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Abstract—The design of new streaming systems is becoming a
major area of research to deploy services targeted in the Internet-
of-Things (IoT) era. In this context, the new High Efficiency Video
Coding (HEVC) standard provides high efficiency and scalability
of quality at the cost of increased computational complexity for
edge nodes, which is a new challenge for the design of IoT
systems. The usage of hardware acceleration in conjunction with
general-purpose cores in Multiprocessor Systems-on-Chip (MP-
SoCs) is a promising solution to create heterogeneous computing
systems to manage the complexity of real-time streaming for
high-end IoT systems, achieving higher throughput and power
efficiency when compared to conventional processors alone. Fur-
thermore, Machine Learning (ML) provides a promising solution
to efficiently use this next-generation of heterogeneous MPSoC
designs that the EDA industry is developing by dynamically
optimizing system performance under diverse requirements such
as frame resolution, search area, operating frequency and stream
allocation. In this work, we propose an ML-based approach for
stream allocation and Dynamic Voltage and Frequency Scaling
(DVFS) management on a heterogeneous MPSoC composed of
ARM cores and FPGA fabric containing hardware accelerators
for the motion estimation of HEVC encoding. Our experiments on
a Zynq7000 SoC outline 20% higher throughput when compared
to the state-of-the-art streaming systems for next-generation IoT
devices.

Index Terms—HEVC, resource management, machine learn-
ing, heterogeneous MPSoC.

I. INTRODUCTION

Real-time video streaming and processing is one of the ma-
jor services targeted by the Internet of Things (IoT) paradigm.
Video streaming is expected to reach 80% of global traffic
by 2019 [1], with services such as Netflix and YouTube
accounting for over 50% of downstream traffic [2]. High
Efficiency Video Encoding (HEVC) is a next-generation video
coding standard that provides twice the compression of its
predecessors for the same video quality. If properly man-
aged, its unprecedented configurability enables matching the
throughput/quality needs of the myriad of available IoT edge
nodes. However, due to its increased complexity, to achieve
real-time encoding, the use of heterogeneous Multiprocessor
Systems-on-Chip (MPSoCs) brought by the EDA industry and,
in particular, of hardware accelerators, is required.

In this context, a few works on the EDA community
have considered hardware acceleration for HEVC encoding
and, in particular, for Motion Estimation (ME), due to its
high computational burden [3]. Among them, a high-level
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synthesis design flow that maps the intra-prediction block
into a SoC-FPGA is presented in [4], while different design
aspects of a heterogeneous multicore model are assessed in
[5]. Nonetheless, none of these works take into account inter-
picture prediction as one of the most demanding, yet essential,
stages of the encoder. Although Paul et al [6] investigate
the advantages of heterogeneous MPSoCs for accelerating
different stages within an image processing algorithm, they
do not address the HEVC computational complexity.

However, variations in video features (e.g., resolution)
and contents (e.g., motion) pose a challenge to efficient re-
source management (RM) of heterogeneous MPSoCs, making
hardware acceleration by itself not sufficient to provide the
efficiency (in terms of throughput and power) required to
enable real-time video streaming. Therefore, static hardware
acceleration needs to be combined with heterogeneity-aware
runtime RM, with the goal of serving as many users (i.e.,
encoding as many videos) as possible, with a given quality
and under a certain power cap. In such scenarios, the large
variety of devices requiring different video configurations,
together with the high workload variation in terms of number
of requests, makes Machine Learning (ML), and in particular
reinforcement learning, a promising approach to deal with such
large environment-dependent problems [7].

In this work, we propose an ML-based RM strategy for
heterogeneous MPSoCs that allocates different video streams
(in terms of resolution and motion) to general-purpose cores
and hardware accelerators (IPs), while setting the frequency
of both. In particular, we consider a heterogeneous MPSoC
composed of ARM cores and an FPGA fabric on which we
implement several IPs of the ME algorithm. Our goal is to
maximize the number of streams being processed at the same
time and their total throughput while satisfying a minimum
throughput per-stream and a user-defined power constraint.
Therefore, the ML learns to properly allocate each input
stream to an ARM core based on the frame resolution, the
motion (which is mainly driven by search area), and the cores’
available capacity while adjusting the operating frequency of
the hardware accelerators (i.e, IPs) and ARM cores. Fig. 1
shows an overview of our approach.

The main contributions of this paper are as follows:
• We propose a ML-based approach for multistream HEVC

encoding on heterogeneous MPSoCs that learns from per-
stream throughput and total power consumption based on
resolution and motion. The ML agent selects the best
frequency per IP and core, and the best allocation to
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Fig. 1. Overall view of the proposed ML-based resource management
approach.

available cores, maximizing the per-stream throughput
and the total number of streams that can be processed
simultaneously under a user-defined power constraint.

• We show how our ML-based approach is able to achieve
20% higher throughput without any power violation when
compared to other state-of-the-art techniques.

• Upon any change in the number of streams or their res-
olution and motion, our approach reaches its maximized
throughput 1.5x faster than the state-of-the-art techniques.

II. PROPOSED METHOD

Efficient heterogeneity-aware RM for HEVC encoding in
MPSoCs requires tackling application configuration, stream
allocation and DVFS for both general-purpose cores and IPs.
This requires exploring a very large and dynamic design space.
On one hand, streams have different inherent features, such
as frame resolution, and need specific encoding configura-
tions [8], such as search area (SA), which drives motion
estimation, that make the workload and resource demand vary
from one stream to the other. On the other hand, among the
different combinations of streams that could potentially be pro-
cessed at the same time, there could be many sub-optimalities
in regards to core allocation and core and IP frequencies. An
exhaustive search in the design space is required to avoid
such sub-optimalities. However, conventional offline static
approaches cannot guarantee handling the dynamic changes in
the environment (e.g., when a new configuration is needed).

Therefore, in this work, we propose machine learning (ML)
and, in particular, reinforcement learning as a promising
solution to deal with such a dynamism in the design space at
runtime [7]. The goal is to learn the best allocation of streams
to cores, as well as the operating frequency of each core and IP,
from the total power consumption and the output throughput,
for each SA and resolution combination.

In particular, we leverage the Q-learning algorithm which is
composed of a finite action set, A, a finite state space, S, and
an agent. The agent acts according to a learned policy,π , which
is a mapping from the state space to the action set while taking
into account the reward value granted to each state-action pair.
This value implies whether, given a state, an action is worth
applying. The Q-Learning agent maximizes this reward by

storing a Qπ(s,a) value to represent the quality of each state-
action pair in a Q-table. This value demonstrates the most
probable long-term reward, considering starting from state, s,
applying action a, and following the policy π . Note that the Q-
table does not need to keep values of all theoretically defined
state-action pairs, but only those that are observed at runtime.
The Q-values and the Q-table are updated as follows [7]:

Qt+1(st ,at) = Qt(st ,at)+αt(st ,at)× [Rt+1+

γ maxQt+1(st ,a)−Qt(st ,at)]
(1)

where Qt(st ,at) and Qt+1(st ,at) are, respectively, the current
and updated Q-values corresponding to at action and st state,
Rt+1 is the reward observed after at is applied for state st ,
αt(st ,at) determines the learning rate, and γ is the discount
factor and controls the significance of the history of the Q-
values against the recently obtained reward.

Our proposed ML-based approach consists of two phases.
In the exploration phase, once the learning process starts, at
each observed state, the ML agent takes a random action from
an action pool and calculates the reward, updating the Q-
table by Eq. 1. Since we aim at learning per-stream SA and
resolution, we need to create and keep one Q-table for each
resolution/SA pair. The exploration phase for each state-action
pair (st ,at) continues until the corresponding learning rate,
which is defined as:

αt(st ,at) = λ/Num(st ,at), (2)

drops below a threshold. In this formulation, Num(st ,at) is
the number of observations of the state-action pair, and λ is a
constant [9]. Afterwards, the exploitation phase begins, where
the ML agent stops updating the Q-tables and selects the most
appropriate action for each observed state.

In what follows, we describe the state space, the action set,
and the proposed reward functions.

A. States

Since the goal of this work is power- and throughput-aware
RM of heterogeneous MPSoCs, the state space is defined as:

S = {Ptotal ,Th} (3)

where Ptotal is the total power consumption, and Th is a vector
of throughputs for each running stream.

B. Actions

The proposed action set includes adding a stream, removing
a stream, increasing/decreasing the frequency of an IP, and
increasing/decreasing the frequency of an ARM core:

A = {Str+,Str−, fIP,inc, fIP,dec, fARM,inc, fARM,dec} (4)

While adding a new stream to the existing running streams
may lead to a higher total throughput, removing a stream is
not desirable. In other words, once an encoding request is
accepted, the encoding process must be guaranteed to complete
within a certain time. However, we introduce this action since
it might be required to reduce power consumption.



At each decision step, only one action must be taken.
Therefore, we can only change the frequency of one (and
only one) IP or core. When the action is fIP,dec( fIP,inc) or
fARM,dec( fARM,inc), both in exploration or exploitation, we let
the agent apply the frequency change only for the stream with
the highest(lowest) throughput.

C. Reward Function

The reward function must provide useful feedback about the
selected action for a previous state. Since we are minimizing
power consumption and maximizing performance, we propose
a reward function composed of two sub-functions, as follows:

rtot = c1rper f + c2rpower (5)

where rper f and rpow are the reward functions for performance
and power, respectively. In this work, we consider equal
significance coefficients (ci) for both rewards.

We define rper f to encourage the ML agent to choose actions
leading to higher performance while avoiding those resulting
in any performance loss:

rper f =


Nβ

str

Nstr

∑
i=1

T hi/T hre f ,i ∀i T hre f ,i < T hi

−1 ∃i T hi < T hre f ,i

(6)

where Nstr is the total number of streams being processed, and
T hre f ,i is the reference throughput (frame per second, FPS) for
the ith stream. This reference throughput is obtained based
on the maximum throughput achievable on an Intel server
at its maximum frequency, as explained in Section III. We
experimentally prove that the following inequality holds for
all SAs and resolutions given the maximum frequencies for
IPs and ARM cores, as specified in Sec. III:

1≤ T hi/T hre f ,i < 15 (7)

This inequality indicates that on our specific heterogeneous
MPSoC, the achieved throughput for an individual stream is
always greater than the reference one, but not larger than
15 times. However, when considering multiple streams at
the same time, the cumulative throughput does not increase
beyond 40 FPS. Therefore, since the goal in (7) is to first
maximize the number of served streams while meeting their
minimum reference throughput, we choose β equal to 5.3
which satisfies the worst case scenario. This value leads the
ML agent to seek for increasing the number of concurrent
streams, while guaranteeing the minimum required throughput
of each individual stream. After fully occupying all available
resources, the ML agent takes actions to increase the through-
put of each individual stream.

In order to keep power consumption under a user-defined
constraint (Pconst ) we propose the following reward function:

rpower =

 0 P < Pconst

−2.5×106 P > Pconst

(8)

TABLE I
THROUGHPUT (ENCODED FRAMES PER SECOND) FOR DIFFERENT

RESOLUTIONS AND SEARCH AREAS, INTEL PROCESSOR

Resolution 
Search Area 

4 6 8 10 12 

704x576 0.62 0.31 0.19 0.13 0.09 

1280x720 0.26 0.13 0.08 0.05 0.04 

1920x1080 0.11 0.066 0.03 0.02 0.02 
 

On one hand, reducing the power consumption below the
constraint should not give a positive reward, since it ultimately
results in lower throughput. On the other hand, any violation
of the power constraint must add a large enough negative
value (here, −2.5× 106 because the maximum value of the
performance reward is always less than 8β × 40) to the total
reward function, so that the corresponding action is avoided.

III. EXPERIMENTAL SETUP

In this work, experiments are performed on the Xilinx ZC-
706 equipped with a Zynq7000 SoC, type Z-7045 [10]. The
chip comprises a dual core Cortex-A9 ARM processor with a
maximum frequency of 1 GHz. The chip also contains FPGA
fabric consisting of 350K logic blocks and 19.2 Mb of BRAM.
The board comes with a 1GB DDR3 RAM chip clocked at
533 MHz, and a 8GB SD card as primary storage.

Our reference throughputs are calculated on an Intel E5-
2690 v4 server [11]. These values represent the highest
throughputs achievable on a high-performance homogeneous
platform, and ultimately show the gains of our ML-based
approach running on a low-power heterogeneous SoC. This
server contains 14 cores with a maximum clock speed of
3.5 GHz, 28MB LLC, and 250GB of memory. When calculat-
ing application throughput we tie the application to one core
to prevent OS interference. TABLE I contains our reference
throughput in frames per second, sorted by frame resolution
and SA.

Our system utilizes FPGA-mapped accelerators (IPs) to
speed up motion estimation (ME), which allows HEVC en-
coding to be performed on the much smaller and energy effi-
cient ARM core, while maintaining comparable or improved
throughput compared to the Intel processor [12] at a much
lower power consumption. We implement 8 such IPs on the
FPGA fabric, allowing up to 8 encoding applications to run
simultaneously on the FPGA. These applications will share the
2 ARM cores. The IPs can be individually clocked to 50, 100,
150, or 200 MHz, and the two ARM cores can be individually
clocked to 333, 666, 800, or 1000 MHz.

Some simplifications are made in our setup to ease experi-
mentation. We assume the 3 resolutions listed in TABLE I and
we limit SA to even values between 4 and 12. This already
gives us a range of over 1.4 trillion combinations. We also
assume that there are always streams queued to be added to
the system, meaning the ML approach can add a new stream
as an action whenever it is necessary.

We have profiled each combination of SA, resolution, and
ARM and IP frequency. This profiling data is used to estimate
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the power and throughput of any number of streams running
on any combination of IP or ARM frequencies. However, the
manner of this estimation is beyond the scope of this paper.

We stress the system by randomly changing the number
of streams running, which represents the effect of users that
enter/leave the system. We apply the stress at random intervals
ranging from 30 to 40 seconds based on the statistics reported
by Delmondo1 (a social video analytics company). Each new
stream has its own resolution and SA. In order to provide
reliable results, we apply these stress points 105 times.

For comparison, we implement a workload balancing strat-
egy for stream allocation on the ARM cores. The frequency of
all IPs is set using a heuristic. In particular, at each decision
step we increase by one step the frequency of the IPs, starting
from the minimum, if P< Pconst , to achieve higher throughput.

IV. RESULTS AND DISCUSSION

In a typical video streaming IoT deployment, servers need
to meet the demands of edge nodes by initiating/terminating
encoding requests, and responding to dynamic changes is
of paramount importance. Our ML-based approach improves
average throughput by 20% over the load balancing (LB) al-
gorithm when considering the whole runtime (including stress
points), as shown in Fig. 2. Our ML approach demonstrates
greater robustness against system dynamism as seen at the 40,
78, and 112 second marks (shown by t1, t2, and t3), where new
streams with new requirements replace older streams. On the
contrary, the LB algorithm requires more time to maximize
throughput when faced to system changes (shown by ∆t1, ∆t2,
∆t3). The reason lies in the fact that the ML agent has learned
the optimal actions that maximize throughput for different
combinations of SAs and resolutions, while LB first optimizes

1http://delmondo.co
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the minimum throughput of each stream by scaling up the
frequency from the initial value, and then adds more streams
to increase total throughput.

In the absence of such stress, both systems will eventually
reach a steady state in which throughput cannot be further
increased. At this point, the total throughput obtained by ML
and LB are similar, with ML achieving 7% higher throughput
on average. This is because ML is aware of corner cases, which
cannot be resolved through heuristics.

Then, Fig. 3 shows the power consumption of the system
for LB and ML, corresponding to the total throughput in Fig.
2. Our approach is able to optimally use the available power
budget and increase the total throughput. In addition, since the
ML has learned optimal actions for a power state, the power
consumption never violates Pconst . On the contrary, as the LB
algorithm always optimizes for higher throughput and cannot
predict power consumption, it may perform an action resulting
in power constraint violation. This occurs at time intervals of
34, and 123 seconds shown in Fig. 3. On average, the power
violation occurs once every 100 seconds for the LB algorithm.

Finally, Fig. 4 shows the percentage of the time that each
frequency is used for the ARM cores and IPs for both the
ML and LB approaches. Although the maximum frequency is
selected most of the time in both cases, it is not always the
optimal choice for all combinations of SA, resolution, number
of running streams, power consumption, and per-thread and
total throughput. These cases can be distinguished by ML,
resulting in serving more streams and increasing the total
throughput at lower frequencies, not only after each stress
point, but also when no stream is coming into or leaving the
system.

V. CONCLUSION

Real-time video streaming services in the IoT era require
efficient resource management of heterogeneous MPSoCs.
Given the large number of combinations possible during
HEVC encoding, machine learning (ML) is a good candidate
to address this challenge. In this work, we have proposed
a ML approach that maximizes throughput while meeting a
user-defined power constraint by learning optimum stream
allocation as well as optimum core and IP frequency from the
total throughput and power consumption of the system when
encoding videos with different resolutions and motions. Our
methodology achieves 20% higher throughput, and converges
1.5x faster to the optimal solution than traditional strategies.
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