
MAMUT: Multi-Agent Reinforcement Learning for Efficient

Real-Time Multi-User Video Transcoding

Luis Costero∗, Arman Iranfar†, Marina Zapater†, Francisco D. Igual∗, Katzalin Olcoz∗ and David Atienza†
∗ Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Spain
† Embedded Systems Laboratory (ESL), Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

∗ {lcostero, figual, katzalin}@ucm.es † {arman.iranfar, marina.zapater, david.atienza}@epfl.ch

Abstract—Real-time video transcoding has recently raised as
a valid alternative to address the ever-increasing demand for
video contents in servers’ infrastructures in current multi-user
environments. High Efficiency Video Coding (HEVC) makes
efficient online transcoding feasible as it enhances user experience
by providing the adequate video configuration, reduces pressure
on the network, and minimizes inefficient and costly video stor-
age. However, the computational complexity of HEVC, together
with its myriad of configuration parameters, raises challenges
for power management, throughput control, and Quality of
Service (QoS) satisfaction. This is particularly challenging in
multi-user environments where multiple users with different
resolution demands and bandwidth constraints need to be served
simultaneously. In this work, we present MAMUT, a multi-
agent machine learning approach to tackle these challenges.
Our proposal breaks the design space composed of run-time
adaptation of the transcoder and system parameters into smaller
sub-spaces that can be explored in a reasonable time by individual
agents. While working cooperatively, each agent is in charge of
learning and applying the optimal values for internal HEVC and
system-wide parameters. In particular, MAMUT dynamically
tunes Quantization Parameter, selects number of threads per
video, and sets the operating frequency with throughput and
video quality objectives under compression and power con-
sumption constraints. We implement MAMUT on an enterprise
multicore server and compare equivalent scenarios to state-of-
the-art alternative approaches. The obtained results reveal that
MAMUT consistently attains up to 8x improvement in terms
of FPS violations (and thus Quality of Service), 24% power
reduction, as well as faster and more accurate adaptation both
to the video contents and available resources.

I. INTRODUCTION

In 2015, real-time entertainment already accounted for more

than 74% of downstream network traffic in North America,

with streaming services, including Netflix, YouTube, and

Amazon Video, accounting for 57% of the global share [1].

Moreover, video streaming services continue to grow, and

users are shifting towards the use of emerging video tech-

nologies, such as 4K video resolution; thus North America is

expected to be the first region surpassing the 80% downstream

streaming traffic threshold by the end of 2020 [1]. As a result

of the network pressure posed by video streaming services, a

shift to next generation video encoding standards, such as High

Efficiency Video Coding (HEVC), is vital. HEVC provides

twice the compression as of its predecessor, while keeping the

same video quality [2].

However, such a considerable reduction in bandwidth re-

quirement is accompanied by a 10x higher computational

This work has been supported by the EU (FEDER) and Spanish MINECO
(GA. No. TIN2015-65277-R), the Spanish MECD (GA. No. FPU15/02050),
the EC H2020 MANGO (GA No. 671668), and RECIPE (GA No. 801137),
and the ERC Consolidator Grant COMPUSAPIEN (GA No. 725657).

complexity. This fact poses challenges of time and energy

consumption on the video providers’ servers. As a result

of diversity in video formats, users’ devices, and network

bandwidth, media adaptation is required to transcode the

original encoded videos to a new version in order to satisfy the

resource constraints (e.g., bandwidth and resolution) and users’

preference. A video transcoder consist of a decoder followed

by an encoder that changes a bitstream from one format to

another. Today, multiple versions of the same video are stored

in different formats and only the best one based on the user’s

demand is delivered. However, the fact that users daily upload

more than 65 years of content to YouTube servers [3] whereas

on average only the first 23 seconds of a video are watched

(by Delmondo.co), implies inefficient and costly storage usage

of such an approach. A promising solution is real-time video

transcoding, which re-encodes the original video on the fly.

The bottleneck for achieving real-time HEVC transcod-

ing is the encoder complexity, which is approximately 100x

higher than that of the decoder [4]. Moreover, the numerous

parameters available for adjusting the output quality and

throughput add extra complexity. Finally, dealing with multi-

user environments, where multiple different encoding requests

have to be fulfilled simultaneously, poses other challenges on

video providers’ servers. While several works have tried to

address efficient HEVC encoding through heuristics, machine

learning, and model-based dynamic programming algorithms,

none of them provide real-time HEVC transcoding in a multi-

user environment.

In this work, we present MAMUT, a multi-agent Q-

Learning (QL)-based run-time management strategy for QoS-

aware real-time video transcoding in multi-user environments.

In our approach, we decompose the design space into simpler

sub-spaces, which lets us explore a larger design space. Each

agent is able to independently explore a particular design sub-

space to attain sufficient knowledge about the environment

faster. Each agent, however, exploits its own knowledge jointly

with the others to behave optimally along with all agents in

the environment. In particular, we consider video quality and

throughput as objectives, and power consumption and video

compression as constraints. Our proposed approach consist of

three agents for adapting the Quantization Parameter (QP) of

the HEVC encoder, deciding for number of threads to encode

each frame, and setting the processor frequency via Dynamic

Voltage and Frequency Scaling (DVFS).

Our main contributions to the state of the art are as follows:

• we show how adaptation of application- and system-

level parameters can be decomposed to provide fast and

efficient run-time management of multi-user real-time

“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.”

Published in Proceedings of the 2019 Design, Automation & Test in Europe Conference &
Exhibition, Florence, Italy, 25-29 march 2019, which should be cited to refer to this work.
DOI: 10.23919/DATE.2019.8715256

http://dx.doi.org/10.23919/DATE.2019.8715256

HEVC transcoding.

• we implement MAMUT on a real multicore server, show-

ing the behaviour of our approach when serving multiple

simultaneous users while achieving real-time transcoding.

• we compare MAMUT against the state of the art through

realistic scenarios. Our results show how a multi-agent

reinforcement learning solution outperforms conventional

monoagent machine learning and heuristic solutions, re-

ducing power consumption up to 7% and 24%, and

increasing the QoS achieved up to 5x and 8x, respectively.

II. RELATED WORK

Several implementations of HEVC encoder exist, ranging

from the non-real-time HM Test Model [5] as the reference

software, to Kvazaar [6] and x265, both of which are able to

provide real-time HEVC encoding through thread-based par-

allel processing. Real-time HEVC decoding has been studied

and accomplished in the past [7], mainly through hardware

acceleration.

HEVC encoders are composed of several processing blocks,

each of which has multiple tuning parameters. Each pa-

rameter affects the encoder throughput (encoded frames per

second, FPS), video quality (measured in Peak Signal-to-

Noise Ratio, PSNR), video compression (bitrate), and power

consumption [8]. In addition, video format and contents play

a major role in throughput, video quality and compression,

and chip power consumption. Since video contents may vary

frame by frame, encoding parameters should be adapted on

a frame basis for QoS optimization under limited power

budget. Based on these facts, recent works [9], [10], [11]

employed run-time adaptation of encoding parameters. These

works, however, neither address QoS-aware real-time HEVC

encoding nor consider a multi-user environment. Recently, a

quality-aware power and thermal management approach has

been proposed for non-real-time multistream HEVC encoding

using machine learning techniques [8]. [12] proposes an online

video transcoding framework targeting bio-medical videos in a

multi-user environment. Nevertheless, inherent features of bio-

medical videos make them a special case allowing for certain

software simplifications that make online transcoding feasible.

Moreover, as high-resolution videos were not evaluated, the

functionality of this solution is not proven for these cases.

Finally, previous works (e.g. [10]) have modelled the output

and complexity of the HEVC encoder as a function of a few

relevant encoding parameters by exhaustive profiling of the

application. However, these models are considerably platform-

dependent and any change in the platform architecture may

result in intolerable model error. A multi-user environment

adds to the complexity and inefficiency of such models, since

under limited resources and power budget, the parameters set

for one video/user should be dynamically adjusted with respect

to the encoding parameters set for other videos.

III. MAMUT: A MULTI-AGENT MACHINE LEARNING

SYSTEM FOR QOS-AWARE RUN-TIME MANAGEMENT

In MAL, multiple agents need to interact and behave

cooperatively or competitively with some degree of autonomy.

AGqp

AGdvfs

Action Set

DVFS

Subset 3

thread

Subset 2

QP

Subset 1

QP={22, 25, 27, 29, 32, 35, 37 }

thread={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

DVFS={1.6, 1.9, 2.3, 2.6, 2.9, 3.2}

Design Space:

AGthread

Design Space Decomposition

Environment:

Multicore Server

+

HEVC Transcoding

Q-table 1

Q-table 2

Q-table 3

Subset 2

Subset 3

Subset 1

PSNR, Power, Bitrate, FPS

Figure 1. Proposed multi-agent RL approach (MAMUT).

The problem domain may be decomposed into smaller sub-

problems and each agent takes charge of one of them, while

communicating and interacting with other agents. As a re-

sult of such cooperative and concurrent learning, cooperative

multi-agent learning is a promising solution to explore larger

design spaces with less computational complexity, leading to

a faster learning phase compared to mono-agent learning.

In this work, we leverage QL (Q-Learning) as a model-free

RL (Reinforcement Learning) algorithm, since, compared to

other RL algorithms, it is exploration-insensitive, thus, more

suitable for practical problems [13]. Similar to conventional

mono-agent learning, the QL algorithm in multi-agent learning

is composed of a finite action set A, and a finite state space

S. Each agent i is in charge of taking action ait, and moves

from its current state st to the next one st+1. Then, the

corresponding Q-table is updated after each reward, indicating

the value of applying ait at st, is received.

In this work, we propose a concurrent cooperative multi-

agent approach for run-time adaptation of HEVC encoding

configuration and system parameters to achieve QoS-aware

real-time HEVC transcoding under power budget constraints.

Fig. 1 shows an overview of the proposed approach where

three agents cooperate with each other. The environment is

composed of two parts: application (HEVC transcoder) and

platform (i.e., server). The action set A is split to three subsets

A1, A2, A3 such that ∀i 6= j, Ai∩Aj= ∅, and
⋃3

i=1 Ai = A.

Agents can send messages such that each agent accesses the

Q-table of the others. In addition, states and rewards resulting

from one agent’s action are observable to all agents.

A. Agents

In MAMUT, we consider three different agents for tuning

QP (AGqp), deciding the number of threads used to encode

a frame (AGthread) through Wavefront Parallel Processing

(WPP) [14], and per-core DVFS, (AGdvfs).

B. Actions

a) QP: QP is one of the most important encoding param-

eters, as it affects FPS, PSNR, and bitrate [12], [9]. Although

QP can take a wide range of values , we use QP values of 22,

25, 27, 29, 32, 35, and 37 based on our observation on the

output PSNR, bitrate, and throughput.

b) Number of Threads: While HEVC encoding can al-

ways benefit from multithreading to increase FPS, Fig. 2

shows that throughput saturates above a certail number of

50

60

70

80

0 20 40

P
o
w

e
r

(W
a
tt
s
)

FPS

1 2 4 6 8 10
QP: 22 27 32 37

QP: 22 27 32 37

QP: 22 27 32 37

QP: 22 273237

QP:

22

27

32

37

32

34

36

38

40

0 0.5 1 1.5

P
S

N
R

 (
d
B

)

Bandwidth (MBytes/s)

1 2 4 6 8 10

22

27

32

37

Figure 2. RD-curves, power, and throughput with respect to number of
threads: 1, 2, 4, 6, 8, and 10 and QP values: 22, 27, 32, and 37 while encoding
a 1080p-video at 3.2GHz using Kvazaar with the ultrafast configuration.

threads. Based on this observations, we consider a limited

number of threads, as described in Section V.

c) DVFS: Our specific platform (see Section V) supports

frequencies from 1.20 GHz to 3.2GHz. However, frequencies

below 1.6 GHz can not provide real-time HEVC transcoding

even if all constraints such as bandwidth and PSNR are

released, and are therefore discarded.

d) Agents Sequence: We experimentally determine how

frequently each agent should act, based on overhead, impact on

our target objectives, and the number of parameter values to be

explored as it is desirable that all agents finish the exploration

phase at the same time. For our setup, AGqp acts every 24

frames. With one frame as the offset, AGthread takes action

every 12 frames. AGdvfs takes action every 6 frames with

an offset of 2 frames. Since AGdvfs and AGthread act after

AGqp, they can modify the output throughput if it is degraded

(or above the required constraints) because of AGqp taking an

action to increase (decrease) the video quality. In addition, as

AGdvfs takes actions more frequently, it can take charge of

content variations and tune the throughput to the desired FPS.

Figure 3 shows the proposed sequence for the agents.

C. States

Agents observe the output bitrate, PSNR, throughput, and

power as states. Since for 8-bit-depth videos and lossy com-

pression PSNR should range from 30 dB to 50 dB for

acceptable human vision, we divide this range in the following

intervals to constitute PSNR states (Spsnr): PSNR ≤ 30,

≤ 35, ≤ 40, ≤ 45, ≤ 50, and > 50 dB. Power state (Spower)

is defined based on the power consumption constraints of the

running server: power < Pcap and power ≥ Pcap. The user’s

available bandwidth is highly affected by different parameters

such as the contract, location, etc. In order to take into

account these parameters, we consider three different bitrate

states (Sbr) based on the usual bandwidth provided by a 3G

network [15]: bitrate < 3Mb/s, 3Mb/s ≤ bitrate ≤ 6Mb/s

and bitrate > 6Mb/s. Finally, the throughput (measured in

FPS) is divided into the following states, since the target frame

rate is 24: fps < 24, < 26, < 28, < 30 and ≥ 30.

D. Reward Function

In order to provide suitable feedback to each of the agents,

we need to define four reward functions, one for each state:

a) Throughput: We define the following reward function

based on the target frame rate (FPStarget):

RFPS =

{

−4 FPS < FPStarget
1

FPS−(FPStarget−1)
otherwise

(1)

AG1 AG2 AG3 AG2 AG3NULL NULL AG1AG3 NULL

Frame
mm-1 m+2m+1

m1 m2 m3

Figure 3. Agent sequence. Colored arrows show which agents need to look
at the Q-table of the next agent.

This reward function provides negative values if the through-

put is smaller than the target frame rate. The highest reward

function is achieved if FPS exactly meets the target, however,

if it is larger than FPStarget a smaller yet positive reward

is provided. The reason is that achieving larger FPS may

result in wasting resources, which ultimately means fewer

users can be served. In the case where FPS > FPStarget,

spare encoded frames can be buffered. Buffered frames can be

used to compensate the overall framerate if, at some points,

FPS temporarily drops below the target.

b) PSNR: As explained in Section III-C, a minimum

PSNR of 30 dB is required. However, the goal of this work is

to achieve higher video quality if there are enough resources.

Hence, a higher reward is given when the agent moves to a

state with larger PSNR, as follows:

RPSNR =

{

−4 PSNR < 30 or PSNR > 50

a× ePSNR/50
− b otherwise

(2)

where a and b are set to give a maximum reward of 1.0 when

PSNR=50, and a reward of 0 when PSNR=30.

c) Bitrate and Power: The bitrate and power consump-

tion are limited by the user’s bandwidth and a power cap

defined by the server manager (Pcap), respectively. Thus, we

propose a reward function where a value of −4 is given if the

constraint is violated, and 0.0 otherwise.

IV. LEARNING PHASES AND LEARNING RATE FUNCTION

A. Exploration and Exploration-Exploitation Phases

Since each agent has its own action set, we let the agents

explore only state-action pairs corresponding to their own

actions. As we need to deal with a stochastic environment,

applying action ait by AGi at state st may not always result in

a particular st+1. The reason lies in the fact that 1) contents of

a video can change from one frame to another, 2) other agents

taking charge of a single video may apply an action that alters

the next expected state to a different one, and 3) other videos

existing in a multi-user platform with their corresponding

contents and agents can change the state unexpectedly. Thus,

once ait is taken at state st, all state transitions to new states

need to be recorded during the exploration phase. Assume that

Num(st
ai
t−→ st+1) shows number of times that applying ait at

st resulted in st+1, and Num(st, a
i
t) represents total number

of times that ait was taken at state st. Then, the probability

by which, after taking ait at st, the agent observes st+1 is

P (st
ai
t−→ st+1) = Num(st

ai
t−→ st+1)/Num(st, a

i
t). This

probability is updated throughout the learning process.

Whenever agent AGi takes an action right before a frame

starts, the next state (st+1) is observable right at the end of the

frame by all agents. However, the immediate reward is only

used to update the Q-value corresponding to (st, a
i
t). Then, the

following agent takes a random action in st+1 and the same

procedure in observing states and updating Q-table is followed.

However, when an agent is followed by no other agents (shown

as NULL in Fig. 3) the next observable state is the average

of states containing the NULL action. This approach leads the

agents to learn more about each others’ behavior rather than

about rapid video content variation, which can be regarded as

noise in this case.

When the learning rate for each state-action pair drops be-

low a threshold, αth1, the agents start exploration-exploitation

for that particular state. In this phase, agents do not take

random actions, though after applying this particular action

the Q-table is updated.

B. Learning Rate

Each agent must have its own learning rate for each state-

action pair. The proposed learning rate function is a decreasing

function of the number of state-action observations, differently

from those proposed by the literature [8], [16], [17]. The

reason is that if a learning rate function similar to the literature

is considered, it is likely that an agent claims the end of the

exploration phase even if other agents have not taken enough

different actions. This issue ultimately makes one or more

agents behave sub-optimally as taking action at in state st
may not move the agent to state st+1 as it expects. Thus, the

agent cannot maximize the reward by following the Q-table.

Alternatively, we use the following learning rate function

for each agent, AGi, which allows each agent to monitor the

number and variety of actions taken by other agents:

α
(i)(st, a

i
t) =

βi

Num(st, ai
t)

+
β

′

i

1 +

∑

j 6=i

(min
a∈Aj

(Num(a)))

(3)

Here, the first term is taken from the literature [17], while in

the second one Num(a) is the number of times agent Aj has

taken action a. Then, mina∈Aj
(Num(a)) gives the minimum

number of times that all actions available to AGj have been

selected. Subsequently, constants βi and β
′

i need to be set such

that the exploration phase for (st, a
i
t) cannot finish until the

following two conditions are satisfied: 1) (st, a
i
t) is observed

so many times that βi

Num(st,ai
t)

can drop below a threshold

and, 2) other agents have tried all their actions (at least once).

Due to the different frequencies at which each agent takes

an action, in addition to the different sizes of the sub-spaces

each agent has to explore, the learning rate parameters can vary

from one agent to the other. In this work, we experimentally

set βi = 0.3 and β
′

i = 0.2, αth1 = 0.1 and αth2 = 0.05, and

γ = 0.6. γ is the discount factor, that controls the significance

of the history of Q-values vs. recently obtained rewards.

C. Exploitation Phase

The exploitation phase starts when the learning rate drops

below a threshold, αth2. Entering the exploitation phase,

however, does not mean that exploration is finished. In fact,

whenever a new state is observed by one agent, exploration

phase starts for this particular state.

Algorithm 1: Exploitation phase

Input : Qi, P (st
ai
t−−→ st+1), A ; // i ∈ {1, . . . , N}

Output: ai∗
t ; // current action taken by the ith agent

1 ai∗
t ←

argmax
a∈A∗

i

(

∑

P (st
a
−→ s′t+1)×E[QV alue(AGi.next(),s

′

t+1)]
)

2 function E[QV alue(AG, s)]: // list of agents, state

3

4 if (AG.next() == NULL) then

5 return max
a∈A∗

AG

(

QAG(s, a)
)

6 else

7 a← argmax
a∈A∗

AG

(

QAG(s, a)
)

8 return
(

∑

PAG(s
a
−→ s′)×E[QV alue(AG.next(),s′)]

)

Although each agent learns separately and has its own Q-

table, it needs to act in the exploitation phase cooperatively

and, as explained in Section III-B, in sequence. Consequently,

the goal of each agent is not simply maximizing the Q-value

attainable for its own Q-table, but rather, maximizing the

expected Q-value after a sequence of actions taken by all

agents. Imagine the sequence of agents shown as in Fig. 3.

Starting from the mth frame, the first agent, AG1, is followed

by two different agents, AG2 and AG3. Thus, the action taken

by AG1 should consider the probable transitions from one

state to the other throughout the entire chain, composed of

these three agents, in order to maximize the Q-value. Indeed,

AG1 should select an action which ultimately moves the

entire system to a state in which an action taken by AG3

is capable of providing the highest Q-value. This is equivalent

to considering the expected Q-value given that a particular

action is selected by AG1. Hence, the conditional expected

Q-values should be computed for all available actions in the

current state st, in the chain of AG1 → AG2 → AG3, as

shown in Algorithm 1.

Moreover, it is possible that an agent moves to the exploita-

tion phase earlier than the others since the number of actions

that belongs to each agent is different. In such a case, the

first agent in the sequence cannot rely on the behavior of

the following agents. Hence, it only follows its own Q-table

regardless of the expected Q-value that is achievable at the

end of the sequence. Clearly, this behavior is not optimal as

the whole system is not in the exploitation phase yet.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Platform

In our experiments, trying to cover the extreme cases of

the design space, we consider videos with two very different

resolutions: High Resolution (HR) (1080p/fullHD videos with

resolution 1920× 1080 pixels), and Low Resolution (LR)

(832× 480) videos. The specific video sequences have been

extracted from the JCT-VC benchmark [18]. We perform our

experiments on a 16-core (32-thread) server composed of

two Intel Xeon E5-2667 v4 CPUs. The measured overhead

introduced by the system is negligible (i.e, less than 0.05% of

the encoding time). As explained in Section III-B, the number

Figure 4. ∆ - QoS (in terms of percentage of frames under QoS threshold)
and power consumption for the heuristic, mono-agent and MAMUT encoding
different combinations of HR and LR videos.

of threads that an encoding process can use before reaching

saturation depends on its resolution. In our target platform,

this limit appears for 12 threads in the case of an HR video,

and 5 threads in the case of an LR video. Per-core DVFS is

available with frequencies ranging from 1.2 GHz to 3.2 GHz.

However, our observations reveal that frequencies below 1.6

GHz do not allow real-time transcoding.take.

For the sake of comparison, we have implemented two

additional alternatives to our multi-agent approach. First, we

have adapted the mono-agent-QL approach [8] such that the

agent uses the entire action set, i.e., all possible combinations

of all available actions in the design space. Because of the

combinatorial explosion in the number of actions, which

makes it unfeasible to train the system in a reasonable amount

of time, a representative subset was chosen, ranging the same

interval as the original actions, but with less granularity. Sec-

ond, we have implemented a heuristic approach [19] that sets

the number of threads (targeting FPS), adapts QP (targeting

PSNR), and applies DVFS (for power management). Both

systems act at the same frequency then the fastest agent in

our system (i.e. every 6 frames). We use the Kvazaar open

source encoder as the baseline of this work, using the default

ultrafast configuration for HR videos, and the default slow

configuration for the LR videos.

Finally, we consider two different scenarios to evaluate

MAMUT and compare it against the mono-agent-QL and

heuristic approaches described before. All reported results

hereafter are extracted after five repetitions of the transcoding

process under equal conditions, reporting the average values.

B. Scenario I: Serving Videos of Different Resolutions and

Contents Dynamism

In the first scenario we assume that several different number

of videos with different resolutions and contents need to be

served simultaneously. The goal is to analyze videos separately

by resolution to confirm that MAMUT behaves as expected

and to extract remarks and insights by sweeping CPU usage

spectrum from 1 to the maximum number of simultaneous

videos.

Figure 4 shows the power consumption (in Watts) and

the QoS violations –∆– (in terms of percentage of frames

processed below the 24 FPS target frame rate) of MAMUT,

compared with the mono-agent and the heuristic implementa-

tions when running different workloads. The specific combina-

tions of workloads include HR videos (from 1 to 5 processed

simultaneously –1HR to 5HR in the Figure–) and LR videos

(from 1 to 8 –1LR to 8LR–). The results show how, for the

same workload, our approach is consistently able to reduce

0 100 200 300 400 500

10

24

30

40

0 100 200 300 400 500

30

35

40

0 100 200 300 400 500

35

37

0 100 200 300 400 500

8

9

10

12

0 100 200 300 400 500

2.3

2.6

2.9

3.2

Figure 5. Detailed execution traces for MAMUT encoding an HR video.

Table I
NUMBER OF THREADS AND FREQUENCY USED IN AVERAGE

MULTI-AGENT MONO-AGENT HEURISTIC

Nth Freq. Nth Freq. Nth Freq.

HR 10.1 2.8 9.2 2.9 5.9 3.2
LR 3.7 2.8 3.2 2.7 2.6 3.2

power consumption between 10% to 24% when compared

with the heuristic approach and up to 7% compared with the

Monoagent implementation. A maximum improvement of 8x,

and 5x in terms of FPS violations is achieved, when com-

pared with the heuristic and the mono-agent implementation

respectively.

Diving into details of the behaviour of each approach,

we can extract a number of specific insights. First, when

comparing MAMUT with the Heuristic approach, the run-

time behaviour is inherently different. The Heuristic approach

tries to achieve QoS requirements using maximum frequency

and a low number of threads, whereas MAMUT encodes each

frame using a higher number of threads, but lower frequency,

as shown in Table I. This behaviour greatly improves power

consumption.Figure 5 illustrates the behaviour of MAMUT

when encoding an HR video. The number of threads does not

change most of the time, while frequency changes continu-

ously trying to keep the FPS close to 24, but never going

below. Second, MAMUT is able to better use the available

resources and adapt to different loads, as in situations in which

the load is low it achieves much larger QoS with lower power,

and under high load, it obtains slightly better QoS and saves

power. Observe how, in the heuristic approach, QoS is almost

constant and MAMUT manages to adapt the computation to

the available resources (constantly achieving better results).

Third, both ML-systems are able to learn a similar policy.

However, since the number of actions in the mono-agent

approach was limited, as described in Section V-A, it is not

able to provide the same QoS measurements. Additionally,

Table II
SCENARIO II, AVERAGE RESULTS. EACH ROW REPORTS METRIC FOR A

SEQUENCE OF A SPECIFIC COMBINATION OF VIDEOS.

HEURISTIC MONO-AGENT MAMUT

Watts Nth FPS ∆ Watts Nth FPS ∆ Watts Nth FPS ∆

1HR1LR 96.0 4.2 25.4 34.7 92.4 6.4 28.1 11.7 88.4 7.9 31.1 3.9
1HR2LR 106.3 4.1 24.6 32.6 96.7 5.6 26.4 22.7 93.4 6.5 31.3 6.2

2HR1LR 109.7 4.7 25.2 33.8 102.3 7.6 26.5 17.1 97.4 9.7 30.4 5.1
2HR2LR 114.5 4.5 25.0 33.7 105.4 6.6 25.8 25.9 100.3 7.6 29.5 11.0
2HR3LR 123.3 4.2 24.9 34.4 107.4 5.9 25.0 37.0 101.9 5.9 26.2 22.8
2HR4LR 124.5 4.4 25.1 33.4 108.5 5.8 24.7 44,6 100.9 6.3 27.7 24.1

3HR1LR 122.5 5.3 24.4 33.1 113.7 7.9 23.3 44.2 104.3 8.7 26.2 20.5
3HR2LR 129.9 5.4 24.5 34.0 110.9 7.0 21.7 65.9 105.2 7.0 25.3 31.2
3HR3LR 134.6 6.1 23.4 43.2 111.8 6.2 20.8 71.5 106.9 6.2 25.1 35.8

although the search space was reduced in our mono-agent

implementation, the time taken to learn was 15 times larger,

due to the combinatorial explosion in the number of state-

action pairs to visit before the exploitation phase. The PSNR

achieved for all the proposals is close to 34 dB in the case

of HR videos, ranging from 36 dB when a LR video is

encoded by a ML-system, to 41 dB when it is encoded by

the heuristic approach. Finally, concerning bitrate and power,

all the implementations met the constraints.

C. Scenario II: Serving Transcoding Requests Batches of

Variable Resolution Requirements

In the second scenario, we assume that a set of transcod-

ing requests is simultaneously received from different users

with different resolution requirements. In contrast to the first

scenario, here we consider sequences of random videos being

simultaneously transcoded, simulating a real scenario where

users are coming and going continuously. To restrict the extent

of the experiment, we consider that each initial video is

followed by a sequence of four different videos of the same

resolution, randomly selected. With this scenario, we illustrate

the capability of our approach to satisfy QoS requirements of

different users with different demands during time. Also, given

the random nature in video contents, we explore the capability

of the approach in dealing with different video contents.

Table II shows the average values for the main metrics

for a specific combination of video types in scenario II.

Qualitatively, the behaviour of all implementations is similar

to that in the previous scenario, and all are able to satisfy

QoS requirements if the workload is not close to the resource

saturation point, achieving an average PSNR ≈ 36dB in all

approaches. When the machine is fully utilized (e.g. when

transcoding three HR videos simultaneously), MAMUT still

achieves the best results in terms of QoS, whereas the mono-

agent system cannot meet the QoS requirements. The reason

lies in that the latter is restricted to fewer number of actions;

thus, it cannot adapt to all situations. MAMUT consumes

8% to 20%, and 4% and 7% less power when compared

the heuristic and mono-agent approaches, respectively. Finally,

QoS violations are reduced up to 8x and 4x compared with

the heuristic and mono-agent approaches, respectively.

VI. CONCLUSION

In this work we presented MAMUT, a novel multi-agent

reinforcement learning solution for efficient real-time multi-

user video transcoding. Our solution adapts better to the

environment and different video contents than alternative ap-

proaches by dividing the design space in different subspaces,

each of them explored by one different agent, while working

cooperatively with the others to decide the next actions to

take. In our design, agents tackle both intrinsic parameters

of the transcoding process (e.g. Quantization Parameter) or

architectural parameters (number of threads and processor

frequency). Our solution exhibits better results both in energy

consumption (up to 24% when compared with a heuristic

approach, and 7% compared with a mono-agent approach)

and less QoS violations (up to 8x and 5x, respectively), while

satisfying restrictions in power and compression. In other

words, MAMUT is able to simultaneously and transparently

improve QoS and resource usage with no user intervention in

real time scenarios, where multiple transcoding requests have

to be served simultaneously.

REFERENCES

[1] I. SANDVINE, “Global internet phenomena report. 2016,” 2015.
[2] B. Bross, “High efficiency video coding (HEVC) text specification draft

9 (sodis),” in 11th JCT-VC meeting, Oct 2012.
[3] “DMR youtube report,” 2017. [Online]. Available:

http://expandedramblings.com/youtube-statistics
[4] F. Bossen, B. Bross et al., “HEVC complexity and implementation anal-

ysis,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1685–1696, 2012.

[5] P. Bordes, P. Andrivon et al., “Joint collaborative team on video coding
(JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,”
2016. [Online]. Available: https://HEVC.hhi.fraunhofer.de

[6] M. Viitanen, A. Koivula et al., “Kvazaar: Open-source HEVC/h. 265
encoder,” in ACM on Multimedia Conference, 2016, pp. 1179–1182.

[7] M. Abeydeera, M. Karunaratne et al., “4K real-time HEVC decoder on
an FPGA,” IEEE Trans. Circuits Syst. Video Tech., vol. 26, pp. 236–249,
2016.

[8] A. Iranfar, M. Zapater, and D. Atienza, “Machine learning-based quality-
aware power and thermal management of multistream HEVC encoding
on multicore servers,” IEEE TPDS, 2018.

[9] D. Palomino, M. Shafique et al., “TONE: Adaptive temperature opti-
mization for the next generation video encoders,” in Int. Symposium on
Low power electronics and design (ISLPED), 2014, pp. 33–38.

[10] M. U. K. Khan, M. Shafique, and J. Henkel, “Power-efficient workload
balancing for video applications,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2089–2102, 2016.

[11] J.-H. Hu, W.-H. Peng, and C.-H. Chung, “Reinforcement learning for
hevc/h. 265 intra-frame rate control,” in Circuits and Systems (ISCAS),
2018 IEEE International Symposium on. IEEE, 2018, pp. 1–5.

[12] A. Iranfar, A. Pahlevan et al., “Online efficient bio-medical video
transcoding on MPSoCs through content-aware workload allocation,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2018. IEEE, 2018, pp. 949–954.

[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[14] G. J. Sullivan, J.-R. Ohm et al., “Overview of the high efficiency video
coding(HEVC) standard,” IEEE Transactions on circuits and systems for
video technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[15] D. Belson, “Akamais state of the internet,” 2017. [Online].
Available: https://www.akamai.com/us/en/multimedia/documents/state-
of-the-internet/q4-2017-state-of-the-internet-security-report.pdf

[16] A. Iranfar, S. N. Shahsavani et al., “A heuristic machine learning-
based algorithm for power and thermal management of heterogeneous
MPSoCs,” in Int. Symp. on Low Power Electronics and Design, 2015.

[17] U. A. Khan and B. Rinner, “Online learning of timeout policies for dy-
namic power management,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 13, no. 4, p. 96, 2014.

[18] F. Bossen and H. Common, “Test conditions and software reference
configurations,” JCT-VC Doc, 2013.

[19] M. Grellert, M. Shafique et al., “An adaptive workload management
scheme for HEVC encoding,” in Image Processing (ICIP), 2013 20th
IEEE International Conference on. IEEE, 2013, pp. 1850–1854.

