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Abstract

With the widespread use of AI, understanding the behavior of intelligent agents and

robots is crucial to guarantee successful human-agent collaboration since it is not

straightforward for humans to understand an agent’s state of mind. Recent empiri-
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cal studies have confirmed that explaining a system’s behavior to human users fosters

the latter’s acceptance of the system. However, providing overwhelming or unnec-

essary information may also confuse the users and cause failure. For these reasons,

parsimony has been outlined as one of the key features allowing successful human-

agent interaction with parsimonious explanation defined as the simplest explanation

(i.e. least complex) that describes the situation adequately (i.e. descriptive adequacy).

While parsimony is receiving growing attention in the literature, most of the works are

carried out on the conceptual front. This paper proposes a mechanism for parsimonious

eXplainable AI (XAI). In particular, it introduces the process of explanation formula-

tion and proposes HAExA, a human-agent architecture allowing to make it operational

for remote robots. To provide parsimonious explanations, HAExA relies on both con-

trastive explanations and explanation filtering. To evaluate the proposed architecture,

several research hypotheses are investigated in an empirical human-user study that re-

lies on well-established XAI metrics to estimate how trustworthy and satisfactory the

explanations provided by HAExA are. The results are analyzed using parametric and

non-parametric statistical testing.

Keywords: Explainable Artificial Intelligence, Human-Computer Interaction,

Multi-Agent Systems, Empirical Human Studies, Statistical Testing.

1. Introduction

Explaining the reasoning process and the outcomes of complex computer programs

has received considerable attention since the 1990s, when research works on explain-

able expert systems were disseminated [1]. Nowadays, with the pervasive application

of machine learning, the need to explain the reasoning of Artificial Intelligence (AI)5

methods and systems is considered a top priority [2]. In 2017, the European Parlia-

ment recommended AI systems to follow the principle of transparency; systems should

be able to justify their decisions in a way that is understandable to humans [3]. In April

2019, the European Union’s High-Level Expert Group on AI presented a document en-

titled "Ethics Guidelines for Trustworthy AI" [4]. This report highlighted transparency10

as a key property of trustworthy AI.
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In the same vein, recent works in the literature highlighted explainability as one of

the cornerstones for building trustworthy, responsible, and acceptable AI systems [5,

6, 7, 8]. Consequently, the sub-domain research of eXplainable Artificial Intelligence

(XAI) gained momentum both in academia and industry [9, 10, 11]. Primarily, this15

surge is explained by the often useful, yet sometimes intriguing [12], results of black-

box machine learning algorithms and the consequent need to understand how these data

fed into the algorithm produced the given results [2, 13, 14].

Another line of XAI research aims at explaining the outcomes of goal-driven sys-

tems (e.g. robots) [10] since, in the absence of a proper explanation, the human user20

will come up with an explanation that might be flawed or erroneous. In turn, this will

degrade the user’s acceptance of the system. This problem will be aggravated in the

near future because these systems are expected to be omnipresent in our daily lives

(e.g. autonomous cars on the roads, Unmanned Aerial Vehicles (UAVs) in a smart city,

social assistant robots, etc.). In this context of heterogeneous human-agent systems,25

recent works in goal-driven XAI aim at ensuring mutual understandability, improving

acceptability, and enhancing human-agent collaboration capabilities, in particular, to

facilitate human safety in human-robot collaborations.

To achieve smooth human-agent interaction and deliver the best possible explana-

tion to the human, two key features have been outlined in the literature when providing30

an explanation: (i) Simplicity: providing a relatively simple explanation that considers

the human cognitive load. The latter is a limit beyond which humans are unable to pro-

cess the provided information [15]; (ii) Adequacy: including all pertinent information

in an explanation to help the human understand the situation.

Generating simple and adequate explanations is a challenging task because of the35

contradicting the nature of the two features. On the one hand, achieving adequacy is

challenging in complex situations involving multiple remote robots since it places more

pressure on the human’s cognitive load and requires scalable XAI mechanisms able to

cope with the limited human cognitive capabilities. On the other hand, adequacy turns

out to be a challenge in abnormal situations, where the remote robot tends to diverge40

from the behavior expected by their human users, and therefore, a situation-specific

explanation is required.
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This paper proposes explanation formulation, a process that tackles these chal-

lenges by striking a balance between simplicity and adequacy, thereby producing par-

simonious explanations. This is done by relying on HAExA, a human-agent architec-45

ture allowing to make the explanation formulation operational. HAExA is deployed in

a scenario involving remote robots represented by intelligent agents.

Our choice of an agent-based architecture is explained as follows. Agents are au-

tonomous goal-driven software entities that are bound to individual perspectives. Thus,

agents are capable of both representing the remote robot’s perspective and piloting its50

interaction with its own environment. Agents are also able to represent end-users,

to apply user preferences regarding the interaction with the system, and to assess the

explanations that the user needs. Thus, HAExA is a multi-agent system architecture

involving agents that represent robots as well as agents dealing with interaction with

the user. Through interaction and coordination of these agents, HAExA formulates55

parsimonious explanations.

More specifically, the contribution of this work is threefold:

C1) Propose an agent-based architecture that facilitates human-agent parsimonious

explainability. In this architecture, remote robots are represented as agents. The

architecture helps in formulating the necessary parsimonious explanations com-60

municated from remote agents to human users, while at the same time consider-

ing the human cognitive load to avoid overwhelming users with too many details

in the explanation.

C2) Investigate the explanation formulation using various combinations of explana-

tion generation and communication approaches. To generate explanations, we65

rely on the Belief-Desire-Intention (BDI) agent architecture [16].

C3) Conduct an empirical human user case study based on a scenario of package

delivery using civilian UAVs. The study investigates the impact of the different

techniques of explanation formulation (static filter, adaptive filter, and adaptive

filter with contrastive explanations) on users. The significance of the partici-70

pants’ responses is statistically analyzed and presented using non-parametric and

parametric testing.

4



The rest of this paper is structured as follows: Section 2 lays down the background

concepts of this paper, while Section 3 highlights the most related works in the liter-

ature. Section 4 proposes HAExA, the human-agent explainability architecture. Sec-75

tion 5 presents the experimental case study and the Likert-based questionnaire built to

collect the responses of the human participants. Section 6 presents the study results, i.e.

the statistical analysis of the responses of the participants and a discussion thereof. Fi-

nally, Section 7 briefly discusses the implications and limitations of the research results

before Section 8 concludes the paper.80

2. Background and Definitions

This section provides the background of this work. Section 2.1 introduces the con-

cept of parsimony and discusses its relation with XAI, while Section 2.2 introduces

contrastive explanations as a component of parsimonious explanations and highlights

related works to this concept in the literature. Section 2.3 outlines the process of85

providing an explanation. Since this papers address explainability in the context of

autonomous goal-driven remote robots, Section 2.4 offers a brief introduction to ex-

isting works addressing goal-driven explainable agents and robots, while Section 2.5

discusses the cognitive architectures allowing to implement such agents. Section 2.6

provides insights on how to make empirical assessments in XAI.90

2.1. Parsimony and XAI

The concept of parsimony of explanations has received considerable attention for

centuries. A famous formulation of this concept is the “Occam’s Razor” [17, 18] stip-

ulating that: “Entities should not be multiplied beyond necessity.” Thereafter, Occam’s

Razor1 became the basis of the principle of “parsimony of explanations.” This princi-95

ple has been influential in scientific thinking in general and in problems of statistical

inference in particular [19, 20, 21].

The goal of this principle is to choose the simplest (i.e. least complex) explanation

that describes the situation adequately (i.e. descriptive adequacy). Yet, as has been

1William of Occam, 1290–1349.
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shown in the literature [22, 23, 24], parsimony is a largely subjective quality. For this100

reason, human studies have been outlined as key to assess how parsimonious an expla-

nation is to a given user in a given situation. In these tests, the opinions of humans on

the usefulness of explanations are collected and analyzed. With the advent of XAI, re-

search on parsimony of explanations has gained new momentum since the explanations

provided by the AI systems to their human users should be simple while containing all105

the information about the system’s decision. Thus, parsimony has been identified as

a key desideratum for XAI [25, 26]. Yet, very few works in the literature define what

parsimony means in the context of XAI, show how parsimonious explanations can be

generated and communicated to humans, or discuss their impact on the human receiv-

ing them can be assessed (please refer to Section 3 for an overview of these works).110

In this work, we define parsimony as a balance achieved between simplicity and ad-

equacy, where the former is providing simple explanations that consider the human

cognitive load, and the latter mandates the inclusion of all pertinent information in the

explanation to help the user understand the situation.

The discussion of the parsimony of explanations opens the door to these questions:115

i) What is the information necessary to be kept in an explanation? ii) How is a parsi-

monious explanation formulated? To tackle these questions, some authors investigated

contrastive explanation as a potential way to generate the explanation based on the nec-

essary information that the human needs, instead of providing a full explanation of the

system (cf. [27]). The next section offers an overview of contrastive explanations.120

2.2. Contrastive Explanations

One way to develop parsimonious XAI is to rely on theories and experiments de-

scribing how humans explain their decisions and behavior. This emerging body of

research mainly looks for insights from the social sciences [28]. The aim is to explore

how humans generate and communicate explanations in their everyday life. Every-125

day explanations are explanations of why particular events, behaviors, decisions, etc.

happened [29]. Evidence in the literature suggests that in abnormal situations, these

everyday explanations should take the form of contrastive explanations [28]. The latter

have been defined in the literature as follows: “the key insight is to recognize that one
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does not explain events per se, but that one explains why the puzzling event occurred130

in the target cases but not in some counterfactual contrast case” [30].

The use of contrastive explanations is justified by the fact that people generally

do not expect an explanation that consists of the complete cause of an event. Instead,

humans prefer selecting one or two causes from a sometimes infinite number of causes

to be the explanation. However, this selection is influenced by certain cognitive biases135

[28]. Lipton [31] proposed one of the first works investigating the use of contrastive

explanations in AI. His research concluded that if the explanations are to be designed

for humans, they should be contrastive [31]. Later research showed that people do

not explain the causes for an event by itself, but they explain the cause of an event

relative to another counterfactual event (that did not occur). Therefore, according to140

Kim et al. [32], a contrastive explanation describes “why event A occurred as opposed

to some alternative event B.”. A likely reason for the prevalence and effectiveness of

contrastive explanations is that humans typically explain events that they, or others,

consider abnormal or unexpected [33, 34]. This contrastive explanation takes the form

of ‘why’ questions and it may be expressed in various ways [35, 36].145

In recent years, research on contrastive explanations in AI received growing atten-

tion [37, 38, 39, 40]. Lim and Dey [41] found that “Why not ...?” questions were

common questions that people asked after some human studies on context-aware ap-

plications. Winikoff [42] investigated how to answer contrastive questions, e.g. “Why

didn’t you do ...?” for Belief-Desire-Intention (BDI) agents. Another similar work150

has checked the same type of questions like “Why didn’t you do something else” [43].

However, most of the existing works consider contrastive questions, but not contrastive

explanations, as mainly people use the difference between the occurred event and the

expected event when they look for an explanation [28].

Evidence from social sciences confirms the importance of contrastive explanations155

both in human-to-human explanations and machine-to-human explanations. In an in-

fluential recent survey, Miller [28] identified useful insights related to XAI from the

social sciences. Among the key findings outlined in his work, he postulated that expla-

nations are contrastive in the sense that they are responses to particular counterfactual

cases.160

7



2.3. Phases of an Explanation

Neerincx et al. [44] emphasize that for the explanations to serve their purposes,

they should be aware of the context and the human information processing capabili-

ties, i.e. human cognitive load. According to these authors, the process of providing

explanations by agents to the human is defined by three distinct phases:165

Generation. This phase considers what to explain and how to explain it. For example,

explaining the perceptual foundation of the agent behavior, or explaining why a

certain action is applied.

Communication. This phase is about the form of the explanation (textual, visual, in a

simulation, etc.), and the means to communicate the explanation.170

Reception. This phase is concerned with the human processing and understanding of

the explanation. Concerning XAI reception, some user studies (e.g. [45]) have

been conducted, but there is a lack of empirical research involving human users

in realistic human-agent settings and scenarios where explanations are needed to

understand the system’s behavior [28, 46].175

2.4. Goal-driven XAI

The majority of works in the literature of XAI are data-driven, i.e. they aim to inter-

pret how the available data led a machine learning algorithm such as a Deep Neural Net-

work (DNN) to take a given decision (e.g. a classification decision) [9]. More recently,

XAI approaches have been extended to explain the complex behavior of goal-driven180

systems such as robots and agents [10, 47]. The main motivations for this research

direction are: (i) In general, robot-human communication is a key challenge, since,

by default, it is not straightforward for humans to understand the robot’s State-of–

Mind (SoM). The latter refers to the intentions and goals of a robot [47]. As has been

shown in the literature, humans tend to assume that robots/agents have their own SoM185

[47], and that with the absence of a proper explanation, a human will come up with

an explanation that might be flawed or erroneous; (ii) In the near future, goal-driven

systems are expected to be omnipresent in our daily lives (e.g. social assisting robots
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and virtual assistants). Therefore, ensuring mutual understandability among humans

and robots/agents is key to improve their acceptability and human-agent collaboration190

capabilities, and in particular to facilitate human safety in human-robot collaborations.

In the context of human-agent collaboration, XAI is of particular interest since provid-

ing explanations in multi-agent environments is even more challenging than providing

explanations in other settings [48].

2.5. Cognitive Agent Architectures195

Agent architectures are frequently applied to equip robots/agents with greater au-

tonomy. By designing proactive agents that control robots, the latter become capable

of autonomously managing their actions and behavior to reach their goals [49, 50, 51].

Any proposed architecture should have the following characteristics:

1) A representation of the environment where the agents act and interact;200

2) A self-representation of the agent’s internal reasoning cycle;

3) Social skills for interacting with other agents.

These characteristics can be found —to different extents— in several well-known

cognitive architectures such as BDI [52], FORR [53], ACT-R [54], LIDA [55], or Soar

[56]. All these architectures reflect the first and second previously mentioned charac-205

teristics. Soar, BDI, ACT-R, and CLARION allow additionally to create social agents.

ACT-R and CLARION [57] architectures are time-consuming to compute; hence they

are not scalable in the context of near-real-time applications.

The BDI model is a model of human behavior that was developed by philosophers.

It appeared first in the Rational Agency project at the Stanford Research Institute in the210

mid-1980s. The origins of this model lie in the theory of human practical reasoning

developed by the philosopher Michael Bratman [52]. The conceptual framework of the

BDI model is described in [58]. We shortly describe the different concepts of beliefs,

desires, and intentions of the BDI model as follows [59]:

• Beliefs: Information that the agent has about the environment and may be out of215

date or inaccurate, and hence is considered a set of beliefs (and not knowledge)

that is revised with time.
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• Desires: All the possible states of affairs (or options) that the agent may want to

achieve. However, having a desire does not imply that the agent acts upon it. It

is a potential influencer of the actions of the agent.220

• Intentions: The states of affairs that the agent has decided to achieve. Inten-

tions may be goals that are delegated to the agent or may result from considering

options. The agent usually looks at its options and selects between them its

intentions. This process of selection may occur repeatably in a lower level of ab-

straction until reaching intentions that can be executed as atomic actions via the225

actuators of the agent. It is normal for an agent to have desires that are mutually

incompatible with one another, but not mutually incompatible intentions.

The BDI model allows agents to exhibit more complex behavior than purely re-

active models but without the computational overhead of other cognitive architectures

[60]. Moreover, some evidence exists that BDI agent architectures facilitate knowledge230

elicitation from domain experts [61]. Furthermore, because BDI is based on the con-

cepts of folk-psychology, it has been outlined as a good candidate to represent everyday

explanations [62, 63], since it is considered as the attribution of human behavior using

“everyday” terms such as beliefs, desires, intentions, emotions, and personality traits

[64, 65]. Finally, BDI has been identified as the most used architecture to generate235

explanations for goal-driven agents (e.g. [63, 44]) [10].

For all the previously mentioned reasons, this paper considers BDI architecture as

a good option for providing explanations since it relies on folk-psychology to represent

everyday explanations. Therefore, we opt to use BDI in the proposed architecture in

this work (cf. Section 4).240

2.6. Empirical XAI Assessment

To assess the user understandability and acceptability of the provided explanations

and their usefulness, works in the literature use empirical experiments to assess a given

XAI mechanism. To evaluate HAExA, we conduct a series of empirical experiments

where users interact with explainable remote robots in an Agent-Based Simulation245

(ABS) and rely on XAI questionnaires. This section provides the background for this
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evaluation process. In particular, Section 2.6.1 explains the concept of Agent-based

Simulation (ABS) used to implement the proposed architecture, and Section 2.6.2 dis-

cusses various ways to build XAI-based questionnaires to be used in empirical human

studies.250

2.6.1. Agent-Based Simulations

ABS is a set of interacting intelligent entities that reflect, within an artificial envi-

ronment, the relationships in the real world [66]. Consequently, ABS can be considered

as a natural step towards better understanding and managing the complexity of today’s

business and social systems. Additionally, cognitive architectures are frequently ap-255

plied in ABS [60].

For these reasons, ABS of BDI agents is a good candidate to simulate the behavior

of complex systems, thereby offering a platform to build explainable agents and assess

their understandability from the human user perspectives. Thus, this work proposes an

explainable BDI agent architecture built within an ABS to gain insights into how to260

explain the system behavior that emerges from local interacting BDI agents and pro-

cesses. Additionally, we argue that ABS facilitates a good reception of the explanations

by human users.

2.6.2. XAI Questionnaires

There are several methods for evaluating the explanations, whether humans are sat-265

isfied by them, how well humans understand the AI systems, how curiosity motivates

the search for explanations, whether the human’s trust and reliance on the AI are ap-

propriate, and finally, how the human-XAI system performs [67]. The questionnaire

should include questions so that if we present to a human the simulation that explains

how it works, we could measure whether it works, whether it works well, and whether270

the human has acquired a useful understanding with the help of the simulation.

Explanation Satisfaction and Trust Scale is a scale to measure both satisfaction (or

understandability in this paper) and trust when building the range of the questions and

answers of the questionnaire [67]. It is recommended for XAI, as it is based on lit-

erature in cognitive psychology, philosophy of science, and other pertinent disciplines275
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regarding the features related to explanations. In this context, a Likert scale [68] is

commonly used in research and surveys to measure attitude, providing a range of re-

sponses to a given question or statement. The typical Likert scale is a 5- or a 7-point

ordinal scale used by participants to rate the degree to which they agree or disagree with

a question or a statement. Therefore, we opt to use a 5-Likert scale based on the Ex-280

planation Satisfaction and Trust Scale in building the questionnaire in the experiment

of this paper (cf. Section 5.3)2.

3. Related Works

Recent works on XAI for intelligent agents and MAS employ automatically gen-

erated folk psychology-based explanations [69, 63, 70]. The latter communicate the285

beliefs and goals that led to the agent’s behavior. An interesting work discussed the

generation and the granularity (either detailed or abstract) of the explanation with a

firefighting application [71]. However, the paper is not conclusive in preferring a gran-

ularity level. Moreover, the paper concludes that in the special case of belief-based

explanations, the efficacy of a detailed explanation is higher than the one of an abstract290

explanation. The level of details, in this special case, are not considered; i.e. the paper

does not identify a threshold level beyond which explanations are overwhelming for

humans.

One work considered the ways intelligent agents should explain themselves to hu-

mans [72]. It especially focused on how the soundness (nothing but the truth) and295

completeness (the whole truth) of the explanations impact the fidelity of humans’ men-

tal models of how a recommender agent works [72]. The work discussed the “sweet

spot” between simplicity, i.e. simple explanations with little information, and informa-

tiveness, i.e. complete explanations with too much information. After a human study

with 17 participants, the result surprisingly indicated that there is no sweet spot and that300

the solution is simply to give all the explanations possible to the human. In addition

to the questionable validity of the results from a statistical point of view, one possible

2This choice is validated by other relevant works in the literature [67].
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reason for such a result is the chosen setting of the study, as there was no challenging

situation that provides too many explanations to overwhelm the human user; i.e. the

work did not consider the limited human cognitive load, which we do in our work.305

Indeed, as confirmed in the literature, there is a need to align the explanations with the

context and human information processing capabilities [44].

One work discusses the amount of information provided to the human and how it

affects understandability [73]. It shows that providing humans with detailed explana-

tions about an intelligent agent’s reasoning process can increase their understanding310

of how the system works. However, information comes at the price of attention, as

the human’s time (and interest) is finite, so the solution may not simply be “the more

information, the better” [73]. In our paper, we investigate thoroughly the amount of

information provided in the explanation and the effect the different filters have on the

understandability and trust of the human. Empirical human studies are vital to assess315

the process of explanation reception. Yet, very few works in the literature undertake

such experiments [28]. Recent work by Madumal et al. [27] discussed different lev-

els of explanations (none, detailed, and abstract) for reinforcement learning agents.

The authors performed an empirical evaluation using a Human-Computer Interaction

(HCI) study were participants watch a video game and then fill a questionnaire to col-320

lect their responses in terms of explanation quality and trust. Their results show that

their model of abstract causal explanations provides better performance in terms of

explanation quality (complete, sufficient details, and satisfying) than the benchmark

relevant explanation in the reinforcement learning domain. The model does not outper-

form the benchmark in the “understand” metric. However, the authors note that when325

comparing their model of explanation with the same scenario but with no explanation,

the results are not significantly different for the explanation quality metrics (complete,

understand, and satisfying) and only manage to get a significant result in the “suffi-

cient details” metric. Moreover, in terms of the explanation trust metrics (confident,

predictable, reliable, and safe), the obtained p− values are not statistically significant330

using the pairwise Analysis of Variance (ANOVA) parametric test. Furthermore, and

surprisingly, the objective understandability after analyzing the score of the task that

the participants had to predicate (i.e. when implicitly checking if the participants un-

13



derstood the simulation) is significant for the model in this related work, while the

subjective understandability after analyzing the responses of the participants, i.e. when335

explicitly asking the participants in the questionnaire if they understood the simulation,

is not. In our paper, we argue that the explanations should be formulated by combining

aspects of the three sub-processes of an explanation (cf. Section 2.3). Moreover, re-

garding the abstraction of explanations, we investigate several context-aware filtering

techniques of explanations, including an adaptive one.340

4. Human-Agent Explainability Architecture (HAExA)

4.1. Definition and General Principles of HAExA

As discussed in the previous sections, explanations should take into account the

context, the features of the explanation (simplicity and adequacy), and the cognitive

load of the human who receives the explanations. Therefore, we define explanation345

formulation as follows:

A process that seeks to maximize the adequacy of AI-generated explana-

tions communicated to humans while minimizing their impact on the hu-

man’s cognitive load, i.e. maximizing their simplicity.

To operationalize explanation formulation to a wide range of human-agent inter-350

actions, we introduce the Human-Agent Explainability Architecture (HAExA). This

architecture allows remote robots, represented as agents and organized in a MAS, to

expressively explain their behaviors in various situations to humans. The human in

HAExA is considered as a human-on-the-loop3. The latter term refers to humans whose

role in the environment is passive, i.e. the human receives explanations for after-action355

decisions, but he/she does not alter the processes in the environment.

The explanation formulation process aims to strike a balance between simplicity

and adequacy. To implement and operationalize this process, HAExA proposes a dy-

namic approach to integrate the three phases of explanation (i.e. Generation, Commu-

3For the sake of conciseness, the term ’human’ is henceforth used to refer to the human-on-the-loop.
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nication, and Reception [44]). In particular, HAExA implements them in the case of360

remote robots as follows:

1. Explanation Generation in HAExA. Remote robots organized as agents in a MAS

in the environment provide raw explanations of their behaviors and actions con-

cerning the various situations they face. The way these raw explanations are

generated varies according to the explained behavior or the situation, either nor-365

mal or abnormal. One approach, using reactive architectures, could be to react

to the situations according to a set of rules predefined by the human. Another

approach, using cognitive architectures, could be achieved by empowering the

agents with the ability to reason like humans. Regardless of the approach, the

main goal is to provide explanations that include all useful information and that370

are intelligible to humans.

2. Explanation Communication in HAExA. This phase is handled by assistant agents

positioned in between the remote agents on the one hand and the human on the

other hand. They are responsible for assuring two tasks: (i) Update the raw

explanations to guarantee that the useful information is not missed from them.375

(ii) Communicate the explanations from the remote agents to the human in a way

that considers the human cognitive load, e.g. by filtering the raw explanations;

This will facilitate a better understanding by the human user, notably because the

communicating agents receive the raw explanations from all the remote agents

in the MAS. Therefore, they hold a global overview of the system and may be380

able to pinpoint abnormal situations that were not clear to the remote agents.

3. Explanation Reception in HAExA. The agents communicating the explanations

to the humans could be in direct contact with the human to guarantee a better

reception of the explanations by the human. A better reception of explanations

could also be achieved by building a user model to understand the preferences of385

the human.

Considering the mentioned phases of explanations, the following section provides

a detailed overview of the agents and their roles in HAExA.
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4.2. Agents in HAExA

Figure 1 visualizes the architecture model HAExA that is composed of three dif-390

ferent entities:

• The right part of the figure represents the MAS. Several remote agents are in-

teracting with each other in the environment. Remote agents could be assigned

to a group based on their geographical location, capabilities, roles, etc. to facil-

itate the scalability of the architecture. Both in and across groups, collaboration395

and coordination among agents may occur, while competition is out of the scope

of the paper. Generally, all remote agents expose their internal state or a sub-

set of it via a central interface to the human. Consequently, they provide raw

explanations of their behaviors to the human.

• An assistant agent (depicted in the center of the figure) that collects the remote400

agents’ raw explanations to communicate filtered explanations to the human,

as humans could easily get overwhelmed by the information the remote agents

provide. Considering that the assistant agent has a global overview of the en-

vironment, it may post-process the raw explanations received from the remote

agents to aggregate, update, and filter them; subsequently, it communicates the405

updated and filtered explanations to the human.

• The human-on-the-loop who is the target user of the explanations (in the left

part of the figure).
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Figure 1: Human-Agent Explainability Architecture (HAExA)

HAExA is flexible and compatible with different agent architectures used by remote

agents and the assistant agent. In this paper, we implement HAExA using the BDI410

architecture (see Section 2.5 for the support of this choice).

HAExA can be defined in terms of composition by a triplet 〈A,AA,H〉. A is the

set of all remote agents in terms of composition. AA is the assistant agent. H is the

human-on-the-loop. The set of all remote agents A can be defined by the groups of

remote agents formed as in Equation 1:415

A = {A1,A2, ...,An} (1)

where Ai⊆A, i∈ [1..n] is a group of individual remote agents. n∈N∗ is the number

of the groups of remote agents. Let us assume a j
i is the jth remote agent of the group i.

This group of remote agents can be defined as in Equation 2.

Ai = {a1
i ,a

2
i , ...,a

mi
i } (2)
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where mi ∈N∗ is the number of remote agents in the group i, with a group of remote

agents having at least one member.420

Detailed implementations of the coordination and cooperation among agents are

out of the scope of the paper, as these aspects are already covered in-depth by a range

of research works. The reader is referred to [74] for more details about the definitions

and main characteristics of cooperation and coordination.

In HAExA, we focus on how the internal states of remote agents are aggregated425

and processed to finally be presented as explanations. Even though HAExA permits

the modeling of the explanation reception phase, this phase is considered as future

work in this paper and no user agents are used. Instead, explanation reception is only

analyzed by the empirical human studies provided later in the paper, where ABS is

used to facilitate the reception of explanations by humans.430

The remote agents generate raw explanations based on their beliefs and intentions.

Later the assistant agent post-processes, based on its beliefs and intentions, the raw ex-

planations by updating and/or filtering them before communicating them to the human.

The next section discusses in detail this process.

4.3. Explanation Formulation Process435

The goal of the explanation formulation process is to provide parsimonious expla-

nations to the human that strike a balance between simplicity and adequacy. The exact

nature of the formulation of the explanations depends on the implementation configu-

ration; i.e. HAExA supports different explanation formulations with different levels of

technical sophistication. This means that the explanations could be generated in dif-440

ferent methods, and could be communicated in several manners to the human as well.

Figure 2 shows one possible process model of the explanation formulation pipelines.

For the generation, two distinct methods are considered: normal explanations in nor-

mal situations, and contrastive explanations in abnormal situations. For the communi-

cation, three means of filtering are considered: static filter, adaptive filter, and no filter.445

These aspects are discussed in detail in Subsection 4.3.3. The other steps in Figure 2’s

explanation formulation process are detailed in the following sub-sections.
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Figure 2: HAExA explanation formulation process
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4.3.1. Generating the Raw Explanations

All remote agents provide to the assistant agent the set of all raw explanations RExp

that can be, based on Equations 1 and 2 (page 17), represented in Equation 3.450

RExp =
n⋃

i=1

mi⋃
j=1

rExp j
i (3)

where n ∈ N∗ is the number of the groups of remote agents. mi ∈ N∗ is the number

of remote agents in the group i.

RExp are generated by remote agents only if there is a need for such explanations.

The need arises in two cases:

1. When there is a significant change in the environment, i.e. change in the beliefs455

of the remote BDI agent about the environment. This is measured by comparing

the new current beliefs of the agent with its old (or previous) beliefs. For that,

we need to define the change in beliefs ∆B, i.e. check if there are new beliefs

that were not present previously i.e. B\BOld , and if there were beliefs previously

present but disappeared in the updated current beliefs, i.e. BOld \B. ∆B is defined460

in Equation 4. Accordingly, the condition to generate RExp based on the beliefs

is defined in Equation 5.

∆B = reduceRedundancy(merge(B,BOld)\ common(B,BOld))

= reduceRedundancy((B\BOld)∪ (BOld \B))
(4)

where the function merge returns the union of two sets, the function common re-

turns the intersection of two sets, and the function reduceRedundancy eliminates

all redundant attributes.465

|∆B|> θBelie f (5)

where θBelie f is the threshold of change in beliefs for generating RExp. It could

be the number of beliefs, beyond which the change in the environment has hap-

pened when updating the beliefs.
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2. When there is a significant change in the plan, i.e. change in the intentions of

the remote BDI agent. This could happen if the agent chooses to abandon a plan470

because it is impossible to achieve or to abandon its intentions because it finds

better ones. This is measured by comparing the new current intentions of the

agent with its old (or previous) intentions. For that, and like with the beliefs,

we need to define the change in intentions ∆I (Equation 6). Accordingly, the

condition to generate RExp based on the intentions is defined in Equation 7.475

∆I = reduceRedundancy(merge(I, IOld)\ common(I, IOld))

= reduceRedundancy((I \ IOld)∪ (IOld \ I))
(6)

|∆I |> θIntention (7)

where θIntention is the threshold of change in intentions beyond which the change

is considered significant.

In case of the need for explaining, the explanations are first generated as raw ex-

planations RExp by the remote agents, and then maybe post-processed (updated and

filtered) by the assistant agent. These remote agents are BDI agents, whose beliefs480

and intentions are used to generate RExp. Generally, in normal situations, the remote

agent generates the raw explanation rExpmi
i of the action to perform according to the

intentions it is committed to achieving or his beliefs of the environment, or both. We

call this type of explanation a normal explanation. It is stating the next step in the

plan to execute, i.e. what to do next, and sometimes the reason for such action (Belief,485

Intention, or both). Examples of normal situations related to the application of deliver-

ing packages using Unmanned Aerial Vehicles (UAVs): “UAV 1 is moving to Package

1”, “UAV 1 is delivering Package 1 to Storehouse S”, “UAV 1 is moving to Charging

Station C because of law battery”, “UAV 1 is charging battery”, etc.

When the change in beliefs ∆B is major, i.e. above a certain threshold, this change490

may lead to major changes in intentions ∆I , i.e. above a certain threshold, and ac-

cordingly, the situation is considered abnormal. In such situations, we consider that
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contrastive explanations are preferable, and this choice is aligned with recent works in

the literature [28]. Consider the following example that is leading to an abnormal situ-

ation. Initially, a UAV (UAV 1) is moving to a package (package 1) with the intention495

to deliver it. However, when UAV 1 realizes that the package is delivered by another

UAV (UAV 2), it abandons the mission and moves towards another package (package

2). The following two explanations of the atomic actions move could be provided:

(i) “UAV 1 is moving towards Package 1”; (ii) “UAV 1 is moving towards Package 2”.

In this situation, the human may ask “why did this happen?” and “why did UAV 1 not500

carry out the delivery of Package 1?” The human will be curious about knowing why

UAV 1 did not do what it was supposed to do and is instead moving to another pack-

age. To solve this, an alternative contrastive explanation is provided as follows: “UAV

1 is moving towards Package 2 instead of Package 1 because Package 1 is delivered by

another UAV”.505

For a human, when receiving explanations about the behavior of the remote agents,

it is generally not the normal behavior that may require an explanation, but rather the

abnormal behavior. Therefore, HAExA makes use of contrastive explanations to rep-

resent abnormal situations. Humans can explain normal behaviors with the help of

their own experiences and expectations. However, the abnormal behavior of the agent510

challenges these experiences and expectations, and therefore, an explanation is deemed

necessary.

The current plan of actions π adopted by the agent overrides the previous one πOld

when there are significant ∆B and ∆I i.e. abnormal situations. Accordingly, there could

be several options for generating contrastive explanations where a1 is an action from π515

and a2 is an action from πOld . The generation is governed by the execution condition

C that could be either the actual beliefs B or/and the actual intentions I. That is why

we need to keep a track of the previous plan that includes the previous actions that the

agent was supposed to perform but did not. These options are:

1. a1 and not a2 because of C;520

2. Not a2 because of C (where a1 is implicit);

3. a1 because of C (where not a2 is implicit).
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The second option is trivial because later, the remote agent must state its current

action, and hence this will be done later anyway. Both options 1 and 3 are good can-

didates. Note that the third option is changing the type of contrastive explanation into525

a normal one by dropping the counterfactual part “not A2”. This change is appealing

to reduce the length of the explanation when it can be implicitly inferred by the human

i.e. to increase simplicity. The next sections provide more details on how the assistant

agent first updates the raw explanations generated by the remote agents (Section 4.3.2)

and then filters the resulting updated explanations before communicating them to the530

human (Section 4.3.3).

4.3.2. Updating the Raw Explanations

Considering that the assistant agent has a global view of the situation, the abnormal-

ity of some situations is different from its perspective compared to the limited perspec-

tive of the remote agents. Accordingly, the assistant agent may update RExp based on535

the abnormality of the situation. This sub-step of the explanation formulation process

is important to assure that the generation of explanations did not risk the oversimplifi-

cation of the explanations, i.e. to assure that UExp are adequate. The results of this

step are the updated explanations UExp.

In this sub-step, the assistant agent scans RExp for anomalies and inconsistencies540

(e.g. two remote agents providing conflicting information) and removes any unneces-

sary information from RExp or adds missing necessary information that is not seen by

the remote agents when generating RExp due to their limited view of the situations.

In other words, even though the remote agents consider the abnormal situations when

generating the contrastive explanations, the assistant agent, after receiving all RExp,545

could discover some abnormality hidden to the remote agents.

This sub-step is context-aware to the situation, i.e. it adaptively updates RExp

based on the context of the situation. The situations are considered abnormal according

to the assistant agent based on the change in beliefs ∆B defined in Equation 4 and the

change in intentions ∆I defined in Equation 6. Accordingly, in this sub-step, the RExp550

generated by the remote agents are updated. To achieve this, the assistant agent, which

holds a general comprehensive overview of the context situation, may aggregate more
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useful and consistent explanations for the human by updating RExp generated by the

remote agents. Accordingly, the type of normal explanations by some remote agents

could be changed into contrastive explanations, when adequacy is needed, by adding555

the counterfactual part of the explanations.

4.3.3. Filtering of the Updated Explanations

The filtering of explanations is conducted to assure that UExp are simple and not

overwhelming for the human, i.e. to achieve simplicity. This sub-step is adaptive to

the number of explanations and type of explanations (normal or contrastive that differ560

in length) and accordingly, the filtering by the assistant could be strict or not based on

the human cognitive load, i.e. it adaptively filters UExp to not exceed his/her cognitive

load threshold. Three cases of filtering are presented below:

1. Without a filter: if few remote agents are present, it might be relevant for the

human to be able to distinguish between the beliefs of individual remote agents565

and understand their explanations without filtering.

2. Using a static filter where the explanations are filtered based on priorities in

accordance with the human cognitive load threshold. The remote agents set pri-

orities to RExp before sending them to the assistant agent and every explanation

with a priority below the threshold will be filtered out by the assistant agent. The570

filtering rules, here, are not context-dependent. The priorities set by the remote

agents are compared to the human cognitive load threshold. The values of the

priorities and thresholds are defined empirically.

3. Using an adaptive filter based on the current context, where irrelevant explana-

tions are removed; for example, if many remote agents are present in the envi-575

ronment, the assistant agent may decide to aggregate their explanations because

a human can not process differences in the explanations of individual remote

agents in real-time. The adaptive filter could also adapt to the human prefer-

ences if a user model is built.

For adaptive filtering, three levels of adaptation based on the empirically-defined580

human cognitive load are defined:

24



• FilterT hresholdH : If the number of UExp is higher than this threshold, change

the type to UExp from contrastive to normal explanations using the function

changeType and reduce the number of UExp using the function reduce. Reduc-

ing the number of explanations may lead to fully discarding them. This type is585

defined in Equation 8.

|UExp|> FilterT hresholdH → reduce(UExp),changeType(UExpContrastive)

(8)

• FilterT hresholdM: If the number of UExp is higher than this threshold, reduce

the number of UExp using the function reduce. This type is defined in Equation

9.

|UExp|> FilterT hresholdM → reduce(UExp) (9)

• FilterT hresholdL: If the number of UExp is higher than this threshold, change590

the type of UExp from contrastive to normal explanations using the function

changeType. This type is defined in Equation 10.

|UExp|> FilterT hresholdL→ changeType(UExpContrastive) (10)

The values of these three thresholds are defined empirically. It is worth mentioning

that before attempting to update RExp into UExp, the assistant agent verifies if there is

a need for filtering or not. This is to avoid changing the type of RExp from normal to595

contrastive and then change back the type of UExp from contrastive to normal because

they tend to be overwhelming. This condition can be found in Figure 2.

5. Experimental Case Study

5.1. Description

With the rapid increase of the world’s urban population, the infrastructure of the600

constantly expanding metropolitan areas is subject to immense pressure. To meet the
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growing demand for sustainable urban environments and improve the quality of life for

citizens, municipalities will increasingly rely on novel transport solutions. In particular,

UAVs, commonly known as drones, are expected to have a crucial role in future smart

cities thanks to relevant features such as autonomy, flexibility, mobility, and adaptivity605

[75]. Therefore, over the past few years, an increasing number of public and private

research laboratories have been working on civilian, small, and human-friendly UAVs.

Still, several concerns have been raised regarding the possible consequences of

introducing UAVs in crowded urban areas, especially regarding people’s safety. To

guarantee it is safe that UAVs fly close to human crowds and to reduce costs, different610

scenarios must be modeled and tested. Yet, to perform tests with real UAVs, one needs

access to expensive hardware. Moreover, field tests usually consume a considerable

amount of time and require trained people to pilot and maintain the UAVs. Further-

more, on the field, it is hard to reproduce the same scenario several times [76]. In

this context, the development of computer simulation frameworks that allow transfer-615

ring real-world scenarios into executable models is highly relevant [77, 78]. However,

the simulation frameworks have their drawbacks; in particular, it is impossible to fully

reproduce the real environment. The use of ABS frameworks or tools for UAV simula-

tions is gaining more interest in complex civilian applications where coordination and

cooperation are necessary [79]. Due to operational costs, safety concerns, and legal620

regulations, ABS is commonly used to implement models and conduct tests for UAVs

[80]. This has resulted in a range of research and applied works addressing ABS in

UAVs [51].

The problem of understanding the robot’s SoM is more accentuated in the case of

UAVs since – as confirmed by recent studies in the literature [81, 82] – remote robots625

tend to instill less trust than robots that are co-located. For this reason, working with

remote robots is a more challenging task, especially in high-stakes and dynamic sce-

narios such as flying UAVs in urban environments. To overcome this challenge, this

case study relies on XAI to trace the decisions of agents and facilitate human intelligi-

bility of their behaviors in the context of civilian UAV swarms that are interacting with630

other objects in the air or the smart city. Indeed, as has been confirmed by user studies,

providing explanations about the remote UAV decisions may increase the satisfaction
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of people [83], and maintain the acceptability of the XAI system [48]. For instance, an

XAI system could enable a delivery UAV modeled as an agent to explain, to its remote

operator, the reasons behind its deviation from a predefined plan (e.g. to avoid plac-635

ing fragile packages in unsafe locations) thereby allowing the human operator to better

manage a set of such UAVs. The example can be extended, in a multi-agent environ-

ment, where UAVs can be organized in swarms [84] and modeled as cooperative agents

to achieve more than what they could do solely, and the XAI system could explain this

to the human operator for the sake of transparency, control, or for the sake of training640

novice operators on the system.

Our previous works [85, 86] have discussed the role of filtering of explanations in

three cases: No explanation, Detailed explanation, and Filtered explanation. In our

previous works, we have investigated the following two research hypotheses:

RH-A: Explainability increases the understandability of the human-on-the-loop in the645

context of remote agents4.

RH-B: Too many details in the explanations overwhelm the human-on-the-loop, and

hence in such situations, the filtering of explanations provides less, concise and

synthetic explanations leading to higher understandability by the human.

The responses of the participants were statistically analyzed, validated in terms of650

significance, and presented based on Mann-Whitney U non-parametric tests. Accord-

ingly, the results showed that when comparing the responses of the group that received

no explanations with the group that received detailed explanations, explainability in-

creases the understandability of the human-on-the-loop in the context of remote agents,

i.e. RH −A is proven. Additionally, comparing the responses of the group that re-655

ceived detailed explanations with the group that received filtered explanations revealed

that providing more details is preferred by the participants. However, with too many

details, the participants are eventually overwhelmed, and in this case, the filtering of

explanations is essential, i.e. RH−B is proven.

4Remote agents represent the remote robots.
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In these previous works, only normal explanations were used, i.e. contrastive ex-660

planations were neither considered for normal nor abnormal situations. Furthermore,

only static filtering, i.e. no adaptive filtering, was employed. These simplifications

were made because the main goal of our previous works was to reproduce the results

of the literature in the domain of remote robots represented as agents. In this paper, we

go further by investigating new research hypotheses on how parsimonious explanations665

could be formulated in XAI. These hypotheses are based on the XAI literature [87] and

built based on our previous findings:

RH1-1: Combining adaptive filtering with only normal5 explanations increases the

understandability of the human-on-the-loop compared to static filtering with

only normal explanations.670

RH1-2: Combining adaptive filtering with normal and contrastive explanations in-

creases the understandability of the human-on-the-loop compared to static fil-

tering with only normal explanations.

RH1-3: Combining adaptive filtering with normal and contrastive explanations in-

creases the understandability of the human-on-the-loop compared to adaptive675

filtering with only normal explanations.

RH2: Combining adaptive filtering with normal and contrastive explanations in-

creases the trust of the human-on-the-loop compared to static filtering with only

normal explanations.

To accept or reject the new research hypotheses, we have used an ABS to simulate680

an application of UAVs’ autonomy and explainability. The case study is performed

as an HCI statistical experiment. The participants watch the simulation running and

fill out a questionnaire built according to the XAI metrics in the literature [67]. Some

questions taken from [67] are adapted to consider the particularity of the experiment.

The results of the questionnaire will be used to investigate the human understandabil-685

5In this hypothesis and all the following ones, we consider that normal explanations are non-contrastive

explanations.
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ity of the explanations provided by the UAVs. As the coordination and cooperation

between groups of remote agents in MAS are out of the scope of this paper, we opt

to simplify the implementation of HAExA (cf. Figure 1) by choosing only one group.

Additionally, the maximum number of remote UAVs is 10.

5.2. Experiment Scenario690

The experiment scenario is about investigating the role of XAI in the communi-

cation between UAVs and humans in the context of package delivery in a smart city.

In the scenario, one human-on-the-loop operator6 oversees several UAVs that provide

package delivery services to clients. These UAVs autonomously conduct tasks and take

decisions when needed. Additionally, they need to communicate and discuss with each695

other and may cooperate to complete a specific task. The UAVs explain to the assistant

agent the progress of the mission, including unexpected situations, along with the deci-

sions made by them. Figure 3 shows the interaction between the actors in the proposed

experiment. In what follows, the steps of the experiment scenario are detailed:

1. When a client sends a request for delivering a package, a notification is sent to700

the UAVs. We assume that UAVs are connected with each other and with the

assistant agent using a reliable network.

2. UAVs that are nearby, i.e. situated within a specific radius to the package, coor-

dinate to complete the delivery mission. In other words, if a UAV is very far from

the package/passenger, it should not participate in the discussion related to this705

transportation mission. The decentralized coordination (without the intervention

of the operator) can be initiated to undertake several decisions including:

• Best candidate: Deciding which UAV will deliver the package according

to constraints: actual distance to the package, battery size, having other

packages in hand, having a mission with a near destination, etc.710

6Human-on-the-loop: the human is not part of the system and consequently cannot influence the out-

comes of the system behavior or the simulation, but can perceive these outcomes.
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Figure 3: Interaction of actors in the experiment scenario

• Long trip: For long trajectories, there is a need to cooperate to deliver the

package between several UAVs, where each UAV delivers the package part

of the way and then hands it to another UAV.

3. The explanation required from the UAV is generally about the mission progress,

its decisions, and its status, e.g. which UAV is assigned to the mission, or when715

the UAV picks up the assigned package and is moving to the destination. How-

ever, other important types of explanation are required regarding the unexpected

(or abnormal) situations, e.g. the UAV arrives at the package location and does

not find it, or realizes the package does not comply with its description. An-

other example is when a UAV needs charging and that is why it ignores a nearby720

package.

4. Every UAV generates raw explanations to the assistant agent who in turn com-

municates them to the operator. The assistant agent may update and filter these

raw explanations received from the UAVs to give a summary of the most im-

portant explanations thereby avoiding overwhelming the operator with a lot of725
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details. There are two types of generated explanations: (i) Normal raw expla-

nations generated by the UAVs, (ii) Contrastive explanations that are contrastive

raw explanations generated by the UAVs and updated by the assistant agent.

Also, the assistant agent applies two types of explanation filtering: (i) Static fil-

tering based on a filtering threshold set by the human. It filters the explanations730

based on their priorities. The latter are set by the UAVs when generating each

raw explanation. (ii) Adaptive context-aware filtering where the assistant agent

adapts the intensity and levels of filtering based on the complexity and scalability

of the situation.

The experiment requires that the participants (the operator in the experiment), after735

watching the simulation of the experiment, fill a questionnaire to collect their opinions

on the explanations provided by the agents in the experiment. Section 5.3 discusses the

details of the questionnaire.

5.3. Building the Questionnaire

We opt to use the Explanation Satisfaction and Trust Scale in building our question-740

naire (cf. Section 2.6.2). The answers are distributed to a 5-points Likert scale [67]:

1 (I disagree strongly), 2 (I disagree somewhat), 3 (I’m neutral about it), 4 (I agree

somewhat), and 5 (I agree strongly).

5.3.1. Categories of the Questions

The built questionnaire has 21 questions divided into 3 categories:745

1. Participant Details (5 questions): Gender (optional), age (optional), level of

English language, prior knowledge about UAVs, and year of study.

2. Functionalities (3 questions): This category is used to check whether the par-

ticipant understood the simulation using some objective questions. It includes

two open-ended questions to evaluate the Objective Understandability metric750

(cf. Table 6). Additionally, we confirm if the functionalities of the simulation

are acceptable by the participant and their suggestions in this context.
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3. Statistical Analysis (12 questions, cf. Table 1) These questions are mainly

about understandability and trust. We investigate the following metrics: Over-

whelmingness, Subjective Understandability, Confidence, Predictability, Relia-755

bility, Efficiency, Wariness, Satisfaction, and Sufficient Details.

Finally, the questionnaire includes a question (numbered Q18 in the experiment)

about Curiosity considering that situations like the one under study lead people to en-

gage in effortful processing and motivates them to seek out additional knowledge to

gain insight and fulfill their curiosity [88]. This question is: “Why do you think the760

explanation of the simulation tool is important? Check all that apply”. However, unlike

all the questions in the questionnaire, this question has multiple answers, and because

this paper does not investigate curiosity, this question is not analyzed in the results of

this paper.

5.4. Conducting the Experiment765

We have conducted the experiment based on the experiment scenario. The exper-

iment was conducted online with 90 participants. It is important here to mention that

before conducting the experiment, all participants have been informed that the gathered

data is anonymous, secured, and will be used solely for research purposes. Moreover,

The survey was divided into three steps. The participants received a clarification in En-770

glish and provided their consent to continue with the experiment. Moreover, they have

been informed of their rights to know how the data is used according to the General

Data Protection Regulation7.

Before conducting the experiment, we provided some information about the sim-

ulation: (i) We explained the main goal of the simulation, which is the delivery of775

packages using UAVs. The delivery of a package is from any point on the map, where

a package could appear to some warehouse determined in the map, (ii) Icons of the

elements (UAVs, charging station, packages, destinations, etc.) (iii) We mentioned that

while the UAVs are delivering the packages, some abnormal or unexpected situations

may happen. All situations, either normal or abnormal, will be explained by the UAVs.780

7https://gdpr-info.eu/

32

https://gdpr-info.eu/


The simulation is divided into 5 sequences. The sequences are presented one after

the other without the option to go back to a previous one. The point of each sequence

is to show a scenario of package delivery with some abnormal situations. The first

sequence is a very simple example that does not include any abnormal situation, so

it is like a happy path situation, which helped the participants understand the context785

and the appearance of the simulation and be familiar with the different elements with

their icons. Each of the other sequences handles an abnormal situation or more, for

example: low battery, damaged package, already delivered package, etc. The second

sequence has moderate abnormal situations, while the third and last sequence is an

overwhelming sequence with several UAVs (here 10).790

The experiment in this paper goes more steps forward to investigate various ways

and manners to provide parsimonious explanations that strike a balance between sim-

plicity and adequacy. In the next section, we investigate the research hypotheses

RH1− 1, RH1− 2, RH1− 3, and RH2. In the following section, we mention the

details about the methodology of this experiment.795

5.5. Experiment Methodology

The experiment is conducted online, where the simulations are prepared as high-

quality videos. The experiment instructions along with the links to the questionnaire

and the videos are provided in a presentation with a signal link. To reach the partic-

ipants of the experiment, we broadcasted the link of the experiment on mailing lists.800

Moreover, we have also posted the link of this experiment to social networks. To obtain

the sample used in the analysis of the experiment, we focused on voluntary sampling.

People who received the link chose to participate or not in our experiment. Volun-

tary sampling has some advantages, such as the simple way to conduct the experiment,

inexpensiveness, easy data collection, easy access, etc. However, it has also some805

drawbacks such as response biases, i.e. sample members are self-selected volunteers.

Voluntary participants watch the simulation running and then fill out a questionnaire

built to aggregate their responses.

Section 5.5.1 outlines the specific implementation details of the experiment. Sec-

tion 5.5.2 details the process of organizing the participants in groups. Section 5.5.3810
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discusses the statistical testing choices, mainly parametric and non-parametric tests, to

investigate the responses of the participants.

5.5.1. Implementation of the Experiment

The experiment is implemented using the JS-son agent-oriented programming li-

brary [89, 90]. The agents’ reasoning loop and environment management in the JS-son815

library is documented in detail in [89]8. The beliefs of these agents change accord-

ing to the situation, and accordingly, the parsimonious explanations are formulated.

In the case of remote agents representing the UAVs, the explanation formulation pro-

cess helps in the explanation generation phase by generating raw normal explanations

in normal situations and raw contrastive explanations in abnormal ones based on the820

change of the beliefs and intentions of the remote agents, i.e. these agents are adap-

tive and context-aware when generating raw explanations. For the assistant agent, this

process allows for updating the raw explanations to ensure they have all the neces-

sary information, i.e. adequacy, in a combined approach between the generation and

communication phases of explanation. The formulation process also guarantees the825

filtering of the updated explanations, i.e. simplicity, in overwhelming scenarios in the

explanation communication phase based on the human cognitive load.

The simulation runs on a machine with the following features: Win 10 Education,

Core i7 2.9 GHz 4 cores, 32 GB RAM, 4 GB dedicated video memory. The last se-

quence of the simulation (overwhelming sequence) lasts for 1:35 minutes and includes:830

10 UAVs, 8 warehouses, 10 charging stations, 27 packages to be delivered, 9 abnormal

situations. For more technical details on the implementation of the experiment, we

refer the reader to our demonstration paper [90].

5.5.2. Participants and Groups

The representative sample is composed of 90 participants. i.e. 90 participants have835

participated in this experiment. They were randomly divided into three groups (SF ,

8At the time of writing, documentation pages of the library are available online at https://js-son.

readthedocs.io/.
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AF , and AC). All the three groups watch exactly the same simulation sequences but

with different explanation techniques:

1. Group SF (30 participants) watches the simulation with normal explanations and

static filtering;840

2. Group AF (30 participants) watches the simulation with normal explanations and

adaptive filtering;

3. Group AC (30 participants) watches the simulation with normal and contrastive

explanations and adaptive filtering.

After watching the simulation sequences, the participants filled out the questionnaire845

of the experiment. The first 8 questions of the questionnaire are the Participant Details

and Functionalities categories (cf. Section 5.3.1). The distribution of the participants

is as follows: 20 of the participants were females, and 63 were males, and 7 preferred

not to disclose this type of information. They were aged between 18 and 45 (mean

of age xage = 26.44, and standard deviation of age sage = 7.348). Regarding the a850

priori knowledge the participants had about UAVs, they self-rated their knowledge us-

ing 5-points Likert as (mean of UAV knowledge xUAV _knowledge = 3.27, and standard

deviation of UAV knowledge sUAV _knowledge = 1.1). Therefore, the randomly selected

participants of the experiment are heterogeneous regarding their age, sex, and knowl-

edge of UAVs.855

Excluding the only question with multiple answers (Q18), the questions under

study in the statistical analysis of this experiment are 12 questions. They are analyzed

and discussed in Section 6 (cf. Table 1 for the list of these questions).

5.5.3. Statistical Testing Methodology

To perform the experiment, the paper focuses on qualitative data. In fact, the two860

most common types of qualitative data (nominal and ordinal) are used in the exper-

iment. The nominal data refers to the groups of the participants involved in the ex-

periments, while the ordinal data refers to their opinions about the explanations. To

evaluate these opinions, the ordinal data are based on the 5-points Likert scale [91].
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The writing of these choices of responses may differ in some questions but the scale is865

the same (cf. Section 5.3).

While the Likert scale is widely used in scientific research, there has been a long-

standing controversy regarding the analysis of ordinal data [92]. In fact, analyzing the

outcomes of the Likert scale, and the use of parametric tests to analyze ordinal data in

general, has been subject to an active and ongoing debate involving the advocates of870

Likert scale’s compatibility with parametric testing [93, 94, 92], and those opposed to

this idea [95, 96, 97] who consider that the analysis of Likert scales must be done with

non-parametric tests such as Kruskal-Wallis or Mann-Whitney [95].

Delving into the details of this discussion is beyond the scope of this paper. In

addition, to avoid biases in the data analysis and due to this ongoing dispute between875

statisticians, in this paper, we conduct both the parametric test that is ANOVA and

the non-parametric test that is the Kruskal-Wallis test. The next section provides full

analysis and discussion of the results of the experiment.

6. Experimental Results

In the experiment, as stated before, each of the three groups AF, SF, and AC is880

composed of 30 participants. The following section provides a detailed analysis of the

results.

6.1. Initial Verifying of the Significance

For each of the 12 questions under study (Table 1), the null hypothesis is H0 : µSF =

µAF = µAC for ANOVA (resp. H0: medSF = medAF = medAC for Kruskal-Wallis). In885

other words, the null hypothesis H0, for each question, assumes that the differences

between the means for ANOVA (respectively, the medians for Kruskal-Wallis) are not

significant. The alternative hypothesis is H1: at least one mean is different for ANOVA

(respectively, at least one median is different for Kruskal-Wallis).

Table 1 outlines the statistical significance of the results obtained by both ANOVA890

and Kruskal-Wallis (KW) in our experiment. As presented by this table, although the

p− values of ANOVA and Kruskal-Wallis are different, the results of significance are
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similar and aligned between these two tests i.e. when the null hypothesis is rejected by

ANOVA, it is also rejected by Kruskal-Wallis, and when the null hypothesis is accepted

by ANOVA, it is also accepted by Kruskal-Wallis.895

In Table 1, four questions are associated with the metric "Subjective Understand-

ability" (Q10, Q11, Q12, and Q19). Apart from the individual question analysis, it is

important to analyze the questions as a group to investigate the internal consistency of

this metric. Therefore, we conduct a Cronbach’s alpha test as a measure of scale relia-

bility. This test is defined in Equation 11, where k denotes the number of questions, σ2
i900

denotes the variance associated with question i and σ2
X denotes the variance associated

with the observed total scores.

α =
k

k−1

(
1− ∑

k
i=1 σi

σ2
X

)
(11)

The outcome of the Cronbach’s test (Table 2) reveals that .9 > α = .875 ≥ .8.

This means, according to DeVellis [98], that the internal consistency for the metric

"Subjective Understandability" is Good9.905

Additionally, Table 3 outlines the importance of the four questions in this group.

We can notice that the deletion of Q11, Q12, or Q19 reduces the α value. This means

that these questions seem more important than Q10, whose deletion increases the α

value.

Returning to the analysis of the 12 questions under study, and considering we got910

the same initial significance results for both ANOVA and Kruskal-Wallis in Table 1,

note that we could have continued the data analysis with ANOVA due to the power of

parametric tests i.e. they give better results to reject the null hypothesis as, according to

G. Normann, parametric tests are generally more robust than non-parametric ones [92].

However, due to the ongoing dispute of using parametric and non-parametric testing915

for ordinal data, we opt to perform both tests.

On the one hand, for the pairwise comparison with ANOVA, this paper focuses

on Tukey Honest Significant Difference (Tukey HSD) test because all the groups have

9Internal consistency scale of Cronbach’s alpha for Likert scale questions is: Excellent, Good, Accept-

able, Questionable, Poor, Unacceptable.
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Table 2: Reliability Statistics – Cronbach’s alpha test

Outcome

Cronbach’s alpha .875

Cronbach’s alpha based on standardized items .880

Table 3: Variables Statistics – Cronbach’s alpha test

Question (Variable) Scale mean

if question

is deleted

Scale varian-

ce if question

is deleted

Corrected

question total

correlation

Squared

multiple

correlation

Cronbach’s

Alpha if quest-

ion is deleted

Q10: Do you believe the only

one time you watched the

simulation tool working was

enough to understand it ?

11.09 8.801 .603 .383 .896

Q11: How well the simulation

tool helped you to understand

how it works ?

10.77 8.630 .750 .592 .833

Q12: How do you rate your

understanding of how the

simulation works ?

10.79 8.483 .843 .735 .800

Q19: From the explanation, I

understand better how the

simulation tool works ?

10.96 8.537 .759 .654 .830

the same size (30 participants per group), and the homogeneity of variance is verified

by the data. On the other hand, the paper conducts a post Kruskal-Wallis analysis920

with Bonferroni correction. Table 4 outlines the pairwise comparison results obtained

by Tukey HSD ANOVA and Table 5 outlines the pairwise comparison results obtained

by Post Kruskal-Wallis with Bonferroni correction for all the questions with significant

p−values in Table 1. Note that, in Tables 4 and 5, SF means static filtering with normal

explanations, AF means adaptive filtering with normal explanations, and AC means925

adaptive filtering with normal and contrastive explanations. The results discussed in

the following sections show the equivalence of significance for these two tests.
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Table 4: Tukey HSD pairwise ANOVA comparisons of the groups in the experiment

95% Confidence Interval
Question (Dependent Variable)

(I)

Participant

Group

(J)

Participant

Group

(I-J)

Mean

Difference

Std.

Error

(Sig.)

p− value Lower

Bounds

Upper

Bounds

AF SF .667 .074 -.05 1.38

AC SF .967* .005 .25 1.68

Q9: The number of drones (10 drones)

in the last sequence was not overwhelming

(too much to follow) AC AF .300

.301

.581 -.42 1.02

AF SF .600 .113 -.11 1.31

AC SF 1.133* .001 .43 1.84

Q10: Do you believe the only one time you

watched the simulation tool working

was enough to understand it? AC AF .533

.297

.177 -.17 1.24

AF SF .733* .014 .12 1.34

AC SF 1.200* .000 .59 1.81
Q11: How well the simulation tool helped

you to understand how it works?
AC AF .467

.256

.168 -.14 1.08

AF SF .533 .090 -.06 1.13

AC SF 1.000* .000 .40 1.60
Q12: How do you rate your understanding

of how the simulation tool works?
AC AF .467

.251

.156 -.13 1.06

AF SF .033 .985 -.44 .51

AC SF -.433 .084 -.91 .04
Q14: The outputs of the simulation tool

are very predictable
AC AF -.467

.200

.057 -.94 .01

AF SF .867* .002 .27 1.46

AC SF 1.367* .000 .77 1.96
Q19: From the explanation, I understand

better how the simulation tool works
AC AF .500

.250

.117 -.10 1.10

AF SF .967* .004 .26 1.67

AC SF 1.000* .003 .30 1.70

Q21: The explanation of how the simulation

tool works in the last sequence has

sufficient details AC AF .033

.295

.993 -.67 .74
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Table 5: Post Kruskal-Wallis pairwise comparison with Bonferroni correction of the groups in the experiment

Question (Dependent Variable)
(I)

Participant

Group

(J)

Participant

Group

Test

Statistic

Std.

Error

Std. Test

Statistic
Sig. Adj. Sig.

AF SF 13.567 2.099 .036 .107

AC SF 18.483 6.463 2.860 .004 .013

Q9: The number of drones (10 drones)

in the last sequence was not overwhelming

(too much to follow) AC AF 4.917 .761 .447 1.000

AF SF -11.033 -1.686 .092 .275

AC SF -24.067 6.545 -3.677 .000 .001

Q10: Do you believe the only one time you

watched the simulation tool working

was enough to understand it? AC AF -13.033 -1.991 .046 .139

AF SF -15.800 -2.471 .013 .040

AC SF -27.100 6.394 -4.238 .000 .000
Q11: How well the simulation tool helped

you to understand how it works?
AC AF -11.300 -1.767 .077 .232

AF SF -10.467 -1.620 .105 .316

AC SF -22.983 6.462 -3.557 .000 .001
Q12: How do you rate your understanding

of how the simulation tool works?
AC AF -12.517 -1.937 .053 1.58

AF SF -1.033 -.168 .867 1.000

AC SF 12.733 6.153 2.070 .038 .115
Q14: The outputs of the simulation tool

are very predictable
AC AF 13.767 2.238 .025 .076

AF SF -20.033 -3.080 .002 .006

AC SF -32.267 6.504 -4.961 .000 .000
Q19: From the explanation, I understand

better how the simulation tool works
AC AF -12.233 -1.881 .060 .180

AF SF 20.250 3.088 .002 .006

AC SF 20.650 6.557 3.149 .002 .005

Q21: The explanation of how the simulation

tool works in the last sequence has

sufficient details AC AF .400 .061 .951 1.000
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6.2. Detailed Data Analysis with ANOVA and Kruskal-Wallis

While our methodology, metrics, and testing approach is adopted from Hoffman

et al. [67], by considering objective understandability in Q6 and Q7 (see Section 6.3),930

we adapt Hoffman’s satisfaction scale and use the descriptor "Understandability", sub-

jectively and objectively, in our approach.

Investigating the Subjective Understandability. The metrics Overwhelmingness (Q9),

Subjective Understandability (Q10, Q11, Q12, and Q19), Satisfaction (Q20), and Suffi-

cient Details (Q21) are considered. All the obtained p−values of questions associated935

with these metrics, except for Q20, are significant, i.e. the p−values obtained by both

ANOVA and Kruskal-Wallis tests outlined in Table 1 indicate that we can reject the

null hypothesis and conclude that the three means of the three groups (in the case of

ANOVA) and the three medians of the three groups (in the case of Kruskal-Wallis)

are not all equal. For Q20, we cannot reject the null hypothesis, and therefore we can940

conclude that the difference between the three means (in the case of ANOVA) and the

difference between the three medians (in the case of Kruskal-Wallis) are not statisti-

cally significant. Therefore, Q20 is discarded from further analysis. All the significant

p−values (p−value≤ .05) for the six remaining questions Q9, Q10, Q11, Q12, Q19,

Q21 are in bold font in Table 4. They have significant comparable results discussed945

between groups in pairs as follows:

• AF vs. SF pairwise comparison: The results (cf. Table 4 for Tukey HSD ANOVA

and Table 5 for post Kruskal-Wallis with Bonferonni correction) show that the

questions Q11, Q19, Q21 (cf. box plots in Figures 6, 8, 9 to visualize the re-

sponses of participants with mean and median values) have significant differ-950

ences between the means of AF and SF (p− value≤ .05), i.e. we can reject the

null hypothesis and conclude that the means of AF and SF are not equal. For

these three questions, the mean difference value is positive for the favor of AF

compared to SF.

However, for the other three questions Q9, Q10, Q12 (cf. box plots in figures955

4, 5, 7 to visualize the responses of participants with mean and median values),
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the differences between the means of AF and SF are not statistically significant

in Table 4 for Tukey HSD ANOVA and Table 5 for post Kruskal-Wallis with

Bonferonni correction (p− value > .05). Therefore, we cannot conclude that

for questions Q9, Q10, Q12, AF is more understandable than SF. For AF vs.960

SF pairwise comparison, even though the participants agree that AF is more

understandable than SF for Q11, Q19, and Q21, we cannot firmly accept the

research hypothesis RH1− 1 (adaptive filtering increases the understandability

compared to static filtering when used with normal explanations) for all the six

questions.965

In our previous work [86], we provided empirical evidence that filtered explana-

tions are more understandable than detailed ones. However, adapting the level

of parsimony of explanations in terms of only the explanation communication,

i.e. using adaptive filtering instead of static filtering, did not provide added value

in increasing the understandability. This result may be explained by the fact that970

for abnormal situations, the participants did not understand the situation well.

Therefore, the hypothesized solution in HAExA is to handle the abnormal situa-

tions using contrastive explanations in terms of explanation generation (the case

of AC), i.e. in contrast to the literature where the explanation phases are treated

in isolation, the explanation formulation used in this paper is a combination of975

explanation generation and communication.

• AC vs. SF pairwise comparison: The results (cf. Table 4 for Tukey HSD ANOVA

and Table 5 for post Kruskal-Wallis with Bonferonni correction) show that all

the results for the questions Q9, Q10, Q11, Q12, Q19, and Q21 (cf. box plots

in Figures 4, 5, 6, 7, 8, 9 to visualize the responses of participants with mean980

and median values) have significant differences between the means of AC and

SF (p− value ≤ .05), i.e. we can reject the null hypothesis H0 and conclude

that the means of AC and SF are not equal. For all these six questions, the mean

differences are positive in the favor of AC compared to SF and the confidence

interval of the means difference of these questions at 95% does not contain zero,985

i.e. the means differences are always positive in favor of AC.

43



We can conclude that the participants who received a contrastive explanation

with adaptive filtering (AC) consider that this explanation is more understandable

than the normal explanation with static filtering (SF). In other words, the results

show that empowering HAExA with contrastive explanations in the generation990

phase with updating in the communication phase, and adaptive filtering in the

communication phase provides the necessary concise information for the human

to better understand the situation. This means the research hypothesis RH1− 2

is accepted.

• AC vs. AF pairwise comparison: For all the questions Q9, Q10, Q11, Q12, Q19,995

and Q21, with no exception, the results are not significant (p− value > 0.05)

when comparing AC with AF, i.e. we cannot reject the null hypothesis H0 saying

that there is a difference between these two groups. This means the participants

did not agree that the contrastive explanation provided any added value in terms

of understandability compared to the normal explanation when both are used1000

with adaptive filtering. Therefore, the research hypothesis RH1−3 is rejected.

The results, in general, show that AC is firmly better than SF, while AF being better

than SF is questionable.

Even though the results of AC are not significantly better than those of AF, this

does not mean that the opposite is correct. It just means that we cannot confirm if there1005

is a significant difference between the two groups. We interpret this result by the fact

that explanations are subjective [99] and the need for contrastivity seems to stem from

the human’s preference. Accordingly, an obvious research direction is to investigate

human-aware explanations. Even though AC is not decisively better than AF in a head-

to-head comparison, its results when compared to SF are better and more decisive than1010

those of AF when compared with SF. This means that AC can be used safely as a good

combination of explanation generation and communication, as it will either perform

better than AF, namely in abnormal situations, or at least similar in general. Therefore,

our recommendations are as follows:

• Adaptive filtering is not necessarily better than static filtering in all situations.1015
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• Adaptive filtering empowered by contrastive explanations is better than static

filtering with normal explanations.

• Even though it is situational to consider that contrastive explanations are bet-

ter than normal explanations, the former can be used in all cases with no fear

of overwhelming the human. A study aiming at further investigating the im-1020

pact of contrastive explanations, alone or in conjunction with other explanation

approaches, is a relevant follow-up work.

• Adapting only the communication phase of explanation is not enough to increase

the understandability, as there is a need for adapting also the generation phase of

the explanation.1025

Therefore, the results above confirm our proposal that the best explanation formu-

lation integrates the sub-processes of explanation generation and communication in a

context-aware adaptive combination thereby striking a balance between simplicity and

adequacy.

Investigating the Trust. The metrics Confidence (Q13), Predictability (Q14), Relia-1030

bility (Q15), Efficiency (Q16), and Wariness (Q17) are considered regarding RH2

that investigates the trust of the participants regarding the explanation. The obtained

p− values of all the questions Q13, Q15, Q16, Q17 are not statistically significant (cf.

Table 1). The only question with a significant p− value is Q14. However, Q14 has no

significant value in the head-to-head comparison between the groups (cf. Table 4 for1035

Tukey HSD ANOVA and Table 5 for post Kruskal-Wallis with Bonferonni correction),

so it is discarded10. Therefore, we cannot reject the null hypothesis H0 and we reject

RH2. This result confirms previous results found in a similar context in the literature

[27], and a related work when building human users’ mental models of how an agent

works [72]. One explanation for this result is that the parsimony of explanation may fall1040

into the oversimplification trap, which will reduce the trust of humans. The literature

10For details about the insignificant results in the experiment, the appendix lists all the box plots of these

results.
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Figure 4: Q9 (Overwhelmingness), xSF = 1.67,xAF =

2.33,xAC = 2.63, and the medians are represented in the fig-

ure
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Figure 5: Q10 (Subjective Understandability), xSF =

2.87,xAF = 3.47,xAC = 4.00, and the medians are repre-

sented in the figure
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Figure 6: Q11 (Subjective Understandability), xSF =

3.13,xAF = 3.87,xAC = 4.33, and the medians are repre-

sented in the figure
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Figure 7: Q12 (Subjective Understandability), xSF =

3.23,xAF = 3.77,xAC = 4.23, and the medians are repre-

sented in the figure
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Figure 8: Q19 (Subjective Understandability), xSF =

2.83,xAF = 3.70,xAC = 4.20, and the medians are repre-

sented in the figure
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Figure 9: Q21 (Sufficient Details), xSF = 2.57,xAF =

3.53,xAC = 3.57, and the medians are represented in the fig-
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on virtual agents and social agents and robots may help in the direction of increasing

trust. Moreover, more work should be done to promote trust as the participants do not

yet trust the remote agents even with explanations.

6.3. Data Analysis on the Objective Questions1045

In addition to the previous questions about subjective understandability, the exper-

iment includes also two questions to test the objective understandability of the partici-

pants:

• Q6: Approximately how many packages were delivered in all the scenarios?

• Q7: Approximately how many problems (unexpected events) happened in all the1050

scenarios?

In the experiment, the real number of packages delivered is 30 while the real num-

ber of problems that happened is 12. After watching the simulation, participants were

asked to predict the number of packages delivered (Q6) and the problems that hap-

pened (Q7). To analyze the objective understandability questions, this paper focuses1055

on Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute

Error (MAE) defined in Equations 12, 13, and 14 respectively:

MSE =
1
N

N

∑
i=1

(yi− xi)
2 (12)

RMSE =

√
1
N

N

∑
i=1

(yi− xi)2 (13)

MAE =
1
N

N

∑
i=1
|yi− xi| (14)

where N is the number of participants per group, yi is the prediction of the partici-

pant i and xi the true value (which are the same for all participants i.e. either 30 in the

case of Q6 and 12 in the case of Q7).1060

Table 6 presents the outcomes of MSE, RMSE, and MAE. The results show that AC

has the lowest error values which means the participants of this group have answered

the most accurately. The participants of group SF have answered the most inaccurately
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due to the worse error value. Participants of group AF stand intermediary between AF

and AC. Figures 10 and 11 present the visualization of the values (True, mean, and1065

median) by each participant belonging to either SF , AF , or AC.

The results of the analysis of the objective understandability go in line with the

results of the subjective understandability giving the highest credit to the AC group

(contrastive explanation with adaptive filtering). It is worth mentioning here that com-

paring the results of subjective and objective understandability suggest that the partic-1070

ipants tend to overestimate their understandability as all groups gave answers, for the

objective understandability questions, below the real values. The relationship between

subjective and objective understandability is an interesting topic for future work.

Table 6: The MSE, RMSE, and MAE of Q6 and Q7 related to objective understandability

Question (Variable) Metric Participant

Group

MSE RMSE MAE

Q6: Approximately how many

packages were delivered in all

the scenarios?

Objective

Understan-

dability

SF 267.57 16.36 15.03

AF 147.27 12.14 10.67

AC 107.67 10.38 7.80

Q7: Approximately how many

problems (unexpected events)

happened in all the scenarios?

Objective

Understan-

dability

SF 82 9.06 8.73

AF 54.37 7.38 6.77

AC 36.47 6.04 5.33

6.4. Experiment Limitations

As stated before, participants involved in this experiment watched the simulation1075

and filled out the questionnaire online. Therefore, and apart from the general limita-

tions of conducting online experiments like lack of contact and different technology

infrastructure, another limitation could be mentioned that is related to sampling bias:

Although we have tried to broadcast the requests of participation in this experiment as

much as possible on Internet, some voluntary participants are close to our networks.1080

Certain categories or age groups remain difficult to reach via Internet, and therefore,

the participants could not represent the entire heterogeneous population. To mitigate

this limitation in the future, there may be a need to employ visual assistant agents or
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True value = 30, xSF = 14.97,xAF = 20.13,xAC = 24.07,
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Figure 11: Q7 (Objective Understandability),

True value = 12, xSF = 3.27,xAF = 6.10,xAC = 7.87, and

the medians are represented in the figure

embodied social robots to motivate and guide the participants throughout the experi-

ment.1085

7. Discussion

In this paper, we introduced the HAExA architecture for explainable multi-agent

systems. The central feature of this human-centered architecture is the notion of par-

simonious explanations, i.e. explanations that are as simple as possible but still situa-

tionally adequate. To achieve parsimony of explanations, we strike a balance between1090

simplicity and adequacy by defining the process of explanation formulation. The latter

involves two sub-processes. In particular, to increase simplicity, we consider the filter-

ing of explanations by the assistant agent that filters, statically or adaptively, the raw

explanations provided by remote agents before they reach the human. To increase ade-

quacy, we use contrastive explanations as a response to particular counterfactual cases.1095

These contrastive explanations are generated by the remote agents and post-processed

by the assistant agent, who holds a global view of the situation, with the objective to

guarantee parsimony.

Through a human-computer interaction study using an agent-based simulation of

HAExA, it is proved that there is a need to combine explanation generation and expla-1100

nation communication to formulate parsimonious explanations. Based on the data anal-
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ysis of subjective and objective understandability, we gathered evidence that adaptively

filtered and contrastive explanations (combined) improve human understandability in

comparison to explanations that are statically filtered. Our study could not confirm

the same effect on trust (which remains a challenge identified in many other works1105

in the literature). Our speculation regarding this point is that trust needs significant

time to be built between the human users and the AI systems, which is not generally

the case in the usual XAI studies. Moreover, the trust measurement should be a re-

peated measure completed through a series of experimental trials [67]. Additionally,

the study could neither confirm differences between adaptively filtered, contrastive,1110

and statically filtered explanations (considered separately). However, our insights in-

dicate that contrastive explanations can be used without risking a detrimental effect on

understandability.

In this sense, the results of this paper can be considered a starting point that pro-

vides insights on aspects that future research can continue investigating. Firstly, more1115

experiments should be conducted related to human trust in explanations, e.g. using

virtual agents and social embodied robots. Secondly, creating a model of the user as a

part of the explanation reception phase should be considered, as a human’s individual

knowledge and capabilities in a given situation depend on individual human charac-

teristics, e.g. related to expertise and human cognitive load. This means the proposed1120

architecture will not only be context-aware but also user-aware. This research direction

is explored in recent work Singh et al. [99]. The findings reinforce the call to take a

human-centered and situation-specific approach to XAI. Thirdly, the direction of in-

teractive explanations could be considered, i.e. the feedback provided by the human

could be integrated into the proposed architecture, where the human becomes a human-1125

in-the-loop. The XAI community is increasingly conducting human-centered studies

and many researchers are starting to run more sophisticated experiments that include

the participants in the loop to refine the explanations and measure whether explainabil-

ity helps significantly or not. Fourthly, a metric or measure of explanation overload

is useful to be investigated to measure the human cognitive load that is related to the1130

explanation reception, by empirical evidence, or by designing a mathematical approxi-

mation akin to the law of diminishing marginal utility. Finally, as relying on volunteers
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as participants has its limitations, future studies should replicate and generalize the

results with a representative and paid sample.

8. Conclusion1135

In future AI-based systems, it is vital to facilitate smooth human-agent interaction,

and explainability is an indispensable ingredient of such interaction. When provid-

ing explanations from agents to humans, the aim is to imitate how humans generate

and communicate explanations in their everyday life. To this end, our agent-based ar-

chitecture HAExA facilitates human-agent explainability in which intelligent agents1140

represent remote robots. In HAExA, the explanation formulation process focuses on

parsimonious explanations generated by remote agents and communicated by an as-

sistant agent. The remote agents in the architecture autonomously act and react in the

environment while explaining their behavior. HAExA allows for different ways to gen-

erate explanations: Normal, and Contrastive (in abnormal situations). The assistant1145

agent has a global view of the context and accordingly, it updates the raw explana-

tions based on the changes in its beliefs and intentions to tackle the trade-off between

simplicity and adequacy. Additionally, it adaptively filters the updated explanations,

respecting the thresholds of the human cognitive load, before communicating them to

the human.1150

Human understandability and trust of AI-based systems are generally subjective,

and this emphasizes the importance of human studies where the opinions of humans

on the usefulness of explanations are collected and analyzed. Empirical human studies

are vital for improving the XAI domain that lacks such type of empirical testing [28]

and in particular the problem of facilitating the explainability of MAS for human users1155

lacks a solid empirical foundation. The empirical experiment conducted in this paper to

evaluate the proposed architecture can be considered a step towards creating a stronger

body of research on this issue.

As architectural approaches to human-centered MAS explainability and empirical

studies thereof seem to be an understudied aspect of XAI, we suggest that our work1160

may serve as a point of departure for future research that sheds more light on aspects
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of our architecture (or of similar approaches) from formal, engineering, and human-

computer interaction perspectives.
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Figure 12: Q13 (Confidence), xSF = 2.83,xAF =

3.20,xAC = 3.40, and the medians are represented in the fig-

ure
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Figure 13: Q14 (Predictability), xSF = 3.63,xAF =

3.67,xAC = 3.20, and the medians are represented in the fig-

ure
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Figure 14: Q15 (Reliability), xSF = 2.83,xAF =

3.13,xAC = 3.30, and the medians are represented in the fig-

ure
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Figure 15: Q16 (Efficiency), xSF = 3.20,xAF =

3.33,xAC = 3.17, and the medians are represented in the fig-

ure
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Figure 16: Q17 (Wariness), xSF = 3.40,xAF = 2.97,xAC =

2.90, and the medians are represented in the figure
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Figure 17: Q20 (Satisfaction), xSF = 3.10,xAF =

3.53,xAC = 3.73, and the medians are represented in the fig-

ure
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