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Abstract

As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption

of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy

consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate

the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end

servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective

Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our

approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power

model, but also incorporates other non traditional factors like the static power consumption and its dependence with

temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul-

taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for

a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive

efficient energy saving techniques for Cloud facilities.

© 2014 Published by Elsevier Ltd.
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1. Introduction

One of the big challenges in data centers is to manage system resources in a power-efficient way. Data

centers consume from 10 to 100 times more power per square foot than typical office buildings [1] even

consuming as much electricity as a city [2]. Consequently, these infrastructures need to be managed in a

power-efficient manner to drive Green Cloud computing [3].

Besides economic incentives, the Cloud model provides also benefits from the environmental perspec-

tive, since the computing resources are managed by Cloud service providers but shared among all users,

which increases their overall utilization [4]. This fact is translated into a reduced carbon footprint per

executed task, diminishing CO2 emissions. The Schneider Electric’s report on virtualization and Cloud
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computing efficiency [5] confirms that about 17% of annual savings in energy consumption were achieved

by 2011 through virtualization technologies.

However, data center designers have collided with the lack of accurate power models for the energy-

efficient provisioning and the real-time management of the computing facilities. These power models facil-

itate the analysis of several architectures from the perspective of the power consumption, and they allow us

to devise efficient techniques for energy optimization.

The work proposed in this paper makes substantial contributions in the area of power modeling of Cloud

servers taking into account these factors. We envision a powerful method for the automatic identification of

fast and accurate power models that target high-end Cloud server architectures. Our methodology considers

the main sources of power consumption as well as the architecture-dependent parameters that drive today’s

most relevant optimization policies.

Analytical models, as closed form solution representations, require the classification of the parameters

that regulate the performance and power consumption of a computer system. Also, it is mandatory to find

the complex relationships between these parameters to build the analytical functions [6]. Thus, describing

complex systems using analytical models is a hard and time-consuming task because it requires knowledge

of the dynamics of the specific problem. Therefore, the modeling of scalable, distributed and highly het-

erogeneous systems is unfeasible for analytical methods. On the other hand, metaheuristics are higher-level

procedures that make few assumptions about the optimization problem, providing adequately good solutions

that could be based on fragmentary information [7, 8]. They are particularly useful in solving optimization

problems that are noisy, irregular and change over time. In this way, metaheuristics appear as a suitable

approach to meet our optimization problem requirements.

In the last years, there has been a rising interest in developing simple techniques that provide basic

power management for servers operating in a Cloud, i.e. turning on and off servers, putting them to sleep

or using Dynamic Voltage and Frequency Scaling (DVFS) to adjust servers’ power states by reducing clock

frequency. Many of these recent research works have focused on reducing power consumption in cluster

systems [9, 10, 11, 12]. In general, these techniques take advantage of the fact that application performance

can be adjusted to utilize idle time on the processor to save energy [13]. However, their application in Cloud

servers is difficult to achieve in practice as the service provider usually over-provisions its power capacity

to address worst case scenarios. This often results in either waste of power or severe under-utilization of

resources. Thus, it is critical to quantitatively understand the relationship between power consumption,

temperature and load at the system level by the development of a power model that helps on optimizing the

use of the deployed Cloud services. Finally our work makes the following contributions:

• We propose an accurate power model for high-end servers in Cloud facilities. This model, as opposed

to previous approaches, does not only consider the workload assigned to the processing element, but

also incorporates the need of considering the static power consumption and, even more interestingly,

its dependence with temperature.

• Moreover, this power model, applied to both the processing core and the memories of the system,

includes voltage and frequency as parameters to be tuned during run-time by the DVFS policies.

• The model has been built and tested for an enterprise server architecture and with several real appli-

cations that can be commonly found in nowadays’ Cloud server machines, achieving low error when

compared to real measurements.

• We have developed the power model for our target architecture using the Optimal Multi-Objective Par-

ticle Swarm Optimization (OMOPSO), a novel technique to perform the curve fitting. This algorithm

allows the simplification of our model attending to each server architecture.

The remainder of this paper is organized as follows: Section 2 gives further information on the related

work on this topic. The power model is presented in Section 3. Section 4 provides the background algorithm

used for the model optimization. In Section 5 we describe the algorithm setup to adapt its parameters to our

optimization problem. Section 6 describes profusely the experimental results. Finally, in Section 7 the main

conclusions are drawn.
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2. Related Work

Currently the state of the art offers various power models. However these models are analytical, architecture-

dependent and do not include the contribution of static power consumption, or the capability of switching the

frequency modes (DVFS). The authors develop linear regression models that present the power consumption

of a server as a linear function of the CPU usage of that server [14, 15, 16].

Some other models can be found where server power is formulated as a quadratic function of the CPU

usage [17, 18, 19]. Still, as opposed to ours, these models do not include the estimation of the static power

consumption (which has turned to have a great impact due to the current server technology). Besides,

these models have not been exploited in a multi-objective optimization methodology to minimize the power

consumption of servers for Cloud services.

Bohra et al. [20] propose a robust fitting to calculate their model that takes into account the correla-

tion between the total system power consumption and component utilization. Our work follows a similar

approach but also incorporates the contribution of the static power consumption, its dependence with tem-

perature, and the effect of applying voltage and frequency scaling techniques.

Interestingly, one key aspect in the management of a data center is still not very well understood: con-

trolling the ambient temperature at which the data center operates. Data centers operate in a broad tem-

perature range from 18◦C to 24◦C but some can be as cold as 13◦C [21, 22]. However, due to the lack of

accurate power models, the effect of ambient temperature on the power consumption of the servers has not

been clearly analyzed, preventing the application of optimization models to save energy. On the contrary,

the experimental work presented in this paper has been performed in ambient temperatures ranging from

18◦C to 25◦C. The range selected follows nowadays’ practice of operating at higher temperatures [23] and

close to the limits recommended by ASHRAE. Although this practice obtains energy savings in the cooling

expense [24], the lack of a detailed power model prevents to apply optimization policies.

The work presented in this paper outperforms previous approaches in the area of power modeling for

enterprise servers in Cloud facilities in several aspects. Our approach consists on an automatic method for

the identification of an accurate power model particularized for each target architecture. We propose an

extensive power model consistent with current architectures. It is based on a generic analytical model where

the main power consumption sources are considered. The model is multiparametric to allow the development

of power optimization approaches. Our generic power model is optimized using metaheuristics, resulting in

a specific model instance for every target architecture. Also the execution of the resulting power model is

fast, making it suitable for run-time optimization techniques.

3. Power modeling

Dynamic consumption has historically dominated the power budget in electronic systems. But when the

integration technology scales below the 100nm boundary, static power consumption becomes much more

significant and reaches 30-50% [25] of the total power under nominal conditions. This issue is intensified

by the influence of temperature on the leakage current behavior and its exponential dependency.

Leakage current increases strongly with temperature [26], also in deep sub-micron technologies [27],

consequently increasing power consumption. Therefore, it is important to consider the strong impact of

static power consumed by devices as well as its dependence with temperature, and the additional effects

influencing their performance. In this section, we derive a leakage model for the static consumption of

servers attending to these concepts. The model is validated with real measurements taken in the enterprise

server of our case study.

The current that is generated in a MOS device due to leakage is given by

Ileak = Is · e
VGS−VTH

nkT/q · (1 − e
−VDS
kT/q ) (1)

Research by Rabaey [26] shows that if VDS > 100mV the contribution of the second exponential in (1)

is negligible, so the previous formula can be rewritten as

Ileak = Is · e
VGS−VTH

nkT/q (2)
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where leakage current depends on the slope factor n, the surface mobility of the carriers μ, the capacitance

of the insulating material for the oxide gate Cox and the ratio between the width and length of the transistors
W
L as can be seen in the following equation. Technology-dependent parameters can be grouped together to

obtain an α constant.

Is = 2 · n · μ ·Cox · W
L
· kT

q

2

Ileak = α · T 2 · e
VGS−VTH

nkT/q (3)

Using (3) in the leakage power equation Pleak = Ileak · VDD, the leakage power for a particular machine

m can be derived:

Pleak(m) = α(m) · T 2(m) · e
VGS−VTH

nkT/q · VDD(m) (4)

Since our goal is to fit a model for the leakage power, we expand the polynomial function (4) into its

Taylor third order series in order to easily regress the function, which leads to

Pleak(m) = α1(m) · T 2(m) · VDD(m) + α2(m) · T (m) · V2
DD(m) + α3(m) · V3

DD(m) (5)

where α1(m), α2(m) and α3(m) define the specific constants due to the manufacturing parameters of a server.

Incorporating frequency and voltage dependence in models is interesting due to the current trend of

using DVFS modes to control the power consumption of servers.

Two of the main contributors to power consumption in servers are the CPU and the memory subsystem.

We can easily find DVFS modes in CPUs, but there are currently very few memory devices with these

capabilities. Power consumption of both disk and network have not been taken into account because of their

lower impact in our scenario, high variability and heterogeneity of their technology in data centers.

Below is the formulation of the static consumption in a scenario with a CPU providing k ∈ {1 . . .K}
different DVFS modes and a memory performing at a constant voltage. The model considers the different

contributions due to temperature dependency. Also γ(m) has been taken into account as it represents the

fan power contribution constant. As seen in [28] fan power is a cubic function of fan speed represented as

FS (m). λ(m) represents the total consumption of the rest of the server resources and devices that operate at

a constant voltage and frequency.

Pleak(m, k) = α1(m) · T 2
cpu(m) · VDD(m, k) + α2(m) · Tcpu(m) · V2

DD(m, k) + α3(m) · V3
DD(m, k)

+ β1(m) · Tmem(m) + β2(m) · T 2
mem(m) + γ(m) · FS 3(m) + λ(m) (6)

As temperature-dependent leakage cannot be measured separately from the dynamic power in a server,

we execute the lookbusy1 synthetic workload to stress the system during monitored periods of time. Look-
busy can stress all the hardware threads to a fixed CPU utilization percentage without memory or disk usage.

The use of a synthetic workload to derive the leakage model has many advantages, the most important of

which is that dynamic power can be described as linearly dependent with CPU utilization and Instructions

Per Cycle (IPC). Equation 7 provides the formula for dynamic power consumption.

Pdyn
cpu(m, k) = α4(m) · V2

DD(m, k) · f (m, k) · ucpu(m, k) (7)

In the previous formula α4(m) is a constant that defines the technological parameters of the machine m,

VDD(m, k) is the CPU supply voltage and f (m, k) is the working frequency of the machine in a specific k
DVFS mode. ucpu(m, k) is the averaged CPU percentage utilization of the specific physical machine m that

operates in the k DVFS mode. ucpu(m, k) is proportional to the number of cycles available in the CPU and

accurately describes power consumption.

In order to stress the memory system we have developed a specific benchmark based on RandMem2. The

program accesses random memory regions of an explicit size to explore the memory power consumption.

1http://www.devin.com/lookbusy/
2http://www.roylongbottom.org.uk
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Dynamic power consumption depends on the high level data cache misses characterized during profiling. As

memory performs at a constant frequency and voltage, equation 8 describes its dynamic power consumption.

Pdyn
mem(m, k) = β3(m) · umem(m, k) (8)

The constant β3(m) is defined by the technological features of the device encompassing both the constant

frequency and voltage and umem(m, k) represents the memory utilization expressed in memory accesses per

cycle in a k DVFS mode (k = 1 represents a powered down server).

Finally, total power can be described as in equation 9.

Ptot(m, k) = Pcpu(m, k) + Pmem(m, k) + Pothers(m, k) (9)

Pcpu(m, k) = α1(m) · T 2
cpu(m) · VDD(m, k) + α2(m) · Tcpu(m) · V2

DD(m, k) + α3(m) · V3
DD(m, k)

+ α4(m) · V2
DD(m, k) · f (m, k) · ucpu(m, k) (10)

Pmem(m, k) = β1(m) · Tmem(m) + β2(m) · T 2
mem(m) + β3(m) · umem(m, k) (11)

Pothers(m, k) = γ(m) · FS 3(m) + λ(m) (12)

4. Model identification

As stated above, our proposed power model consists of 9 parameters. Depending on the target architec-

ture, some parameters might have more impact than others, as shown in our results. In our case, identifica-

tion is performed as a multi-objective optimization and compared with a classical regression method. With

a multi-objective optimization, we simultaneously optimize average and maximum errors to avoid peaks

in the error function. To this end, we have selected a multi-objective Particle Swarm Optimization (PSO)

algorithm to identify our power model. The reason for selecting multi-objective PSO is that this stochas-

tic evolutionary computation technique, based on the movement and intelligence of swarms, has obtained

excellent results specially in instances with real variables [29]. Next we provide a brief background about

multi-objective optimization and the algorithm selected.

4.1. Multi-objective optimization

Multi-objective optimization tries to simultaneously optimize several contradictory objectives. For this

kind of problems, single optimal solution does not exist, and some trade-offs need to be considered. Without

any loss of generality, we can assume the following multi-objective minimization problem:

Minimize �z =
(
f1(�x), f2(�x), . . . , fm(�x)

)

Subject to �x ∈ X (13)

where �z is the objective vector with m objectives to be minimized, �x is the decision vector, and X is the

feasible region in the decision space. A solution �x ∈ X is said to dominate another solution �y ∈ X (denoted

as x ≺ y) if and only if the following two conditions are satisfied:

∀i ∈ {1, 2, . . . ,m}, fi(�x) ≤ fi(�y) (14)

∃i ∈ {1, 2, . . . ,m}, fi(�x) < fi(�y) (15)

A decision vector �x ∈ X is non-dominated with respect to S ⊆ X if another �x′ ∈ S such that �x′ ≺ �x does

not exist. A solution �x∗ ∈ X is called Pareto-optimal if it is non-dominated with respect to X. An objective

vector is called Pareto-optimal if the corresponding decision vector is Pareto-optimal.

The non-dominated set of the entire feasible search space X is the Pareto-Optimal Set (POS). The image

of the POS in the objective space is the Pareto-Optimal Front (POF) of the multi-objective problem at hand.

A multi-objective optimization problem is solved, when its complete POS is found.
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4.2. PSO and OMOPSO

Particle Swarm Optimization (PSO) is a heuristic search technique that simulates the movements of a

flock of birds that aim to find food. The relative simplicity of PSO and the fact that is a population-based

technique have made it a natural candidate to be extended for multi-objective optimization [30].

In PSO, particles are “flown” throughout a hyper-dimensional search space. Changes to the position of

particles within the search space are based on social-psychological tendencies of individuals to emulate the

success of other individuals. Hence, the position of each particle is changed according to its own experience

and its neighbors. Let xi(t) denote the position of particle pi, at time step t. The current position of pi is then

changed by adding a velocity vector vi(t) to the previous position, i.e.:

�xi(t) = �xi(t − 1) + �vi(t) (16)

The velocity vector reflects the socially exchanged information and is defined in the following way:

�vi(t) = W�vi(t − 1) +C1�ri1(�xipbest − �xi(t − 1)) +C2�ri2(�xileader − �xi(t − 1)) (17)

where:

• W is the inertia weight and controls the impact of the previous history of velocities.

• C1 and C2 are the learning factors. C1 is the cognitive learning factor and represents the attraction that

a particle has towards its own success. C2 is the social learning factor and represents the attraction

that a particle has towards the success of its neighbors.

• �ri1 , �ri2 are random vectors, each component in the range [0, 1].

• �xipbest is the personal best position of pi , namely, the position of the particle that has provided the

greatest success.

• �xileader is the position of the particle that is used to guide pi towards better regions of the search space.

Particles tend to be influenced by the success of any other element they are connected to. These neighbors

are not necessary particles close to each other in the decision variable space, but instead are particles that are

close to each other based on a neighborhood topology, which defines the social structure of the swarm [30].

M. Reyes y C. Coello proposed a multi-objective PSO approach based on Pareto dominance, named

OMOPSO [29]. This algorithm uses a crowding factor for the selection of leaders. This selection is made

by binary tournament. This proposal uses two external archives: one for storing the leaders currently being

used for performing the flight and another one for storing the final solutions. Only the leaders with the

best crowding values are retained. Additionally, the authors propose a scheme in which the population

is subdivided in three different subsets. A different mutation operator is applied to each subset. We use

OMOPSO in the identification of our proposed power model, identifying the set of parameters that are

representative for each target architecture.

5. Algorithm setup

PSO, as a metaheuristic, makes few assumptions about the optimization problem. As a consequence, the

algorithm requires a preliminar configuration to provide adequate solutions. In this section we explain both

the constraints and the parameter setup to adapt the metaheuristic to our optimization problem.
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5.1. Multi-objective function

The problem to be solved is the estimation of the power consumption in virtualized enterprise servers

performing Cloud applications. Our power model considers the heterogeneity of servers, as the specific

technological features of each processor architecture result in a different power consumption. The resultant

power model is non-linear (as shown in the previous section) and presents a large set of constraints. As stated

above, the model identification is tackled as a multi-objective optimization simultaneously minimizing both

the average and maximum errors :

Minimize �z = (eavg(�x), emax(�x))

Subject to �xmin ≤ �x < �xmax

where �x = (α1, . . . , α4, β1, . . . , β3, γ, λ) ∈ X (18)

�x is the vector of n decision variables and �z is the vector of 2 objectives function. eavg(�x) is the average

relative error percentage, emax(�x) is the maximum of the relative error percentage (equation 19) and X is the

feasible region in the decision space. Although we are interested in the minimization of the average relative

error, we also use the maximum error percentage to avoid singular high peaks in the estimated model.

eavg(�x) =
1

N
·
∑

n

(P − Ptot) · 100

P
emax(�x) = max

(P − Ptot) · 100

P
(19)

P is the power consumption measure given by the current clamp, Ptot is the power consumption estimated

by our model (equation 9) and n is each sample of the entire set of N samples used for the algorithm training.

We use OMOPSO [31] to obtain a set of candidate solutions in order to solve our problem. Using this

formulation, we are able to obtain a power consumption that is realistic with the current technology.

5.2. Algorithm parameters

Our power modeling problem requires a set of solutions with low error when compared to the real

power consumption measures. In order to obtain suitable solutions we tune the OMOPSO algorithm using

the following parameters:

• Swarm size: 100 particles.

• Number of generations: 2000. We avoid the PSO algorithm to be trapped in a local minimum by

exhaustively analyzing this parameter. We have performed 20 optimizations for each number of gen-

erations ranging from 200 to 2400 as can be seen in Figure 1(a).

• Perturbation: Uniform and non-uniform mutation. Both with a perturbation index of 0.5 and with

mutation probability inversely proportional to the number of decision variables, 1/9 in our case.

• W, C1 and C2 are generated for each particle in every iteration as a random value in [0.1,0.5], [1.5,2]

and [1.5,2], respectively.

6. Experimental results

6.1. Training

Tests have been conducted gathering real data from an enterprise server. The Fujitsu RX300 S6 server

is based on an Intel Xeon E5620 processor operating at fm2 = 1.73 GHz, fm3 = 1.86 GHz, fm4 = 2.13 GHz,

fm5 = 2.26 GHz, fm6 = 2.39 GHz and fm7 = 2.40 GHz running on a 64bit CentOS 6.4.

Server virtualization has been performed using the QEMU-KVM hypervisor. The operating system

installed in each virtual machine is a 64bit CentOS 6.4. In order to adapt the problem to Cloud computing

environments, our model constants are calculated for the data obtained during the execution of the workload

simultaneously in four KVM virtual machines using all the available CPU and memory resources in the
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Fig. 1. Analysis of Number of generations and Pareto Front final solutions.

Table 1. Constants obtained for Power curve fitting

Algorithm α1 α2 α3 α4 β1 β2 β3 γ λ

OMOPSO 0 0 0 3.32 0 1.63·10−3 0 4.88·10−11 0

lsqcurvefit 2.71·10−12 3.70·10−10 1.48·10−8 3.50 2.55·10−10 1.60·10−3 7.63·10−9 5.12·10−11 3.76·10−10

server. In the case of the two dual core CPUs Intel Xeon in Fujitsu RX300 S6 server, each VM is assigned

to a core and the 16GB RAM memory is divided into blocks of 4GB.

All the data included in the model have been collected via real measurements in the server using on board

sensors. Power consumption has been measured using a current clamp. Hardware counters are collected

using perf to monitor memory and CPU utilization. Frequency and voltage are modified via cpufreq-utils
linux package. Measurements have been gathered during the execution of lookbusy and modified RandMem
at different utilization levels ranging from 0% to 100% of the available resources of every VM. All data

have been gathered for a range of room temperatures between 18◦C and 25◦C (CPU temperature ranges

from 33◦C to 64◦C), and for each frequency and voltage supply level available in the server. We use these

data to perform a regression to our model by applying both nonlinear curve-fitting algorithms. First, we fit

the power curve using OMOPSO optimizations and then we compare the results with MATLAB lsqcurvefit
fitting function to analyze its benefits. The function lsqcurvefit is defined to solve nonlinear curve-fitting

problems in least-squares sense.

The data collected during the execution of the training set are used to perform 30 iterations of the

OMOPSO optimization. We obtain 30 sets of solutions, each of them defining a Pareto front for the two

objectives defined in our problem, as seen in Figure 1(b). The hypervolume of these Pareto fronts shows an

average value of -1.0109 and a standard deviation of 0.0229; hence, it can be concluded that the algorithm

is not trapped into a local minimum. Once we combine these Pareto fronts into a final one, we achieve the

final set of solutions for our power modeling problem, also shown in Figure 1(b).

6.2. Results
In order to present some results that support the benefits reached by OMOPSO applied to our optimiza-

tion problem, we choose a solution from the final Pareto front. We also obtain the only solution of the

lsqcurvefit optimization applied to the same training data set so that we can compare both approaches. Ta-

ble 2 shows the values of both the average relative error and maximum relative error percentages obtained

applying OMOPSO and lsqcurvefit, whereas Table 1 shows the corresponding solution for these two objec-

tives, i.e., the best values reached for the 9 constants included in our power model. These results show that,

while lsqcurvefit uses all the constants of the model, OMOPSO provides nonzero values to three constants

simplifying the power model. This also means that for lsqcurvefit we need to collect information from

seven sensors and, for OMOPSO, only from five sensors, resulting in computational savings in the mon-

itoring system. We validate the solutions obtained for the power model with both algorithms, OMOPSO
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Table 2. Objectives for Power curve fitting

Algorithm Avg.Error Max.Error

OMOPSO 4.0328% 17.0693%

lsqcurvefit 4.8501% 16.9401%

Table 3. Average error percentage comparison for the tests performed

Workload Training Web Search SPEC mcf SPEC perlbench

OMOPSO 4.0328% 4.6028% 4.1242% 5.1148%

lsqcurvefit 4.8501% 4.4253% 6.1736% 5.2453%

and lsqcurvefit, using real Cloud computing workload. The validation of the model is conducted by exe-

cuting three different tests that represent real workload of a Cloud computing data center: The Web Search
application from the CloudSuite3 benchmark suite, SPEC CPU2006 mcf and SPEC CPU2006 perlbench4.

Web Search aims to characterize web search engines, typically used in Cloud infrastructures, that process

client requests indexing data harvested from online sources. Our Web Search benchmark consists of four

VMs. Three of the VMs perform as index serving nodes (ISNs) of Nutch 1.2 for a distributed file system

with a data segment crawled from the public Internet of about 6 MB, and an index of 2 MB. One of the

ISNs also performs as a Tomcat 7.0.23 frontend that sends index search requests to all the ISNs, collects

their responses and sends them back to the requesting client. The clients behavior is simulated in the fourth

VM using Faban 0.7 with a number of clients ranging from 100 to 300. The four VMs use all available

memory and CPU in each server, as in the profiling tests. Web Search test set includes measurements of

CPU temperatures from 37◦C to 55◦C and both CPU and memory loads range from 0% to 100%.

SPEC CPU2006 mcf consists on a large-scale minimum-cost flow problem solved with a network sim-

plex algorithm accelerated with a column generation. On the other hand, SPEC CPU2006 perlbench is

a mail based benchmark which applies a spam checking software to randomly generated email messages.

Both the SPEC CPU2006 mcf and the perlbench tests are conducted in parallel in 4VMs using entirely the

available resources of the server. We choose these tests to represent HPC over a Cloud computing infrastruc-

ture as they are memory and CPU-intensive, and CPU-intensive applications, respectively. SPEC CPU2006

data set includes measurements of CPU temperatures from 33◦C to 54◦C.

We calculate the values of eavg(�x) and emax(�x) for the test data sets using the solutions of both OMOPSO

and lsqcurvefit algorithms. The average percentage error results, eavg(�x), can be seen in Table 3. These

results show that OMOPSO not only simplifies the optimization problem for our power model but also

provides better error results than lsqcurvefit for three of the four tests conducted. Web Search presents higher

peaks of memory accesses per cycle in comparison with the rest of the tests. lsqcurvefit algorithm takes into

account additional power contributions, that are not present in the OMOPSO formulation, which are more

sensitive to the high variability in the memory utilization. However, the difference in the power estimated

by both algorithms in this test is only 0.3W. Given the obtained results, we can conclude that the proposed

methodology based on OMOPSO algorithms is an efficient technique for the envisioning of complex, multi-

parametric power models for state-of-the-art Cloud computing servers. Moreover, the proposed technique

allows to target several optimization problems that work on setting an energy-efficient working point by

deciding the optimal clock frequency, voltage supply level and thermal-aware workload assignment.

7. Conclusions

This work has made successful advances in the provisioning of accurate power models of enterprise

servers in Cloud services. As opposed to previous approaches, the work presented here targets different

server architectures with no effort for the designer, as the models can be automatically generated. The use of

multi-objective meta-heuristic optimization algorithms allows to include the traditional and non-traditional

sources of power consumption, as well as the effect of several system-level parameters that affect the en-

ergy footprint. The experimental work, conducted with realistic workload, has shown the accuracy of the

proposed methodology as compared with traditional regression algorithms. In addition, the multi-objective

optimization approach followed in this paper opens the door to future energy minimization techniques where

the parameters are considered as decision variables.

3http://parsa.epfl.ch/cloudsuite
4http://www.spec.org
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