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ABSTRACT

The increasing ubiquity of edge devices in the consumer market,

along with their ever more computationally expensive workloads,

necessitate corresponding increases in computing power to support

such workloads. In-memory computing is attractive in edge devices

as it reuses preexisting memory elements, thus limiting area over-

head. Additionally, in-SRAM Computing (iSC) efficiently performs

computations on spatially local data found in a variety of emerg-

ing edge device workloads. We therefore propose, implement, and

benchmark BLADE, a BitLine Accelerator for Devices on the Edge.

BLADE is an iSC architecture that can perform massive SIMD-like

complex operations on hundreds to thousands of operands simulta-

neously. We implement BLADE in 28nm CMOS and demonstrate

its functionality down to 0.6V, lower than any conventional state-of-

the-art iSC architecture. We also benchmark BLADE in conjunction

with a full Linux software stack in the gem5 architectural simulator,

providing a robust demonstration of its performance gain in compar-

ison to an equivalent embedded processor equipped with a NEON

SIMD co-processor. We benchmark BLADE with three emerging

edge device workloads, namely cryptography, high efficiency video

coding, and convolutional neural networks, and demonstrate 4x, 6x,

and 3x performance improvement, respectively, in comparison to a

baseline CPU/NEON processor at an equivalent power budget.
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1 INTRODUCTION

As of 2018, 41% of Americans owned a digital home assistant, e.g.

Amazon’s Alexa or Google’s Home, and over 25% owned more than

three smart home devices [16]. In the same year, 77% of Americans

owned a smartphone, for the first time overtaking PC ownership at
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just 75% [1]. As edge device adoption accelerates, their compute

power must increase correspondingly to meet application demands.

As edge devices are naturally limited in physical size and power,

innovations must be developed that boost performance while main-

taining low area and power overheads. In this context, in-memory

computing presents an attractive solution as it boosts compute power

through preexisting hardware elements, while also reducing power

consumption due to data movement [3]. Much research in this field

focuses on in-DRAM computing to reduce data movement and take

advantage of the logic layer available in 3D DRAM stacks [12, 17,

25]. However, the emerging field of in-SRAM Computing (iSC) also

shows promise as it takes advantage of SRAM array bitline/wordline

structure and the contained data’s inherent locality to perform SIMD-

like operations without involving the processor [3]. Different iSC ar-

chitectures have been explored, from simple bitwise logic caches [3]

to transposing caches that perform complex operations [14] and

large, complex 10T-based arrays that can fully pipeline many opera-

tions [4]. However, each of these architectures have drawbacks in

terms of computational complexity, size, and performance. Currently

there are no iSC architectures designed specifically to address the

unique requirements of edge device physical design and workloads.

To fulfill this need, we propose BLADE, a BitLine Accelerator for

Devices on the Edge. Its physical and architectural characteristics are

ideal for small edge device caches. In particular, BLADE performs

complex operations such as add, multiply, and greater/less

than, in a massive (i.e. 1024 bitwise/128 8bit) SIMD-like fash-

ion, necessary for increasingly complex workloads. By utilizing

conventional 6T bitcells and standard bitline multiplexing, BLADE

maintains a low (8%) area overhead. Finally, utilizing local bitlines

gives BLADE the most efficient voltage/frequency Pareto curve

down to 0.6V of any state-of-the-art iSC architecture.

We validate BLADE at the electrical and system level to demon-

strate its correct functionality as well as applicability to emerging

edge device workloads. From an electrical standpoint, we implement

BLADE in 28nm bulk CMOS technology and validate its reliable

operation from 0.6V (415Mhz) to 1V (2.2Ghz) , taking into account

process variations and post-layout parasitics and extracting timing

and energy characteristics. To demonstrate system-level function-

ality, we extend the gem5 [8] architectural simulator with BLADE,

integrating the previously acquired timing values to create a timing

accurate simulator capable of running any workload on a full Linux

stack. Our robust electrical simulations combined with a realistic,

full software stack allows us to benchmark BLADE acceleration

on emerging edge device workloads such as cryptography, video

processing, and neural networks, while taking into account system

level events such as cache misses, system calls, and architecture

specific bottlenecks. BLADE is in fact the first complex operation

iSC architecture to be profiled on a full software stack.
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Thus, the contributions of this paper are as follows:

• We propose BLADE, the first iSC architecture designed

specifically for edge devices.

• We implement BLADE in 28nm bulk CMOS, demonstrat-

ing reliable operation down to 0.6V without performance

degradation (416Mhz) - a first for iSC architectures.

• We design a timing-accurate gem5 extension for BLADE,

allowing workload profiling on a full software stack.

• We profile BLADE with the primary kernels of three edge de-

vice workloads, namely cryptography, image processing, and

neural networks, demonstrating 4x, 6x, and 3x performance

improvements, respectively, against an identical embedded

processor equipped with a NEON SIMD co-processor.

The rest of the paper is structured as follows. Section 2 discusses

state-of-the-art iSC architectures. Section 3 describes the edge device

workloads we use to profile BLADE. Section 4 explains BLADE’s

bitline architecture and its optimization to edge devices. Section 5

describes our benchmarking methodology in gem5, and finally Sec-

tion 6 presents and analyzes benchmark results.

2 RELATED WORK - BITLINE COMPUTING

BitLine (BL) computing utilizes SRAM structures, cache or other-

wise, to perform computations at a much lower transistor count than

a standard logic circuit. Jeloka et al. [21] demonstrate that sensing

the BL and BL bar of simultaneously activated bitcells results in an

and or nor operation of the bitcell values, respectively. Compute

Caches [3] extend the number of operations with the addition of

extra logic to support a xor operation, as illustrated in Figure 1.

With this base BL logic architecture, complex operations can be

achieved through various means. Neural Cache [14] performs bit se-

rial complex operations by transposing operands to occupy a single

BL and performing series of bitwise operations on them. DRC2 [4]

implements carry logic across BLs to facilitate complex operations.

Finally, Dong et al. [11] rely on deeply depleted channel technol-

ogy and an unconventional 4T bitcell design to achieve an ultra-low

voltage iSC architecture.

While these proposals highlight the potential of iSC, each has

drawbacks, both in general and in the context of edge device com-

puting. In particular, DRC2’s architecture deviates significantly from

typical cache structure as it utilizes 10T SRAM cells and complex

periphery for maximum performance, resulting in what is more an ac-

celerator than a cache. Alternatively, the ultra low voltage (0.3V) iSC

architecture presented in [11] relies on unconventional CMOS tech-

nology (deeply depleted channel) and modified 4T bitcells, known to

suffer from stability issues [9] and disturb risks, as well as showing

poor performance with voltage scaling (100Mhz@0.6V).

While such architectures may be beneficial to edge devices, they

are in veins of research parallel to this work. Compute Caches and

Neural Cache, on the other hand, are reliant on the 6T bitcell archi-

tecture presented in [21], which has been demonstrated to function

in a frequency/voltage range of 800MHz/1V to 70MHz/0.7V. Neu-

ral Cache assumes iSC frequency can be improved up to 2.5GHz,

however the cache upon which Neural Cache’s profiling is based can-

not achieve such frequencies at <0.85V [20], well above the 0.66V

wordline voltage limitation presented in the work. Neural Cache

also relies on bit serial computation to perform complex operations.
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Figure 1: Cache subarray with AND/NOR/XOR BL computing.

While this increases the number of parallel operations, the resultant

latency from bit serial computation reduces the throughput such that

it is comparable to more standard approaches utilizing carry logic,

as demonstrated in DRC2 and in this work. Lastly, Neural Cache’s

reliance on operand transposition reduces the operation granularity

at which such an architecture can improve performance; in other

words, mingling iSC and CPU operations results in a significant

transposition overhead, mitigating performance gains.

In contrast to the above mentioned approaches, BLADE specifi-

cally targets edge devices by utilizing a conventional 6T SRAM bit-

cell design with shared read ports to avoid data corruption, limit area

overhead, and avoid frequency reduction while being compatible

with any CMOS technology. Further, BLADE uses a conventional

carry chain that allows interspersion of iSC and CPU operations

at no performance loss, and we have robustly simulated it down to

0.6V to guarantee its operation in conditions typical of edge devices.

3 EDGE DEVICE WORKLOADS

As the adoption of edge devices increasingly supplant traditional

compute environments such as servers, emerging workloads will

increasingly resemble those of traditional servers in function and

complexity. While designing BLADE, we focused specifically on

designing an architecture optimized for such workloads, and hence

chose applications representative of three such fields for profiling.

3.1 Cryptography

As the IoT continues to expand, more and more sensitive data will

be being transferred between edge level devices and servers [28].

The need for data security and privacy in the midst of this data ex-

plosion is such that many processors now include hardware support

for common cryptographic functions [6]. Given the ongoing and

increasing need for data privacy, as well as emerging technologies

such as blockchain, we have included the Secure Hash Algorithm

3 (SHA-3) [13] in our BLADE benchmarks, an integrity algorithm

used in data encryption and to detect data tampering.

3.2 HEVC Video Processing

Multimedia creation and consumption makes up the largest portion

of total mobile app usage, with Youtube being the second most

downloaded mobile application at 52.1%, behind Facebook [23].
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Table 1: BLADE operation support and cycle count.

Operation Cycle Count

Bitwise (and, nor, xor, not) 2

Shift 2*(# shifts)

Add 2

Subtract 4

Multiplication 1 + 2*(operand bit width) + 2*3

Greater/Less Than 10

Copy 2

Video streaming, music, and mobile games all require significant and

increasing processing capabilities. Specifically, with the advent of

4K cameras in phones, the ability to efficiently compress video data

will become a necessity for video streaming apps such as Twitch and

Facebook Live [15]. As such, we choose the HEVC video encoding

program Kvazaar [30] as one of our BLADE benchmarks.

3.3 Convolutional Neural Networks

Since Alexnet [22] was unveiled in 2012, Convolutional Neural

Networks (CNNs) have become the premier neural net for tasks such

as image and language processing [10, 26] and object detection [24].

Given their extreme utility, hardware support on mobile platforms

for neural network inference and specifically CNNs has become

increasingly attractive [18, 19]. We therefore choose to benchmark

CNNs on BLADE. Specifically, we implement our testbench on the

Arm Compute Library framework (ACL) [2], a suite of functions

designed by ARM to optimally utilize its NEON SIMD co-processor.

4 EDGE DEVICE OPTIMIZATION

In targeting edge devices, several design choices in terms of archi-

tecture design and integration into the cache hierarchy were made to

optimize BLADE for the previously presented workloads.

4.1 Supporting Edge Level Applications

BLADE performs simple bitwise operations and, nor, and xor in

a manner similar to [3] and demonstrated in Figure 1, namely, by

activating two wordlines and sensing the resulting discharge at the

output of a single ended sense amplifier. However, in order to support

emerging edge device workloads, support for complex operations

such as addition and multiplication is also necessary. Hence, we

extend the simple BL logic with the addition of a xor and two nor

gates, as illustrated in Figure 2-b. The output of the xor gate is in

fact an addition between the bits of the two activated wordlines,

while the output of the nor gates is a carry bit that can be fed to the

following BL logic, resulting in a carry ripple adder. The carry line

also doubles as a shift if only one wordline is activated.

With the implementation of addition and shift logic, many more

complex operations become possible through a series of simple op-

erations. For example, multiplication can be accomplished through

a series of additions and shifts. In this work, we accelerate these

complex operations through the inclusion of latches after the sense

amplifiers and before the writeback logic, allowing pipelining of

add+shift stages, as well as an add write-forward line, allowing 2

cycle add+shifts. Alternatively, in a highly area constrained envi-

ronment, these latches and write-forward lines could be omitted at
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Figure 2: Layout view of a 256×64 BLADE memory with de-

tailed layout and schematic diagram of the memory periphery.

the cost of higher cycle counts for complex operations. Table 1 lists

all currently supported operations and their respective cycle counts,

assuming the cache design detailed in Section 4.3. This cache design

utilizes a typical 64 byte wordline length, meaning that a minimum

of 512/64 bitwise/8bit operations can be performed per in-cache

operation, with this number dependent on cache size and geometry.

4.2 Optimized for Small Caches

Several architectural decisions were made in order to optimize

BLADE particularly for the small caches found in edge devices.

First, we choose to integrate BLADE into the L1 cache in order to

simplify cache coherency. Any data requests by the BLADE con-

troller are serviced as standard reads by the cache controller, and

similarly, any evictions from the CPU or due to snoop protocol are

serviced by the cache controller, with the BLADE controller being

notified if relevant data has been evicted.
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Table 2: Worst case energy values of basic and BLADE opera-

tions in a 256×64 array.

Operation Active Energy (fJ) Leakage Energy (fJ)

Rd 23.9

88.9
Wr 25.9

Bitwise Operation 23.8

8 bit add 207.4

Second, we implement the BL logic block underneath a BL mul-

tiplexer, as illustrated in Figure 2. This reduces area overhead as BL

logic is shared between multiple BLs. As set ways are interleaved,

BLADE operands are always placed in ways 0 and 1 in order to

reduce BLADE controller complexity. Multiplexing also preserves

the ability to read cache and tag arrays simultaneously for faster

read/write times, known as parallel-tag data access and common in

L1 caches. Implementation under the BL multiplexer reduces the

number of simultaneous operations that can be performed per cycle,

however we believe that the area overhead of putting complex BL

logic underneath every BL would make such a design infeasible.

4.3 BLADE at Low Voltage

The ability to operate at low voltage is important in power-constrained

edge level devices. Unfortunately, cache voltage scaling in iSC archi-

tectures is extremely limited due to the risk of data corruption [21].

Data corruption results from the fact that activating two wordlines

simultaneously shorts the wordlines’ bitcells along their BLs, lead-

ing to the possibility of bitcell flipping. The architectures presented

in [3, 14] overcome this issue by reducing wordline voltage (un-

derdrive). However, this solution comes at a cost of significantly

reduced compute frequency and precludes low voltage operation.

In order to meet the wide voltage range requirements of edge

devices while maintaining high frequency, BLADE reuses Local

BitLines (LBLs), already reported in many cache architectures [27],

to perform reliable, high frequency iSC operations. Each wordline

is contained inside a Local Group (LG), which contains a vari-

able number of wordlines and dedicated read/write periphery. All

LGs in a subarray are connected in parallel to global read/write

BLs(GRBL/GWrL), and are isolated from other LGs, preventing
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Figure 4: Transient simulations of bitwise AND, NOR opera-

tions at 0.6V on (a) previously published architectures and (b)

the proposed BLADE architecture. Thanks to its Local BL or-

ganization, BLADE does not require WL underdrive and can

achieve fast operation at low voltage while standard architec-

tures are not operational due to BL leakage.

bitcell shorting or flipping. Figure 3 plots voltage/frequency points

for BLADE, both with and without LGs, as well as those of other

works. BLADE’s voltage/frequency Pareto curve is the most effi-

cient of any conventional state-of-the-art iSC architecture, with a

voltage/frequency range between 0.6V/416MHz-1V/2.2GHz.

We implement BLADE in 28nm high performance CMOS tech-

nology PDK from TSMC and simulate BLADE’s critical paths,

considering post-layout parasitics and CMOS variations (10,000

monte-carlo runs at 300K). In this work, we simulate a 256 BL

×64WL memory array with 2 LGs (32WL per LG). This array has

an area efficiency of 55.7%, of which the BL logic accounts for 8%.

Figure 4 compares the operation of the BLADE memory operating

at 0.6V with the same architecture while not using LGs. Beyond

showing over 4× speed improvement, it illustrates how BL leakage

due to underdriven wordlines preclude correct iSC functionality for

standard iSC architectures at 0.6V. We also measure the energy con-

sumption of basic cache operations at a cache frequency of 2.2GHz,

as seen in Table 2.

It should be noted that the use of LGs results in a small area

overhead [27] and an additional data placement constraint, namely

that operands cannot share the same local BL in order to achieve

frequencies shown on the red curve in Figure 3. Other placement

constraints are discussed in [3], and can be overcome via various

architecture-specific solutions. We believe that the nearly 3x fre-

quency gain provided by local BLs outweighs its costs in area and

programming complexity. Further, as local BLs are already present

in many cache architectures, primarily to improve speed and read

stability [27], BLADE in fact improves area efficiency by providing

a secondary usage of existing hardware.
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Table 3: Simulator Parameters

Processor 2GHz, 4 stage pipeline, ARMv8 ISA

in-order core, 7 entry LSQ

NEON 128 bit registers

Co-processor 16 parallel 8-bit operations

L1-I Cache 32kB, 4-way, 1 cycle access

L1-D Cache 32kB, 4-way, 1 cycle access, BLADE extension

L2 Cache mostly-exclusive, 1MB, 4-way, 6 cycle access

Memory DDR3 2133MHz, 4GB

BLADE Max 1024/128 bitwise/8bit simultaneous operations

5 BENCHMARK SETUP

5.1 Benchmarking BLADE in gem5

In order to validate the performance gain of this work at a system

level, we implement a timing accurate model of BLADE in the archi-

tectural simulator gem5 [8]. This is accomplished by first laying out

a BLADE SRAM array as discussed in Section 4.3 and extracting

critical path timing values. We then extend gem5’s L1 cache with a

BLADE controller and BL logic, integrating the previously extracted

timing values to guarantee cycle accurate simulation. The simulator

is calibrated with the parameters outlined in Table 3, which emulates

the ARMv8 A53 in-order core found on the ARM Juno develop-

ment board [7], and running an Ubuntu 18.04 LTS software environ-

ment that demonstrates less than 4% timing inaccuracy on profiling

tests compared to physical hardware. The simulator also supports

operations utilizing a NEON SIMD co-processor [5]. NEON is a

well-established and documented SIMD accelerator present on many

edge devices, therefore we choose to evaluate the performance of

BLADE against NEON. gem5 does not provide reliable system level

energy or power estimations, so we do not include such estimations

in our performance results beyond individual instruction energy con-

sumption presented in Section 4.3. However, previously presented

work demonstrates how iSC architectures reliably reduce energy

consumption by reducing instruction processing and eliminating

data movement [3]. Such a claim can be grasped intuitively by con-

sidering that performing an equivalent number of operations on an

array of operands via BLADE, which can perform 128 simultane-

ous operations, vs NEON, which can perform 16 8 bit operations

simultaneously, will result in significantly reduced memory access

and data movement, and hence reduced energy consumption.

5.2 Benchmarking Methodology

In order to benchmark BLADE’s performance on the target appli-

cations, we profile each application and identify its most compute

intensive kernel. Each kernel has been highly optimized for use on

the NEON, providing a robust comparison for BLADE. The kernels

in question are the block permutation kernel of SHA-3, the FIR

filter of Kvazaar, and the convolutional layer of an ACL CNN; these

kernels consume 94%, 35%, and 90% of total application runtimes,

respectively. We therefore extract each kernel and run a series of

benchmarks, sweeping size parameters related to each kernel. For

the FIR filter and convolutional kernels, we also vary cache associa-

tivity and cache size, respectively, to demonstrate interesting trends

that apply to iSC architectures in general, as detailed in Section 6.
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6 BENCHMARK RESULTS

6.1 Bitwise Operations

The block permutation kernel of SHA-3 involves performing a large

number of bitwise operations, namely xor, shift, and and, on each

byte of information in a series of up to 24 rounds to permute it to an

encrypted character sequence. Such a kernel allows us to explore the

performance of BLADE with respect to the number of operations

performed on data per data access. We therefore design a kernel in

which varying amounts of bitwise computations are performed on

data per access from memory.

Figure 5 illustrates the performance gains of BLADE over NEON

for operation counts between 1 and 200 per data access for 4096

bytes of data. At lower numbers of operations, function time is dom-

inated by memory access, resulting in ~1x acceleration for BLADE.

However, as the number of bitwise operations per data access in-

creases, BLADE acceleration improves correspondingly, saturating

at ~3.5x speed-up. This saturation is reached at 30 operations per

access, well under the >400 operations per byte that SHA3-256 per-

forms, indicating that at this point compute time becomes dominant

over access time. Overall, the maximum performance gain over a

NEON co-processor is demonstrated to be 4x.

6.2 FIR Filter

In order to benchmark Kvazaar’s FIR filter function, we extract and

run the function in isolation on the available sub-image tile sizes

according the HEVC standards [29]. The function utilizes 4 separate

8-tap FIR filters by which the input image is filtered in a horizontal

and then vertical manner, resulting in 16 filtered outputs. We also

vary cache geometry, specifically associativity, for this benchmark

in order to illustrate a general trend relating to iSC architectures,

namely that of operation efficiency in relation to cache geometry.
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Benchmark results are illustrated in Figure 6. This figure demon-

strates that, for tile sizes up to 1024 pixels, a cache with an associa-

tivity of 4 provides slightly higher acceleration when compared to

an equivalently sized cache with an associativity of 2. This results

from the fact that BLADE operations in the shallower 4-way cache

cause less evictions of relevant data, reducing redundant memory

accesses. However, at a tile size of 4096, the 2-way cache dominates

in performance, as it is twice as deep as the 4-way cache and can

therefore perform twice the number of parallel operations. Maximum

performance gain over NEON is demonstrated to be 6x.

6.3 Convolution

Finally, we also benchmark the convolutional layer of a CNN imple-

mented in ACL. Our convolutional layer benchmark has 32 input

planes and 32 output planes, and performs 3x3 convolution at stride 1

with a padding of 1 to maintain equivalent dimensions. Input/output

data is stored in 32 bit fixed point notation, while weights are stored

in 8 bit fixed point notation. We convolve input layers with widths

varying from 16 to 256 pixels at 2 different cache sizes, 32kB and

128kB, demonstrating a trend relating cache size to iSC efficiency.

Figure 7 illustrates benchmark results for the convolutional layer.

As can be seen, each cache size provides similar acceleration over

the NEON processor. However, there are sharp performance drop

offs at tile widths of 64 and 128 for the 32kB and 128kB caches,

respectively. This is a result of the fact that with an output width

of 32, the resultant output planes fit entirely within the L1 cache,

simplifying the kernel loop design and substantially reducing data

movement overhead. At an output width of 64 however, output planes

no longer fit within the cache, necessitating a more complex kernel

loop to meet operand locality constraints as discussed in Section 4.3,

and resulting in a high data movement overhead. By increasing L1

cache size to 128kB, larger layer sizes can be supported at higher

speeds. Similar results could be obtained by moving BLADE to

lower cache hierarchies; however, this would come at a trade-off

of increased coherency complexity if the lower level caches were

shared. Overall, a maximum performance gain of 3x over NEON is

demonstrated for the convolutional layer of a CNN.

7 CONCLUSION

As edge device workloads become more computationally complex,

innovative architectures will be necessary to maintain high perfor-

mance in area and energy constrained environments. In this work

we have presented BLADE, an iSC architecture that reuses the

preexisting L1 cache with a small (8%) area overhead to perform

massively parallel computation at the best voltage/frequency ratios

(0.6V/415MHz-1V/2.2GHz) of any conventional iSC architecture.

BLADE is demonstrated to outperform an equivalent CPU/NEON

processor by significant margins (4x, 6x, 3x) across a variety of

cache geometries for a variety of emerging workloads while main-

taining or reducing energy consumption. Our results demonstrate

that iSC architectures are a promising avenue of research to meet

the increasing computational needs of edge device workloads.
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