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Abstract—Nowadays, Deep Convolutional Neural Networks
(DCNNs) play a significant role in many application domains,
such as, computer vision, medical imaging, and image processing.
Nonetheless, designing a DCNN, able to defeat the state of the art,
is a manual, challenging, and time-consuming task, due to the
extremely large design space, as a consequence of a large number
of layers and their corresponding hyperparameters. In this work,
we address the challenge of performing hyperparameter opti-
mization of DCNNs through a novel Multi-Agent Reinforcement
Learning (MARL)-based approach, eliminating the human effort.
In particular, we adapt Q-learning and define learning agents per
layer to split the design space into independent smaller design
sub-spaces such that each agent fine-tunes the hyperparameters
of the assigned layer concerning a global reward. Moreover, we
provide a novel formation of Q-tables along with a new update
rule that facilitates agents’ communication. Our MARL-based
approach is data-driven and able to consider an arbitrary set
of design objectives and constraints. We apply our MARL-based
solution to different well-known DCNNs, including GoogLeNet,
VGG, and U-Net, and various datasets for image classification
and semantic segmentation. Our results have shown that, com-
pared to the original CNNs, the MARL-based approach can
reduce the model size, training time, and inference time by up
to, respectively, 83x, 52%, and 54% without any degradation in
accuracy. Moreover, our approach is very competitive to state-
of-the-art neural architecture search methods in terms of the
designed CNN accuracy and its number of parameters while
significantly reducing the optimization cost.

Index Terms—Convolutional Neural Network, hyperparameter
optimization, neural architecture search, reinforcement Learning

I. INTRODUCTION

Since the success of AlexNet in 2012 in defeating all
existing state-of-the-art machine learning and computer vision
approaches with respect to accuracy [1], Deep Learning has
become one of the main research topics for industry and
academia. Moreover, already today it is considered a very
successful alternative to traditional artificial intelligence in
various domains. In particular, Convolutional Neural Networks
(CNNs), first introduced and then used in the late 1980s and
1990s [2], [3], are now an important member of the Deep
Learning family. Indeed, they have been successfully applied
to several application domains, such as, image processing,
medical imaging, and computer vision.

Despite its success, popularity and vast investment by both
academia and industry, designing a Deep CNN (DCNN) able
to compete with the state-of-the-art is even more challenging
today. Started from AlexNet with 6 layers and 60M network
parameters to train, recent CNNs may contain over 100M
parameters [4] and more than 1000 layers [5]. With this
continuously increasing number of parameters and layers,
training time, inference time, and model size may increase

dramatically resulting in prolonged and costly design, delayed
response in real-time systems, and memory challenges in
constrained resources.

On one hand, DCNNs architectures can be different with
respect to the number of layers, types of layers, and how
these layers connect to each other. On the other hand, each
layer contains several parameters to be set at design time
before training. These parameters, different from trainable
network parameters (such as weights), are often regarded
as hyperparameters. For instance, in a convolution layer, as
the main building block of CNNs, the number of kernels,
kernel width, kernel height, and stride length are considered as
the hyperparameters. Their values are shown to considerably
affect the CNN accuracy, training time, inference time, energy
consumption, etc. As a result, DCNN designers have to spend a
considerable amount of time to optimally set these parameters.
This task, known as Neural Architecture Search (NAS) and
hyperparameter optimization, has become the main focus of
many academic researchers [6]–[8] and leading companies,
such as, Google or Facebook [9]–[11].

While random search [6] is considered as the baseline
approach, researchers have recently focused on design automa-
tion of CNNs through Reinforcement Learning (RL), Genetic
Algorithms, and Bayesian Optimization to either build a CNN
from scratch or to further tune hyperparameters of an already-
existing CNN [7]–[10], [12]. Nonetheless, these works are
limited by the maximum number of layers to design [9],
[12], the design objectives and constraints considered [7], [10],
[12], and the type of layers handled [12]. One common major
drawback of the existing neural architecture search methods
in literature is that they design a CNN from scratch, thus,
requiring a considerable amount of time. For instance, NAS [9]
needs 2000 GPU days to design a CNN for relatively simple
datasets, such as CIFAR10. While there are numerous well-
known CNN architectures in the literature for different tasks, a
data-driven scheme that can optimize an already-existing CNN
for a particular dataset and design objectives and constraints
can result in very large time-saving.

Hence, in this work, we address the problem of automatic
hyperparameter optimization of DCNNs through Multi-Agent
Reinforcement Learning (MARL) [13] without any limits in
number and types of layers, as well as design objectives
and constraints. Figure 1 shows an overview of our pro-
posed MARL-based hyperparameter optimization of an n-
layer CNN with arbitrary skip connections. In particular, we
adapt Q-Learning (QL), a model-free algorithm of RL, and
define learning agents per layer to split the design space into
smaller independent sub-spaces; thus, each agent can fine-
tune the hyperparameters of the assigned layer with respect
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Fig. 1. Overview of proposed MARL-based hyperparameter optimization

to a global reward. In the proposed multi-agent QL-based
approach, agents are able to communicate through our novel
definition of state-action pairs, Q-tables, and a Q-table update
rule.

The main contributions of this paper are as follows:
• We propose a novel multi-agent RL-based approach that

eliminates the human effort in hyperparameter optimiza-
tion of DCNNs.

• Our novel definition of QL elements enables us to split
the design space into smaller sub-spaces, providing faster,
yet accurate search.

• Our proposed approach is data-driven, i.e., given a CNN
architecture, it tunes the hyperparameters according to the
input data to the CNN.

• Our proposed approach can consider multiple arbitrary
constraints and objectives imposed by the application or
the processing platform.

• We show that our solution is capable of fine-tuning any
arbitrary DCNN, by applying it to different architectures
and well-known datasets. Our experiments reveal that the
proposed MARL-based approach can decrease the model
size, training time, and inference time by up to 83x, 52%,
and 54%, respectively, with no degradation in accuracy
in the worst case.

II. MOTIVATION AND PROBLEM DEFINITION

CNNs encompass a large range of different architectures
and layer depths. While the true history of DCNNs started
from AlexNet [14] with only 6 layers, nowadays there are
many deeper CNNs available, such as VGG [4] with up to
19 layers, and ResNet [5] with up to 1022 layers [1]. On one
hand, these CNNs are composed of several types of layer,
such as convolution, pooling, fully connected, softmax, etc.
During the training process, there may be millions of internal
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Fig. 2. A simplified U-Net architecture

parameters (e.g., weights) within the CNN that are optimized
with respect to a particular loss or accuracy metric via an
optimizer, such as Adam [15] and Stochastic Gradient Descent
(SGD) [16]. On the other hand, each layer has a couple of so-
called hyperparameters, that, unlike these internal parameters,
are not or cannot be optimized during the conventional training
procedure. Researchers and CNN designers traditionally trust
rule-of-thumb approaches followed by grid search or random
search. While even with a small number of layers grid search
seems impractical, with deeper CNNs random search also
becomes too time-consuming and inefficient.

Figure 2 shows a simplified U-Net architecture profoundly
used in semantic segmentation of biomedical images [17].
For clarity, let us consider only the number of kernels
and kernel size of convolution layers (including Up-Conv
layers, a.k.a. Deconvolution) as the hyperparameters. More-
over, we limit the design space of the hyperparameter as
follows. The number of kernels can be any value from
{16, 32, 64, 128, 256, 512, 1024} and kernels are square-like
where width and height are equal and can be any value from
{3, 5, 7}. Therefore, according to the fundamental counting
principle, there are 7×3 different choices for each convolution
layer. Finally, since there are 22 convolution layers in the U-
Net shown in Figure 2, where each is designed independently,
2122 different choices are available when designing such a
CNN. Throughout this work, we refer to any combination of
different hyperparameters of different layers as a hyperparam-
eter set.

In addition, Figure 3a shows the model size, training time
per batch, and accuracy (with respect to Intersection over
Union metric) for 1000 different hyperparameter sets used to
train the U-Net described in Figure 2 for a limited number of
epochs on an NVIDIA V100 GPU. As shown in Figure 3a,
there are many sets of hyperparameters for which the accuracy,
as the most important metric in designing DCNN, remains
close to 0. On the other hand, although for several hyper-
parameter sets the U-Net converges to higher accuracy, the
training time and model size, as the other two important met-
rics, change considerably depending on the hyperparameters.
Obviously, smaller models with shorter training/inference time
and higher accuracy are the most desirable of all. However,
finding such a hyperparameter set that satisfies all constraints
and objectives is extremely challenging with such a huge
design space of 2122 different hyperparameter sets.
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Fig. 3. a) Model size, validation accuracy, and inference time for 1000
different sets of hyperparameters for BRATS’18 dataset, b) Accuracy with
three different hyperparameter sets for BRATS’18 and ISIC’18 datasets.

Finally, Figure 3b compares the accuracy of a U-Net trained
for limited number of epochs with two different datasets,
BRATS’18 [18]–[20] and ISIC’18 [21], [22]. As shown in the
figure, with the same hyperparameter sets, the output accuracy
is different due to different input data. This observation
demonstrates that a successful hyperparameter optimization
should be data-driven. In this context, a successful hyperpa-
rameter optimization approach would be the one that consid-
ers input data characteristics and tunes the hyperparameters
accordingly, since we require a particular DCNN to perform
well on the specific dataset for which it is trained.

Among all traditional approaches, RL is very efficient in
dealing with very large design spaces and is known to provide
such a data-driven solution, as it does not require any prior
knowledge about the input data.

III. RELATED WORK

Random Search [6], with almost no complexity overhead,
is known as the baseline for hyperparameter optimization.
Although under certain conditions and in specific problems
it has been claimed that Random Search could be compet-
itive to other neural architecture search and hyperparameter
optimization approaches [6], in more complex scenarios with
larger design space, as in the case of DCNNs, Bayesian
Optimization, Genetic algorithms, and RL are shown to be
superior solutions [8], [10].

Bayesian optimization is among the most popular methods
for neural network architecture search and hyperparameter
optimization [7], [8]. However, since Bayesian optimization
is based on Gaussian processes, its application is limited to
optimization problems with low dimensionality [23].

Evolutionary search and Genetic algorithms (GAs) are the
most traditional approaches for neural network optimization
[24] used recently in neural architecture search and hyper-
parameter optimization [25], [26]. These algorithms, how-
ever, are strongly dependent on heuristics. Unlike GAs, RL
algorithms are based on Markov Decision Process (MDP),
a mathematically grounded framework. Therefore, RL-based
approaches for hyperparameter optimization have recently
attracted a lot of attention.

These approaches can be divided into two different cate-
gories. In the first category, RL is used to optimize an existing
network, either by tuning its hyperparameters or by adding

and removing layers. In this context, [27] uses policy gradient
to prune filters in CNN while having the CNN perform at
a desirable accuracy, whereas EAS [28] uses RL to enable
extending pre-existing plain convolutional neural networks to
more sophisticated structures.

In the second category, RL is used to build a complete
network from scratch. Therefore, in comparison to the first
category, this one tackles a larger design space, thus, it is more
time-consuming. In this context, Zoph et al [9] use Recurrent
Neural Networks (RNNs) along with RL to build DNNs.
MetaQNN [12] uses Q-Learning to build CNNs from scratch.
DARTS [29] proposes a differentiable architecture search
method that speeding up the design space search procedure
compared to [9] and [12]. A few works, rather than building
the whole CNN, design blocks similar to famous Residual
and Inception modules and build the network by concate-
nating them. Examples of these works are BlockQNN [30],
PNAS [31], and ENAS [32].

One drawback of the state-of-the-art in this area is that
the types of layers are limited [12], [27]. Moreover, the
maximum number of layers of the CNN should be known a
priori in these works and the application of these approaches
in designing deeper CNNs remains in question [9], [12].
None of these works [9], [12], [27], [30]–[32] address multi-
objective/constraint design of DCNNs. In contrast, MONAS
[33] is a multi-objective neural architecture search approach
inspired by [9] which finds hyperparameters with respect to
model accuracy and energy consumption. MONAS, however,
considers a more limited subset of different action values (hy-
perparameters per layer) and requires a redesign of the RNN-
based controller for designing different CNNs. On the contrary
to MONAS, our proposed multi-agent QL-based approach is
consistent in designing different CNNs without any need for
change in its structure. Finally, few-shot learning [34] is a
technique that can be used within other state-of-the-art NAS
approaches to facilitate neural architecture search by consider-
ing multiple supernetworks and searching on smaller spaces.
As reported by [34], few-shot learning settings can improve
the classification accuracy of DARTS [29] on CIFAR10 dataset
by more than 1% due to more precise design space search, at
the cost of the increased GPU days required for the CNN
design.

To recap, in contrast to these existing RL-based approaches,
our proposed MARL-based method does not limit the number
of layers in the CNN, can include skip connections in the
CNN architecture, and scales well with the depth of CNN
architectures. Table I compares the state-of-the-art in terms
of types of layer optimized, objectives and constraints con-
sidered, support for unconventional modules, and types of
CNNs (tasks) evaluated. In this table, we differentiate between
support for among arbitrary layers and support for residual
modules, as the latter is a subset of the former.

Moreover, in this work, we address automation of hy-
perparameter optimization of an existing architecture rather
than performing Neural Architecture Search [9] (NAS) from
scratch. Our idea lies in the fact that many existing archi-
tectures, in terms of connections between different layers,
have been already shown to achieve satisfactory results for



a wide-range of applications, such as, image classification,
semantic segmentation, and object tracking, under particular
open-sourced datasets. These models, however, have been
mostly designed for particular competitions, such as, Large
Scale Visual Recognition Challenge (ILSVRC). Thus, they
may not suit other datasets, even for the same tasks. Also,
they are not usually optimized with respect to other design
objectives or constraints, such as, inference time, energy
consumption, and model size. Moreover, designing the CNNs
from scratch is excessively time-consuming and state-of-the-
art NAS approaches have not shown any significant improve-
ment with respect to the classification accuracy compared to
the existing well-known CNN architectures. Therefore, we
focus on hyperparameter optimization of the existing CNN
architectures for arbitrary datasets and design objectives and
constraints.

IV. REINFORCEMENT LEARNING: PRELIMINARIES AND
BACKGROUND CONCEPTS

RL is a machine learning approach that deals with
environment-dependent problems through dynamic optimiza-
tion programming [37]. RL traditionally refers to single-agent
reinforcement learning (SARL) where there is one, and only
one agent dealing with the environment. In contrast, Multi-
Agent Reinforcement Learning (MARL) employs more than
one agent in interaction with the environment to cope with
more complicated problems.

A. Single-Agent Reinforcement Learning

Conventional RL, i.e., SARL, employs an agent capable of
taking actions from a finite action set, A, observing states
from a state space, S, and using a reward as a result of
selecting an action in a particular state to further modify its
future behavior. In this work, we leverage Q-Learning (QL), a
model-free algorithm of RL. In QL, the agent learns the best
policy, π, to apply an action in each specific state by storing
a Q-value for each state-action pair as Qπ(s, a). Q-values are
updated after a new state and reward are observed, as follows:

Qt+1(st, at) = (1− α)×Qt(st, at)+

α× (Rt+1 + γmax
a

Qt(st+1, a))
(1)

where Qt(st, at) and Qt+1(st, at) are, respectively, the current
and updated Q-values corresponding to the current taken action
at and at the current state st, Rt+1 is the immediate reward
after next state st+1 is observed, α determines the learning
rate, and γ is the discount factor.

B. Multi-Agent Reinforcement Learning

MARL is composed of multiple agents competitively or
cooperatively coping with a particular problem. While in
competitive MARL agents compete with each other to max-
imize their own reward obtained from the environment, in
cooperative MARL, agents help each other to more efficiently
solve a problem and, thus, obtain a higher shared reward. In
particular, the latter is beneficial if the task given to an agent

Agent 1

Agent 2 Agent 2
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a2

Agent NAgent N
aN

h1

r1(h1), r2(h1), …, rN(h1)

Fig. 4. Extensive-form Markovian game [38]

is very large or complex to handle. In this context, agents
can be homogeneous, i.e., they have the same features and
responsibilities. In this variation of MARL, agents explore the
whole environment autonomously, but share their experience,
e.g., the learned policies, to each other to come up with a
more likely optimal policy. In contrast to homogeneous agents,
cooperative MARL agents can have different features and,
hence, different tasks can be assigned to them. These so-called
heterogeneous agents can split the large and complicated tasks
to provide faster, yet accurate exploration in the environment.

From another perspective, MARL frameworks can be di-
vided into two seemingly different yet closely related theo-
retical frameworks, namely, normal-form and extensive-form
Markov games [38]. While in the former, all agents take
actions simultaneously, in the latter, agents make decisions on
choosing actions successively and receive each reward at the
end of the game round as depicted by Fig. 4. In this figure, hi
refers to a history passed after all agents have taken their action
in the ith round of the game. Although in extensive-form
games agents have only partial observations, i.e., imperfect
information of the environment, it is still possible to model
imperfect information for multi-agent decision-making [39].
These two forms of MARL settings are still closely connected
to each other, such that through certain assumptions the
extensive-form can be reduced to the normal-form [39]–[41].

V. PROPOSED REINFORCEMENT LEARNING-BASED
APPROACH

In this work, we propose to use multiple QL agents to
design a DCNN, layer by layer, through cooperative teamwork.
During the learning process, each agent is assigned to design a
single layer. An agent’s action, however, affects the following
agents’ behavior. Therefore, agents target to find the best
action at a given state to lead the team to gain a higher reward.
Since the current state observed by each agent is a direct
consequence of the previous agent’s action, each agent has
to optimize its behavior such that the next agent is situated
in a desirable state. Such a behavior, then, should propagate
throughout the whole CNN and all layers, where, finally, the
last agent’s action results in a reward signal.

Figure 5 shows an abstract view of an arbitrary CNN
composed of 5 layers to be designed. The design of each layer
Li, i ∈ {1, 2, 3, 4, 5}, is managed by an agent, AGi, with a
particular available action set, Ai = {ai,j |j = 1, 2, 3, ...},
after splitting the design space into smaller sub-spaces, as
the shown in the figure. After observing its current state,
each agent can apply an action from this action sub-set. A
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TABLE I
STATE-OF-THE-ARTS ON HYPERPARAMETER OPTIMIZATION AND NEURAL ARCHITECTURE SEARCH OF CNNS

SoA Optimized Layers Stride Objectives and Constraints Unconventional modules CNN task
Conv Pool Dense Tr. time Inf. time Acc. Size Skip Conn. Residual Inception Class. Seg.

MetaQNN [12] X X X X x x X x x x x X x
NAS [9] X X X X x x X x X X x X x
EAS [28] X X X X x x X x x X x X x

BlockQNN [30] X X x x x x X x X X X X x
PNAS [31] X X x X x x X x X X X X x
ENAS [32] X X x x x x X x X X X X x

MONAS [33] X X x x x X X x X X x X x
MANAS [35] X X x X x x X x X X X X x
DARTS [29] X X x X x x X x X X X X x
SNAS [36] X X x x x x X x X X X X x
Proposed X X X X X X X X X X X X X

unique reward signal is also received by each agent, based
on which further updates on the Q-tables are possible. In
particular, every two successive agents share one Q-table, as
shown in Figure 5. In conventional Q-learning, a Q-table is
simply a table where rows and columns represent, respectively,
states and actions of a single agent. In our defined multi-
agent environment, however, each agent has its own action set,
whereas its current state is determined by the actions taken
by the previous agent in the sequence as will be explained
in Section V-C. Thus, the state set, Si observable by the ith

agent, is the same as the action set available to the (i− 1)th

agent, Ai−1. To model this scenario in the proposed multi-
agent QL-based solution, we propose to use Q-tables shared
between each two consecutive agents, as shown in Figure 5.

Our proposed approach has a similar setup to the one
shown by Figure 4, where the game starts from the first agent
and the next agent acts based on the information coming
from the previous agent. Although the extensive-form has
been mostly used in competitive settings, we have adapted
it for our cooperative setting by letting all agents share a
common reward signal. Therefore, in our MARL problem
r1 = r2 = ... = rN = R. Moreover, the proposed MARL
setting for our particular problem can be considered as several
2-player extensive-form games, but in a cooperative manner.
In particular, each two successive agents refer to a Q-table that
keeps the history (hi,j) of the agents’ joint action space which
is a required component of extensive-form MARL [38]. In our
specific definition of history, i represents the ith iteration and
j denotes the jth pair of two consecutive agents. Therefore,
Figure 6 illustrates the extensive-form game adapted in our
work.

In our work, the action space of each agent is different
(as shown in Figure 5) and, thus, they are heterogeneous.
Nonetheless, theoretically, it is still possible to consider only
one agent to sequentially design the layers similar to Figure 4.
However, in this formulation, the agent requires to keep track
of a very long history. This history eventually is extremely
hard to follow as it grows super-linearly with the number of
layers to be designed. Nevertheless, one of the main goals
of our work is to provide a solution for designing very deep
CNNs without increasing the exploration overhead. Therefore,
we propose to use multiple agents each taking charge of
designing one layer sequentially. In this case, each agent faces
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Fig. 6. Extensive-form Markovian game adapted in our work

a significantly smaller design space. Moreover, considering
one agent per layer makes each agent keep track of only
a part of the history, as shown in Figure 6. By formulating
the MARL problem as described in our work, we are able to
significantly reduce the number of iterations required for both
exploration and exploration-exploitation phases. Although this
formulation of MARL may lead to near/sub-optimal results
due to imperfect information, it makes it possible to design
extremely deep CNNs, such as with over 1000 layers.

In what follows, we detail the different elements of our
multi-agent environment, namely, agents, states, actions, Q-
tables, and reward function for hyperparameter optimization
of DCNNs.

A. Agents

Given a CNN architecture, there are as many agents as the
number of layers whose parameters need to be decided. In a
particular layer, there could be more than one parameter value



to be selected, however, we let a single agent be in charge of
tuning these parameters. Moreover, agents do their part one
after each other, i.e., sequentially, in the same order as of the
CNN architecture, from the input to the output.

B. Actions

Each agent is responsible for hyperparameter tuning of
a particular layer. Therefore, the action space of an agent
is defined by the number of different parameters and their
corresponding values in the layer. Each layer may contain
more than one hyperparameter. In addition, each of these
hyperparameters can take different values. Hence, an agent’s
action set is composed of tuples of all possible values of
all different available hyperparameters. For instance, in a
convolution layer, parameters, such as, number of kernels
({nk1 , · · · , nkN }), kernel size ({sk1 , · · · , skM }) , and stride
length ({ls1 , · · · , lsL}) can be considered as hyperparameters
and their corresponding values. Thus, for the case of this
convolution layer, the agent’s action set is defined as:

Aconv = {(nk1 , sk1 , ls1), (nk2 , sk1 , ls1), · · · , (nkN , sk1 , ls1),

(nk1 , sk2 , ls1), (nk1 , sk3 , ls1), · · · , (nk1 , skM , ls1),

(nk1 , sk1 , ls2), (nk1 , sk1 , ls3), · · · , (nk1 , sk1 , lsL)}.

Consequently, when the convolution agent takes an action, it
is choosing a tuple from Aconv .

C. States

By splitting the design space into multiple independent
action sub-spaces, states observed by each particular agent
are different from others during the whole learning process.
In particular, we define the state sub-space, to be experienced
by an agent, as the actions taken by the previous agent in
the sequence of agents explained in Section V-A. Therefore,
whenever an agent takes an action, it modifies the state of the
next agent in the sequence. The first agent in the sequence,
however, is always considered to remain in an initial state.

D. Multi-agent Q-tables

Each Q-table, Qti, is an array of size NAi
×NAi+1

, where
NAi and NAi+1 are the number of actions available to the
ith and (i + 1)th agent. Each two consecutive agents in the
agent sequence share one Q-table, hence, there are NAG − 1
Q-tables in total, where NAG denotes the number of agents
(layers). Finally, we initialize each Q-table with zeros.

E. Reward Function

The reward function in our framework can contain a large
variety of signals readable, observable, or measurable at the
end of each episode, such as, training loss/accuracy, validation
loss/accuracy, training/validation time, GPU/CPU/memory uti-
lization, model size, etc. In this work, we use validation
accuracy and model size as the main parameters of the reward
function. Moreover, we use training loss and training time as
monitoring parameters in the early termination of the current
episode (training with currently selected hyperparameters). In
particular, we monitor training time for each batch (tbatch),

Epoch starts

Batch starts

Batch time monitoring

Batch ends

tbatch > tth

Nviolation,t ++

Nviolation,t > Nth,t

Early Termination

Nviolation,t  0
End of 
epoch?

lepoch > lth

NO

YES

YES

YES

Nviolation,l > Nth,l

Nviolation,l++

YES

Nviolation,l  0

NO

YES

Train loss monitoring

NO

NO

NO

Fig. 7. Early termination mechanism

and activate early termination of the current episode if the
current training time violates a predefined threshold time
(tth) for Nth,t consecutive batches. Moreover, we monitor the
training loss at the end of each epoch. If the training loss
(lepoch) violates a predefined loss threshold (lth) for Nth,l
consecutive epochs, training with the current hyperparameter
set is terminated. Figure 7 shows how these two mechanisms
work to provide early termination, where Nviolation,t and
Nviolation,l are two counters used for counting the number of
consecutive violation of training batch time and epoch loss,
respectively.

Finally, whenever early termination is activated through
batch training time, an immediate penalty is given to the
agents, whereas, if the early termination is due to the epoch
loss, we propose to postpone this penalty. The reason lies in
the fact that a CNN may perform poorly in the beginning due
to the initialization of the weights. By restarting the training of
the CNN with the same hyperparameters, we target to decrease
the impact of this initialization. However, we tolerate such
behavior only once, i.e., if the early termination is activated for
the second time, agents are given a penalty (negative reward).
The complete definition of the reward function is as follows:

R =

{
−1 Termination = True
cAAval − cSSmodel otherwise

(2)

where Aval is the validation accuracy and Smodel is the model
size in MB, and cA and cS are coefficients such that cA+cS =
1. These two coefficients can be used to prioritize one objective
over the other to the agents.

VI. LEARNING PROCESS

The proposed learning process consists of two main phases,
namely exploration and exploration-exploitation. In each
phase, the strategy to take an action is different. Moreover,
since our multi-agent QL-based solution is different from the
conventional QL algorithm, we propose a new rule to update
the Q-tables.



Algorithm 1: Random action in exploration phase
Input : Qti,Ai = {aij j ∈ {1, ..., NAi

}}
Output: a∗i ; // action of the ith agent

1 forall i do
2 if i = 1 then
3 find (a∗i , a

∗
i+1) st. Qti[a

∗
i , a

∗
i+1] = 0

4 else
5 find a∗i+1 st. Qti[a

∗
i , a

∗
i+1] = 0

A. Exploration Phase

In the exploration phase, agents are only allowed to take
random actions. This is similar to an ε − greedy [37] policy
with ε always kept at 1. However, to help each agent explore
more completely different states, we propose Algorithm 1.
As shown in our algorithm, each agent takes diverse actions
without repetition until its Q-table does not contain any cells
initialized to zero. Note that the first two agents take their
actions at a single step without any condition on the next
agent (i.e., AG3). On the contrary, the next agents take actions
whose values are still equal to the initialized value (zero), but
with respect to the action already selected by the previous
agent (Line 5). Moreover, if there is no action found such that
Qti = 0 (Lines 3 and 5), AGi does not follow Algorithm 1
and takes a completely random action.

Then, based on Algorithm 1, the number of episodes to
eliminate all zeros (initial values) from all the Q-tables is
determined by the largest Q-table. In other words, we require
at least max(NAi

×NAi+1
), i ∈ {1, ..., NAG} episodes during

the exploration phase.
Each CNN created by the agents is trained for a very limited

number of epochs. Although the validation and/or train loss
and accuracy at the end of these epochs would be far from
the one to which the designed CNN can ultimately converge,
it gives a useful insight into the behavior of the CNN with
respect to training and validation time, and model size, as
well as whether the CNN hyperparameters sound or could be
discarded later on. This number of epochs for each CNN and
input data, however, may be different. In order to automatically
set this number, we first set the maximum number of epochs
in each episode equal to 10 similar to [12]. At the end of the
episode, we monitor the loss and the epoch number where the
predefined loss threshold discussed in Section V-E is already
satisfied. If this satisfaction occurs at an epoch smaller than
10, we set the number of epochs in each episode to this smaller
value.

For the first episodes, the agents may benefit from more
epochs to reach the loss threshold. In order to provide a fair
comparison among different episodes, we use an accuracy-
like score value instead of the absolute accuracy in the reward
function of Eq. 2, where Aval becomes Aval

Nepoch
, with Nepoch

indicating the minimum number of epochs through which
the loss threshold constrained is satisfied during one episode.
Our results (Section VIII) indicate that the number of epochs
required to train the CNN in an episode finally converges to a
minimum value. Hence, our experimental validations indicate
that this minimum value should not be lower than three, and
we do not look for smaller values once the minimum number
of epochs is found to be three.

Algorithm 2: Q-table update rule
Input : Qti, a

∗
i ; // i ∈ {1, ..., NAG − 1}

Output: Qti ; // Updated Q-table
1 forall i do
2 if i = NAG − 1 then
3 Qti[a

∗
i , a

∗
i+1]← Qti[a

∗
i , a

∗
i+1] + αR

4 else
5 if ∃ai+2 st. Qti+1[a

∗
i+1, ai+2] = 0 then

6 Qti[a
∗
i , a

∗
i+1]← Qti[a

∗
i , a

∗
i+1] + αR

7 else
8 Qti[a

∗
i , a

∗
i+1]← (1− α)Qti[a

∗
i , a

∗
i+1] + α(R+

γmax
ai+2

(Qti+1[a
∗
i+1, ai+2]))

B. Q-table updates

After all agents apply an action to their own layers, a reward
is available. This reward is used to update the agents’ Q-tables.
We propose to follow Algorithm 2 as the Q-table update rules
in our specific problem. The main idea of this new Q-table
update rule is that if there is any cells that remained with
the initial zero value within the next Q-table (Qti+1), then,
the current Q-table (Qti) is updated only according to its
own current Q-values and the obtained reward (Lines 5-6).
Otherwise, Qti is updated by the maximum expected Q-value
of Qti+1 and the obtained reward (Line 8). Finally, as shown
in Algorithm 2, the last Q-table is updated slightly differently
from the others, since there is no Q-table afterward (Lines
2-3).

One of the key elements of the proposed Q-table update
rule is the learning rate value, α. We treat this parameter in
two different ways in exploration and exploration-exploitation
phases. In this context, we initialize α to 0.95 and do not
change it during the exploration phase. However, once the
exploration-exploitation phase starts, we reduce the learning
rate at every episode, as follows:

αnew = αold × 0.999nepisode (3)

where nepisode is the number of episodes already passed in
the exploration-exploitation phase.

C. Exploration-Exploitation Phase

In this phase, we use a decay function to reduce ε and
provide a tradeoff between exploration and exploitation similar
to Eq. 3. We clarify that, in our work, exploitation does not
mean to apply an already taken set of hyperparameters, but
to have each agent look into its Q-table shared with the next
agent to pick an action that maximizes the expected reward. In
this phase, if agents are to exploit their previous experience,
Algorithm 3 is used, otherwise, a random action is taken.
In the action strategy shown in Algorithm 3, the first two
agents take their actions simultaneously to maximize their
shared Q-table (Line 3). The next agents, however, always
select an action that maximizes a particular row of its Q-
table, determined by the previous agent in the sequence. As
explained in Section VI-B, each Q-table cell is updated with
respect to the next Q-table. Therefore, when in the exploitation
phase an agent looks into its own Q-table and selects the
best action accordingly, it is, indeed, selecting the one that
is expected to benefit the next agent the most. All in all, this



Algorithm 3: Action selection in exploitation phase
Input : Qti,Ai = {ai,j , j ∈ {1, ..., NAi

}}
Output: a∗i ; // action of the ith agent

1 forall i do
2 if i = 1 then
3 (a∗i , a

∗
i+1)← argmax

ai,ai+1

Qti[ai, ai+1]

4 else
5 a∗i+1 ← argmax

ai+1

Qti[a
∗
i , ai+1]

procedure most probably provides a completely new set of
hyperparameters in the beginning. Due to these new findings of
the agents, we keep updating the Q-tables by Algorithm 2. This
way, agents can further revise their behavior. Nonetheless, if a
hyperparameter set exactly matches a previously experienced
one, Q-tables are not updated. In the end, an optimal set of
hyperparameters may be selected for several episodes by the
agents. This point is where we achieve the convergence of the
MARL-based approach.

D. Support for Skip Connections, Residual, Inception, and
other Unconventional Modules

Algorithms 1, 2, and 3, as explained in this section, work for
all classical CNNs, such as, AlexNet and VGG. However, they
require modifications when dealing with more modern CNNs
where skip connections and other modules, such as, Inception
[42] and Residual [5] are added to the network. Figure 8 shows
two examples of different unconventional connections between
layers in modern CNNs. In such modules, the layer that feeds
multiple layers, or the one that is fed by multiple layers, shares
one separate Q-table with the layer to which it is connected.

In Figure 8a, layer m needs to take action and update its
shared Q-table with layer m− 1, with respect to layers m+1
to n. First, in Algorithm 1 only Line 3 is affected if m = 1.
This line changes to the following:

find (a∗j , a
∗
j+1) st. Qtj [a

∗
j , a

∗
j+1] = 0, j ∈ {1, ..., n}

Second, Lines 5-8 of Algorithm 2 change to the following
such that the Q-table shared between layer m and m− 1, i.e.,
Qtm−1 is updated:

if ∃am+j st. Qtm−1+j [a
∗
m, am+j ] = 0, j ∈ {1, ..., n}

Qtm−1[a
∗
m−1, a

∗
m]← Qtm−1[a

∗
m−1, a

∗
m] + αR

else
Qtm−1[a

∗
m−1, a

∗
m]← (1− α)Qtm−1[a

∗
m−1, a

∗
m]+

α(R+ γ max
am+j

(Qtm−1+j [a
∗
m, am+j ]))

Finally, only Line 3 in Algorithm 3, where m = 1, changes
to the following:

(a∗m)← argmax
am

Qtm+j [am, am+j ], j ∈ {1, .., n}

In Figure 8b, layers m to n−1 need to take random actions
in the exploration phase, such that their corresponding Q-tables
shared with layer n do not have any zeros (Algorithm 1).
Then, each Qti, i ∈ {1, ..., n− 1} is updated according to the
maximum Q-value of the Q-table shared between that layer
and layer n (Algorithm 2). Finally, if we follow Algorithm

Layer
n

Layer
m+1

Layer
m

(a)

Layer
n-1

Layer
m

Layer
n

(b)

Fig. 8. Two types of unconventional connections in modern CNNs: a) one
layer feeds multiple layers, b) one layer is fed by multiple layers

TABLE II
MODEL SETTINGS AND DATASETS

VGG-16 GoogLeNet U-Net
Batch size 128 32 20

Loss Categorical crossentropy Categorical crossentropy Dice
Optimizer SGD SGD Adam

Dataset CIFAR100 CIFAR100 BRATS’18
ImageNet ImageNet ISIC’18

3 to apply action in the exploitation phase, each layer m to
n− 1 may point to a different action in layer n. However, we
modify this algorithm such that agent n selects an action that
maximizes a greater number of Q-tables shared between layer
n and layers m to n−1. If such an action does not exist, agent
n selects an action that obtains the highest average Q-value
among all Q-tables shared.

VII. EXPERIMENTAL SETUP, TEST-CASE DCNNS, AND
DATASETS

In this work, we use Keras with Tensorflow backend to
implement all test-case CNNs and we perform all experiments
on an NVIDIA V100 GPU. In order to show our proposed
MARL-based solution is capable of optimizing hyperparame-
ters of CNNs with different architectures, we apply it to U-Net
[43], VGG-16 [4], and GoogLeNet [42]. Table II shows the
datasets and the settings used to train each CNN. Note that the
VGG-16 and GoogLeNet architectures were originally used for
ImageNet datasets. To make them compatible to CIFAR100
datasets, we change the size of output softmax layer to 100.
In addition, in the case of VGG-16, we use only one Dense
layer before the output, while we keep the same number
of dense layers as in the original architecture for the case
of GoogLeNet. Finally, to have a fair comparison with the
latest methods [9], [12], [29]–[31], [35], [36], we use data
augmentation techniques, such as, rotation, width and height
shift, and horizontal flip, on all networks.

By using different datasets on each CNN we show how
the proposed MARL-based approach is able to provide a
data-driven solution. In particular, the inputs for U-Net are
BRATS’18 [18]–[20] and ISIC’18 [21], [22] for semantic
segmentation tasks, whereas we consider ImageNet [44] and
CIFAR100 [45] for VGG-16 and GoogLeNet as image classi-
fication tasks. Although both BRATS’18 and ISIC’18 are bio-
medical databases, the former is for brain tumor detection and
segmentation, while the latter is concerned with skin lesion
boundary segmentation. As shown in the table, since U-Net is
used for semantic segmentation we consider Dice Loss as the
loss metric, whereas categorical cross-entropy is considered
for both VGG-16 and GoogLeNet. Note that for training the
original networks and those designed by Random Search and



TABLE III
LAYERS AND HYPERPARAMETERS

Layer Type Convolution Pooling Dense
Hyperparameter Number of Kernels Kernel Size Stride Size Output Dimension

VGG-16 {16, 32, 64, 128, 256} {3,5} {1,2} {2,3} {128,256,512,1024, 2048,4096}
GoogLeNet {32, 48, 64, 80, 96, 112, 128, 160, 208, 384} {1,3,5} {1,2} {2,3,5,7} {128,256,512,1024, 2048,4096}

U-Net {16, 32, 64, 128, 256, 512, 1024} {3,5,7} {1,2} {2,3} -

our approach, we do not apply any forms of optimizations.
In other words, for the sake of fair comparison, we only
use the original plain CNN architectures and adapt their
hyperparameters through these two approaches. Consequently,
by original CNNs, we mean the plain architectures and original
hyperparameters without any further optimization. Then, all
the networks are trained until the validation accuracy does not
improve more than 0.01% for 10 successive epochs.

Besides, Table III shows different types of layers and their
corresponding hyperparameters considered for each DCNN.
We limit the hyperparameter values to those commonly used
in the literature for optimizing each DCNN. As shown in the
table, unlike VGG-16 and GoogLeNet, U-Net does not contain
any dense (fully connected) layer.

VIII. EXPERIMENTAL RESULTS AND DISCUSSION

In the following, first, we show the convergence of the
proposed MARL-based approach with respect to the reward
values. Second, we evaluate the DCNNs designed through our
proposed approach compared to the original DCNNs and those
designed by Random Search approach. Third, we compare
our approach against state-of-the-art neural architecture search
and hyperparameter optimization approaches. Next, we discuss
the optimization cost and overhead of the proposed approach.
Then, we show how the number of episodes in the exploration
phase and the number of epochs in each episode may affect
the final accuracy and model size of the designed CNN.
Finally, we evaluate the impact of the epsilon decay rate in
the exploration phase.

A. MARL convergence

Figure 9 shows the reward value during the exploration and
exploration-exploitation phases. As shown in Figure 9a, where
actions are taken randomly, the reward values range from -1 to
31, where those with -1 belong to hyperparameter sets unable
to satisfy the predefined constraints on training time and
loss. The exploration-exploitation phase, shown in Figure 9b
starts from random actions based on the ε − greedy policy.
In the first 50 episodes, where actions are mostly random,
small and unsatisfactory rewards are provided. However, for
the next episode agents enter the exploitation phase more
frequently, as a result of the decayed ε value. As shown in this
figure, when the agents exploit their Q-tables they are able to
statistically obtain higher rewards. With the continuation of
the exploitation of the Q-tables, agents are finally able to find
the set of actions (hyperparameters) for which the reward is
maximized (36). If for a couple of number of consecutive
episodes agents pick the same hyperparameters set, then Q-
tables have converged. In Figure 9b, the optimal actions are
probably found at around episode 260. From this point, agents
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Fig. 9. Convergence of proposed MARL-based approach w.r.t reward values

will take the same actions in the exploitation phase unless, due
to the ε− greedy policy, another random action is taken.

B. Comparison to Random Search and Original Networks

As already highlighted in Table I, the existing works in
the literature, most of which focus on the neural architecture
search from scratch rather than hyperparameter optimization of
the available architectures, do not consider all the aspects we
include in this work. In particular, [29]–[33], [35], [36] do not
optimize dense layers, only [33] addresses the multi-objective
design, [9], [12], [28], [33] fail to address optimization of
all modern modules, and none of them consider CNNs for
semantic segmentation. As a consequence, we compare the
proposed method against Random Search as it is the state-of-
the-art baseline solution that can be adapted to consider all the
different aspects we address in this work.

Table V compares the accuracy, training/inference time,
and model size obtained for each CNN designed through our
proposed MARL-based approach, Random Search [6] and the
original one (with original hyperparameters in the literature).
For Random Search, we find the best hyperparameter set w.r.t
the same reward function defined in our MARL-based ap-
proach (Section V-E). To measure the accuracy of GoogLeNet
and VGG-16, we consider the Top-1 accuracy, whereas, for
the case of U-Net, Dice Coefficient is considered.

As shown in the table, for all three DCNNs studied, model
size and training/inference time are reduced considerably by
our MARL-based approach while the accuracy, in the worst



case, is the same as the original DCNNs. Such observation
indicates that the proposed reward function (Section V-E) is
more biased to optimizing the model size, rather than the
accuracy. This bias, however, can be changed by adjusting
the coefficients introduced in the reward function.

An important observation, inferred from Table V, is that the
proposed approach can improve the accuracy of the original
CNNs with respect to those datasets for which they have
not been originally designed. Thus, as shown in the table,
the accuracy has improved in the case of CIFAR100 for
both VGG-16 and GoogLeNet. On the contrary, the accuracy
improvement on the ImageNet dataset is insignificant, as these
CNNs have been originally optimized for maximizing the
accuracy for this particular dataset. Yet, our proposed approach
can considerably improve the model size and inference time.

Conversely, Random Search cannot improve the accuracy in
any case, compared to the original CNNs. Figure 10 compares
the improvements provided by our solution compared to the
CNNs designed through Random Search method.

C. Comparison to State-of-the-Art Neural Architecture Search
Methods

In order to demonstrate the capability of the proposed
solution against state-of-the-art neural architecture search and
hyperparameter optimization approaches, we consider CNNs
designed by these works with respect to the ImageNet dataset.
The comparison only considers the ImageNet dataset for
classification because, as discussed in Section III, state-of-
the-art mainly addresses the automated design of CNNs for
image classification. In particular, some of them are limited
by a specific layer (e.g., softmax layer) as the termination
state of one episode of the exploration phase [12]. Thus, to
provide a fair comparison, we consider the ImageNet dataset
for classification and avoid any kind of modifications to the
state-of-the-arts.

Table IV shows the Top-1 classification accuracy and num-
ber of CNN model parameters obtained through the proposed
approach and state-of-the-art. The values shown in the table
are those either directly reported by the original work (if Ima-
geNet is considered as the test dataset) or extracted from other
state-of-the-arts where they made the effort to re-implement
those works for ImageNet dataset. As shown in Table IV, not
only is the accuracy achieved by our approach close to or even
slightly better than the state-of-the-art, but also the number of
parameters is considerably reduced.

Nevertheless, the main purpose of our proposed approach is
not to design a CNN from scratch, but rather to automate the
optimization of an already existing CNN architecture while
taking into account a multi-objective design where a compro-
mise between the model size, inference time, and accuracy is
vital. Hence, the benefits of our work are better understood
if the outcome CNNs are compared with the state-of-the-
art CNN architectures. As shown in Table IV, for ImageNet
dataset our approach is able to compete against the original
design of VGG-16 and GoogLeNet with respect to accuracy
with a reduced model size which results in a smaller number
of model parameters. In the following section, we detail this
comparison.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART NEURAL
ARCHITECTURE SEARCH AND HYPERPARAMETER

OPTIMIZATION

Approach Accuracy #parameters
NAS 72.8 5.3M

PNAS 74.2 5.1M
DARTS 73.1 4.9M
SNAS 72.7 4.3M

MANAS 73.9 2.6M
Block-QNN 75.7 NA1

Proposed (VGG) 74.36 3.9M
Proposed (GoogLeNet) 70.31 2.4M

VGG (Original) 74.48 138M
GoogLeNet (Original) 70.02 6.4M

1 Not reported for ImageNet, but 39M for CIFAR10
dataset

D. Optimization Cost and Overhead

We consider 2000, 500, and 4500 random episodes in Ran-
dom Search and during the exploration phase of our MARL-
based approach for U-Net, VGG-16 and GoogLeNet, respec-
tively. These numbers are slightly higher than the minimum
number of episodes required for each network and available
hyperparameters described in Section VI-A (1764, 400, 4356,
respectively). Moreover, the number of epochs for which the
CNN is trained in each episode is automatically found to be
3, 6, and 6, respectively, for the case of U-Net, VGG-16, and
GoogLeNet for both datasets shown in Table V. Due to the
constraints set for training time and validation accuracy, an
episode for some of the models is halted and these models
are skipped. Table VI shows the amount of time spent for
optimizing different CNNs and datasets. When training VGG-
16 and GoogLeNet for ImageNet dataset, we do not use the
whole 1M training images for the exploration phase, but rather
use a subset of 500000 training images, i.e., 500 images per
class. This partial observation of the dataset is sufficient for
the early rewards given to each model by the agents.

Moreover, state-of-the-art neural architecture search and
hyperparameter optimization methods usually evaluate their
capacity under simple datasets, such as CIFAR10. Thus, the
optimization cost is not available for larger datasets, such as
ImageNet, or other CNN tasks including semantic segmenta-
tion. Therefore, to have a fair comparison, we consider the
optimization cost on CIFAR10 by our work and state-of-the-
arts. Table VII shows the GPU days required by different
methods, extracted from the original works or from those
works which made the effort to re-implement and re-run them
on their own experimental setup. Although the GPU types
are different, for a small dataset, such as CIFAR10, recent
GPU types have negligible impact on the optimization cost.
For instance, the optimization cost of our approach is exactly
the same on both Nvidia V100 and Tesla T4 for CIFAR10.
In addition, we re-ran SNAS [36] on our own experimental
setup, confirming that it requires 1.5 GPU days on V100. As
shown in this table, the proposed MARL-based approach is
able to reduce the optimization cost.

Furthermore, the overhead of our solution compared to
Random Search is only 2ms for each episode. Therefore,
considering that Random Search can also benefit from the
same number of episodes we take in both exploration and



TABLE V
EXPERIMENTAL RESULTS: TOP-1 ACCURACY FOR IMAGE CLASSIFICATION AND DICE COEFFICIENT FOR SEMANTIC SEGMENTATION.

CNN Dataset Method Accuracy (%) Training Time/Batch (ms) Model Size (MB) Inference Time/Batch (ms)

VGG-16

CIFAR100
Proposed 73.35 23 7 7
Original 69.32 37 60 14

Random Search 63.03 26 13 8

ImageNet
Proposed 74.36 44 53 16
Original 74.48 74 141 27

Random Search 68.70 59 63 22

GoogLeNet

CIFAR100
Proposed 73.48 54 22 13
Original 70.19 98 48 35

Random Search 64.68 118 49 40

ImageNet
Proposed 70.31 35 25 15
Original 70.02 66 54 23

Random Search 68.53 49 49 17

U-Net

BRATS’18
Proposed 83.24 98 2 33
Original 83.25 204 138 68

Random Search 80.16 157 16 52

ISIC’18
Proposed 82.35 70 3 18
Original 81.57 123 138 39

Random Search 77.84 92 14 31

TABLE VI
OPTIMIZATION COST OF THE PROPOSED APPROACH WITH NVIDIA V100

CNN Dataset GPU Hours

VGG-16 CIFAR100 15
ImageNet 97

GoogLeNet CIFAR100 257
ImageNet 1670

U-Net BRATS’18 61
ISIC’18 42

TABLE VII
CPU TIME REQUIRED BY DIFFERENT NEURAL ARCHITECTURE SEARCH

METHODS

Method GPU Days GPU
NAS 2000 P100

ENAS 4 GTX 1080Ti
PNAS 225 P100

MANAS <2.8
>0.5 GTX 1080

Meta-QNN 100 NA
Block-QNN 96 TitanX

DARTS 4 GTX 1080T
DARTS (w/ few-shot) 1.1 P100

SNAS 1.5 TITAN XP
Proposed (VGG) 0.6 V100

exploration-exploitation phases, the MARL-based approach
can come up with the solution with only 4, 17, and 29 extra
seconds for VGG-16, GoogLeNet, and U-Net, respectively.
These values, nonetheless, are very pessimistic, since during
the exploration-exploitation phase, hyperparameters are not
taken randomly, and the training time for each episode im-
proves in comparison to that of Random Search. As a result,
the MARL-based approach can even spend less wall-clock
time for designing DCNNs compared to Random Search.

Finally, the memory overhead of the proposed approach
comes from the size of the Q-tables used for the optimization
of each CNN, which depends on the number of hyperpa-
rameters. In particular, the memory overhead of optimizing
GoogLeNet is only 380KB, while this overhead is even
smaller for U-Net and VGG-16, with only 255KB, and 164KB,
respectively.
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Fig. 10. Improvement in accuracy, model size, and training/inference time
provided by MARL-based approach compared to Random Search

E. Impact of Number of Episodes in Exploration Phase

As explained in Section VI-A, in the exploration phase
agents take random actions for quite a large number of
episodes. Since each episode contains several epochs, this
phase is the most time-consuming part of the proposed MARL-
based hyperparameter optimization approach.

Figure 11 shows how the number of episodes in the ex-
ploration phase can affect the outcome of the exploration-
exploitation phase, and ultimately, the model size and accuracy
of the designed DCNN. In the box plot of Figure 11, we
consider three different numbers of episodes in designing a
U-Net for BRATS’18 dataset, each run 10 times. The first
one equals the minimum number of episodes to fill all cells
of the Q-tables according to Algorithm 1 and Table III, i.e.,
(7×3×2)×(7×3×2) for two consecutive Convolution layers.
Even with this minimum value, the proposed MARL-based
approach is able to find a quite satisfying hyperparameter
set with respect to the model size and accuracy. However,
compared to the other two larger number of episodes, there is
more variation in the outcome. Thus, we suggest using more
episodes in the exploration phase than the minimum required
to fill all Q-tables. Nevertheless, as depicted in Figure 11,
although increasing the number of episodes to 2500 provides
more consistent results, it only improves trivially when using
3000 episodes. This behavior is, in fact, desirable because it
means with a very small increase from the minimum number
of episodes, the agents are not only able to improve the
outcome but also can provide more statistically consistent
results. Hence, there is no need to further increase the time
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Fig. 11. Impact of number of episodes in exploration phase

overhead of the exploration phase.
For comparison, we apply the random search for the same

three different number of episodes. As shown in the figure,
although with increasing the number of episodes model size
and accuracy improves, it is not able to defeat the outcome of
the MARL-based solution, nor it can provide more statistically
consistent results. Our results reveal that similar trends exist
for the other DCNNs and datasets considered in this work.

F. Impact of Number of Epochs in Episodes

As discussed in Section VI-A, in each episode, we train
the designed CNN for only a limited number of epochs,
automatically found by our proposed solution. Figure 12 shows
how this number can affect the outcome of the exploration-
exploitation phase and, ultimately, the model size and accuracy
of the designed U-Net, VGG-16, and GoogLeNet. In this
figure, we show the U-Net outcome for BRATS’18 dataset,
whereas, CIFAR100 dataset is considered for both VGG-
16 and GoogLeNet. Similar results can be shown for other
datasets considered in this work. As shown in Figure 12, the
optimal number of training epochs in each episode is less
than the maximum number initially defined in Section VI.
Moreover, by considering the number of epochs less than 3, 6,
and 6, for U-Net, GoogLeNet, and VGG-16, respectively, the
agents are not able to well assess the hyperparameters selected
at each episode due to the insufficient change in validation
accuracy and, thus, the reward signal. Moreover, the impact
of the number of epochs is more evident in the accuracy of
the designed CNN than in the model size, because the model
size is known from the first epoch and does not change with
increasing the number of epochs.

G. Impact of Epsilon (ε) Decay Rate in Exploration-
Exploitation Phase

The best practice for the exploration phase is to let each
two successive agents fully explore their actions. Although
it is possible to let each agent only partially explore this
design space, it most likely results in sub-optimal behavior
during the exploitation phase because the impact of some
actions remains unknown. The exploration-exploitation phase,
however, can take much shorter without a considerable impact
on the metrics of the designed CNN if ε value is decayed
faster. With a faster decay of ε, agents can more frequently
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exploit their past experience than explore new actions in the
exploration-exploitation phase. For instance, the number of
episodes in exploration-exploitation can be easily cut to half
if a decay rate of 0.98nepisode is used instead of 0.99nepisode .
Nonetheless, this faster convergence may also result in more
uncertainties in the final accuracy and model size obtained.
Figure 13 shows 4 runs of exploration-exploitation phase for
3 different decay rates. As depicted in this figure, with a
slower decay rate, the number of episodes for convergence
increases while statistically higher accuracy can be achieved.
On the other hand, with a faster decay rate, fewer number
of episodes are required for convergence of the exploration-
exploitation phase with the cost of attaining statistically lower
model accuracy.

IX. CONCLUSION

In this work, we have addressed hyperparameter optimiza-
tion of Deep CNNs (DCNNs) through a novel Multi-Agent
Reinforcement Learning (MARL)-based approach. This ap-
proach uses different Q-Learning agents per layer to split the
design space into smaller independent action sub-spaces to
provide faster, yet accurate design space search. In contrast to
the state of the art, our approach is not limited to particular
types of layers, can scale well with the depth of CNNs without
any search time overhead, and can optimize the CNN hyper-
parameters with respect to any arbitrary set of constraints and
objectives, thus, eliminating the time-consuming and manual



human effort. We assessed our MARL-based approach by
applying it to three different CNNs, VGG-19, GoogLeNet,
and U-Net, each with two different datasets. Our results have
shown that, compared to the original CNNs, the MARL-
based approach can reduce the model size, training time, and
inference time by up to, respectively, 83x, 52%, and 54%
without any degradation in accuracy. Moreover, our approach
is very competitive to the state-of-the-art neural architecture
search methods in terms of model accuracy and number of
model parameters, while it can considerably reduce the GPU
time required for CNN optimization.
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[38] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” arXiv preprint
arXiv:1911.10635, 2019.

[39] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press,
2008.

[40] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi et al., “Openspiel:
A framework for reinforcement learning in games,” arXiv preprint
arXiv:1908.09453, 2019.

[41] F. A. Oliehoek and C. Amato, A concise introduction to decentralized
POMDPs. Springer, 2016.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet et al., “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[43] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty et al., “Automatic
liver and lesion segmentation in ct using cascaded fully convolutional
neural networks and 3d conditional random fields,” in International
Conference on Medical Image Computing and Computer-Assisted In-
tervention. Springer, 2016, pp. 415–423.



[44] J. Deng, W. Dong, R. Socher, L.-J. Li et al., “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 2009, pp. 248–255.

[45] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

Arman Iranfar received his PhD in electrical engi-
neering from the Swiss Federal Institute of Technol-
ogy Lausanne (EPFL). He is currently a postdoctoral
researcher at Embedded Systems Laboratory (ESL),
EPFL. His research interest includes applied ma-
chine learning and reinforcement learning in multi-
objective management of MPSoCs. He has published
over 14 peer-reviewed papers in top-notch confer-
ences and journals and served as reviewer in several
top-ranked conferences and journals in including
IEEE TC, IEEE TSUSC, and IEEE TSC.

Marina Zapater (M’16) is Associate Professor in
the School of Engineering and Management of Vaud
(HEIG-VD), in the University of Applied Sciences
Western Switzerland (HES-SO) since 2020, and Re-
search Associate in the Embedded System Labora-
tory (ESL) at the Swiss Federal Institute of Technol-
ogy Lausanne (EPFL), Switzerland, since 2016. She
received her Ph.D. degree in Electronic Engineering
from Universidad Politécnica de Madrid, Spain, in
2015. Her research interests include thermal, power
and performance design and optimization of com-

plex heterogeneous architectures, from embedded edge devices to high-
performance computing processors; and energy efficiency in servers and data
centers. In these fields, she has co-authored more than 50 papers in top-notch
conferences and journals, She is an IEEE and CEDA member, and has served
as CEDA YP representative (2019-2020).

David Atienza (M’05-SM’13-F’16) is an associate
professor of electrical and computer engineering,
and head of the Embedded Systems Laboratory
(ESL) at the Swiss Federal Institute of Technology
Lausanne (EPFL), Switzerland. He received his PhD
in computer science and engineering from UCM,
Spain, and IMEC, Belgium, in 2005. His research
interests include system-level design methodolo-
gies for high-performance multi-processor system-
on-chip (MPSoC) and low power Internet-of-Things
(IoT) systems, including new 2-D/3-D thermal-

aware design for MPSoCs and many-core servers, and edge AI architectures
for wireless body sensor nodes and smart consumer devices. He is a co-
author of more than 350 papers in peer-reviewed international journals and
conferences, one book, and 12 patents in these fields. Dr. Atienza has received
the ICCAD 2020 10-Year Retrospective Most Influential Paper Award, the
DAC Under-40 Innovators Award in 2018, the IEEE TCCPS Mid-Career
Award in 2018, an ERC Consolidator Grant in 2016, the IEEE CEDA Early
Career Award in 2013, the ACM SIGDA Outstanding New Faculty Award in
2012, and a Faculty Award from Sun Labs at Oracle in 2011. He served as
DATE 2015 Program Chair and DATE 2017 General Chair. He is an IEEE
Fellow, an ACM Distinguished Member, and served as IEEE CEDA President
(period 2018-2019).


