external output connections and inter-
nal connections are clearly shown in Figure 2(d).

The set of components stored in Coo1Sys are described below:

e Pump: This is the Pump atomic model that computes the power consumed by the pump taking into
account pump efficiency and pressure and water flow.

e Chiller: The Chiller atomic model where the power consumed by the chiller and the Tower are
computed.

This DEVS model is able to represent a wide variety of data centers, that can be simulated in a sequential,
parallel or distributed manner. As it follows the DEVS formalism, each component presented above can be
replaced by an actual structure, or a library implementation correctly encapsulated in a DEVS wrapper, for
instance.

4 CASE STUDY

In this section we analyze the behavior of the simulator comparing the same workload traces in different
data center sizes. To perform a fair comparison, we have adapted the number of jobs to each data center.
This is possible working on off-line mode, where all the jobs are taken from a logger file.
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(a) Medium DC consumption (b) Large DC consumption

Figure 4: Other simulations

These data (workload characterization) were collected within a time stamp from March 3rd to October 20th
2012, in CEA-Curie (HPC-Curie 2017). We have selected this HPC data center, which is located in France,
Europe because the logger file provided and the size of the data center permit us running simulations without
creating new traces which would fake the final results. This data center is composed by 93312 cores. As
mentioned before, simulations were ran over three different scenarios we can see described in Table 4.

Figure 3 shows the simulation results for the smallest scenario. We can see how IT energy consumption
is the maximum consumer of the data center. IT also sets the consumption trend. Due to the increase of
the consumption of the IT (main hours of the day) we can observe how the cooling energy raises over the
average. In that moments all the cooling elements are required to keep servers working.

Figure 4 depicts the simulation results for both the medium and large scenarios. It shows how FS and IRC
energy scale in the same range as the DC does. Indeed, Figures 4(a) and 4(b), medium and large scenarios,
respectively, show the same trends as in Figure 3.

As all these three figures depict, a higher occupation of the DC means a higher energy consumption in
terms of IT and the cooling system (CoolSys in the DEVS model) while consumption of the fans and IRCs
keeps constant because the refrigeration must remain constant. At the same time, however, more resources
are required so the cooling system also increases its energy consumption. The cooling system includes the
consumption of the tower, the pump and the chiller.

As can be seen, the DEVS representation is able to tackle complex models. Moreover, scalability is assured,
since current DEVS implementations can simulate models in sequential, parallel or distributed manner with-
out changing a single line of the DEVS model original implementation.

5 CONCLUSIONS AND FUTURE WORK

Data centers are huge power consumers and have very high operational costs. The study the impact of vari-
ables very different in nature such as layout workload allocation can be only performed through simulation.
Current simulation approaches are focused only on data room thermal dynamics or target only a particular
phase of data center operations, like workload allocation.

In this paper we have introduced a data center model. To this end, we have used the well-known DEVS
formalism. DEVS is a modular and hierarchical modeling formalism, with all of the advantages and uses
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of simulation systems, such as: completeness, verifiability, extensibility, and maintainability and allows
execution of Monte Carlo simulations, parallel simulation using threads or distributed using web services,
as an example. In this paper we have used the xXDEVS open source C++ library.

The DEVS model computes energy consumed by each component of the data center. This model has been
validated using three synthetic scenarios of three different sizes: small, medium and large. This work allows
to test the system’s behavior under real conditions of job allocation. This simulator has been developed
departing from (Zapater, Turk, Moya, Ayala, and Conkun 2014) simulator which results, as mentioned on
section IIL.b were validated with real traces. Experiments were run in both simulators obtaining same results
for each scenario.

A future work we propose the implementation of hybrid models combining DEVS, third-party libraries (like
iNET) and real hardware devices.
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