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Abstract. Building accurate knowledge of the identity, the geographic
distribution and the evolution of species is essential for the sustainable
development of humanity, as well as for biodiversity conservation. How-
ever, the difficulty of identifying plants and animals is hindering the
aggregation of new data and knowledge. Identifying and naming living
plants or animals is almost impossible for the general public and is of-
ten difficult even for professionals and naturalists. Bridging this gap is a
key step towards enabling effective biodiversity monitoring systems. The
LifeCLEF campaign, presented in this paper, has been promoting and
evaluating advances in this domain since 2011. The 2021 edition pro-
poses four data-oriented challenges related to the identification and pre-
diction of biodiversity: (i) PlantCLEF: cross-domain plant identification
based on herbarium sheets, (ii) BirdCLEF: bird species recognition in
audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction
of species, and (iv) SnakeCLEF: Automatic Snake Species Identification
with Country-Level Focus.

1 LifeCLEF Lab Overview

Accurately identifying organisms observed in the wild is an essential step in
ecological studies. Unfortunately, observing and identifying living organisms re-
quires high levels of expertise. For instance, plants alone account for more than
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400,000 different species and the distinctions between them can be quite subtle.
Since the Rio Conference of 1992, this taxonomic gap has been recognized as
one of the major obstacles to the global implementation of the Convention on
Biological Diversity1. In 2004, Gaston and O’Neill [10] discussed the potential
of automated approaches for species identification. They suggested that, if the
scientific community were able to (i) produce large training datasets, (ii) pre-
cisely evaluate error rates, (iii) scale up automated approaches, and (iv) detect
novel species, then it would be possible to develop a generic automated species
identification system that would open up new vistas for research in biology and
related fields.

Since the publication of [10], automated species identification has been stud-
ied in many contexts [3,12,22,35,41,50,51,59]. This area continues to expand
rapidly, particularly due to advances in deep learning [2,11,36,42,52,54,55,56]. In
order to measure progress in a sustainable and repeatable way, the LifeCLEF2

research platform was created in 2014 as a continuation and extension of the
plant identification task that had been run within the ImageCLEF lab3 since
2011 [14,15,16]. Since 2014, LifeCLEF expanded the challenge by considering
animals in addition to plants, and including audio and video content in addition
to images [23,24,25,26,27,28,29]. Four challenges were evaluated in the context
of LifeCLEF 2021 edition:
1. PlantCLEF 2021: Identifying plant pictures from herbarium sheets.
2. BirdCLEF 2021: Bird species recognition in audio soundscapes.
3. GeoLifeCLEF 2021: Species presence prediction at given locations based

on occurrence, environmental and remote sensing data.
4. SnakeCLEF 2021: Automated snake species identification with Country-

Level Focus.
The system used to run the challenges (registration, submission, leaderboard,

etc.) was the AICrowd platform4 for the PlantCLEF and ths SnakeCLEF chal-
lenge and the Kaggle platform5 for GeoLifeCLEF and BirdCLEF challenges. In
total, 834 teams/persons participated to LifeCLEF 2021 edition by submitting
runs to at least one of the four challenges. In the following sections, we provide
a synthesis of the methodology and main results of each of the four challenges.
More details can be found in the overview reports of each challenge and the
individual reports of the participants (references provided below).

2 PlantCLEF challenge: Identifying plant pictures from
herbarium sheets

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated working note [13].
1 https://www.cbd.int/
2 http://www.lifeclef.org/
3 http://www.imageclef.org/
4 https://www.aicrowd.com
5 https://www.kaggle.com
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2.1 Objective

Automated identification of plants has recently improved considerably thanks to
the progress of deep learning and the availability of training data with more and
more photos in the field. In the context of LifeCLEF 2018, we measured a top-1
classification accuracy over 10K species up to 90 % and we showed that auto-
mated systems are not so far from human expertise [23]. However, this profusion
of field images only concerns a few tens of thousands of species, mostly located in
North America and Western Europe, with fewer images from the richest regions
in terms of biodiversity such as tropical countries. On the other hand, for several
centuries, botanists have collected, catalogued and systematically stored plant
specimens in herbaria, particularly in tropical regions. Recent huge efforts by
the biodiversity informatics community such as iDigBio6 or e-ReColNat7 made
it possible to put millions of digitized collections online. Thus, the 2020 and
2021 editions of the PlantCLEF challenge were designed to evaluate to what ex-
tent automated plant species identification on tropical data deficient regions can
be improved by the use of herbarium sheets. Herbarium collections potentially
represent a large reservoir of data for training species prediction models. How-
ever, their visual appearance is very different from field photographs because the
specimens are first dried and then crushed on a herbarium board before being
digitized (see examples figure 1). This difference in appearance represents a very
severe domain shift which makes the task of learning from one domain to the
other very difficult. The main novelty of the 2021 edition over 2020 is that we
provide new training data related to species traits, i.e attributes of the species
such as their growth form, woodiness or habitat. Traits are a very valuable infor-
mation that can potentially help improve the prediction of the models. Indeed,
it can be assumed that species which share the same traits also share to some ex-
tent common visual appearances. This information can then potentially be used
to guide the learning of a model through auxiliary loss functions for instance.

2.2 Dataset and Evaluation Protocol

The challenge is based on a dataset of 997 species mainly focused on the South
America’s Guiana Shield (figure 2), an area known to have one of the greatest
diversity of plants in the world. It as evaluated as a cross-domain classification
task where the training set consist of 321,270 herbarium sheets and 6,316 photos
in the field to enable learning a mapping between the two domains. A valuable
asset of this training set is that a set of 354 plant observations are provided
with both herbarium sheets and field photos to potentially allow a more precise
mapping between the two domains. In addition to the images, the training data
includes the values of 5 traits for each 997 species. These trait data items were
collected through the Encyclopedia of Life API 8 and were selected as the most
6 http://portal.idigbio.org/portal/search
7 https://explore.recolnat.org/search/botanique/type=index
8 https://eol.org/docs/what-is-eol/data-services
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Fig. 1: Field photos and herbarium sheets of the same specimen (Tapirira guia-
nensis Aubl.). Despite the very different visual appearances between the two
types of images, similar structures and shapes of flowers, fruits and leaves can
be observed.

exhaustive ones, i.e.: “plant growth form”, “habitat”, “plant lifeform”, “trophic
guild” and “woodiness”. Each of them was double-checked and completed by
experts of the Guyanese flora, in order to ensure that each of the 1000 species
have a validated value for each trait.

The test set relies on the data of two highly trusted experts and is composed
of 3,186 photos in the fields related to 638 plant observations.

Participants were allowed to use complementary training data (e.g. for pre-
training purposes) but on the condition that (i) the experiment is entirely repro-
ducible, i.e. that the used external resource is clearly referenced and accessible to
any other research group in the world, (ii) the use of external training data or not
is mentioned for each run, and (iii) the additional resource does not contain any
of the test observations. External training data was allowed but participants had
to provide at least one submission that used only the data provided this year.

The main evaluation measure for the challenge is the Mean Reciprocal Rank
(MRR), which is defined as

1

Q

Q∑
q=1

1

rankq

where Q is the number of plant observations and rankq is the predicted rank of
the true label for the qth observation.

A second MRR score is computed on a subset of test set composed of the
most difficult species, i.e. the ones that are the least frequently photographed in
the field. They were selected based on the most comprehensive estimates of the
available amount of field pictures from different data sources (IdigBio, GBIF,
Encyclopedia of Life, Bing and Google Image search engines, previous datasets
related to PlantCLEF and ExpertCLEF challenges). These difficult species are
much more challenging in the sense that the discriminant features must necessary
be learned from the herbarium data.



Fig. 2: Density grid maps of the number of species of geolocated plants in
PlantCLEF2021. Many species have also been collected to a lesser extent in
other regions outside French Guiana, such as the Americas and Africa.

2.3 Participants and Results

About 40 teams registered for the PlantCLEF challenge 2021 (PC21) and 4
of them finally submitted runs, i.e. files containing the predictions of the sys-
tem(s) they ran. Details of the methods and systems used in the runs are syn-
thesized in the overview working note paper of the task [13] and further de-
veloped in the individual working notes of participants (NeuonAI [5], Lehigh
University [58]). Complementary runs based on the best performing approach
during PlantCLEF2020 (a Few Shot Adversarial Domain Adaptation approach
- FSADA - [53]) were also submitted by the organisers. In particular, we focused
on assessing the impact of the trait information introduced this year. We report
in Figure 3 the performance achieved by the 33 collected runs.

The main outcomes we can derive from that results are the following:

The most difficult PlantCLEF challenge ever. Traditional classification
models based on CNNs perform very poorly on the task. Domain Adaptation
methods (DA) based on CNNs perform much better but the task remains difficult
even with these dedicated techniques. The best submitted run barely approaches
a MRR of 0.2.

Genericity and stability. Regarding the difference between the two MRR
metrics (whole test set vs. difficult species), the NeuonAI team demonstrated
that it is possible to achieve equivalent and quite good performance for all
species, even those that have few or no field photos at all in the training dataset.
Rather than focusing on learning a common feature invariant domain as for
the other team’s submissions, the NeuonAI’s approach focuses on a deep metric
learning on features embeddings. Looking solely at the the second MRR score,
this approach seems to be more effective in transferring knowledge to the least
frequently photographed species (which is the most challenging objective). The



Fig. 3: PlantCLEF 2021 results

FSADA approach, on the other side, offers a better trade off considering all
species together.

The most informative species trait is the “plant growth form”.
Organizer’s submissions 4, 5 and 6 demonstrate that adding an auxiliary task
related based on species traits to the FSADA approach improve performance.
As hypothesised, it seems to help gathering and discriminating wide groups of
plant species sharing similar visual aspects (such as tendrils for climber plants,
typical large leaves for tropical trees against smaller leaves for shrubs or long
thin leaves and frequent flowers for herbs).

3 BirdCLEF challenge: Bird call identification in
soundscape recordings

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated overview paper [31].

3.1 Objective

The LifeCLEF Bird Recognition Challenge (BirdCLEF) launched in 2014 and
has since become the largest bird sound recognition challenge in terms of dataset
size and species diversity with multiple tens of thousands of recordings covering



up to 1,500 species [17,30,32]. Birds are ideal indicators to identify early warn-
ing signs of habitat changes that are likely to affect many other species. They
have been shown to respond to various environmental changes over many spatial
scales. Large collections of (avian) audio data are an excellent resource to con-
duct research that can help to deal with environmental challenges of our time.
The community platform Xeno-canto9 launched in 2005 and hosts bird sounds
from all continents and daily receives new recordings from some of the remotest
places on Earth. The Xeno-canto archive currently consists of more than 635,000
focal recordings covering over 10,000 species of birds, making it one of the most
comprehensive collections of bird sound recordings worldwide, and certainly the
most comprehensive collection shared under Creative Commons licenses. Xeno-
canto data was used for BirdCLEF in all past editions to provide researchers
with large and diverse datasets for training and testing.

In recent years, research in the domain of bioacoustics shifted towards deep
neural networks for sound event recognition [33,49]. In past editions, we have seen
many attempts to utilize convolutional neural network (CNN) classifiers to iden-
tify bird calls based on visual representations of these sounds (i.e., spectrograms)
[18,34,40]. Despite their success for bird sound recognition in focal recordings, the
classification performance of CNN on continuous, omnidirectional soundscapes
remained low. Passive acoustic monitoring can be a valuable sampling tool for
habitat assessments and the observation of environmental niches which often are
endangered. However, manual processing of large collections of soundscape data
is not desirable and automated attempts can help to advance this process [57].
Yet, the lack of suitable validation and test data prevented the development of
reliable techniques to solve this task. Bridging the acoustic gap between high-
quality training recordings and soundscapes with high ambient noise levels is
one of the most challenging tasks in the domain of audio event recognition.

The main goal of the 2021 edition of BirdCLEF was to open the field of
bird song identification to a broader audience by providing both a challenging
research task and a low barrier to entry. The competition was hosted on Kag-
gle10 to attract machine learning experts from around the world to participate
and submit. While the overall task was consistent with previous editions, the
organization focused on providing entry-level resources to enable participants
to achieve baseline results without the need for extensive dataset analysis and
workflow implementation.

3.2 Dataset and Evaluation Protocol

Deploying a bird sound recognition system to a new recording and observation
site requires classifiers that generalize well across different acoustic domains.
Focal recordings of bird species from around the world form an excellent base to
develop such a detection system. However, the lack of annotated soundscape data
for a new deployment site poses a significant challenge. As in previous editions,
9 https://www.xeno-canto.org/

10 https://www.kaggle.com/c/birdclef-2021
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Fig. 4: Dawn chorus soundscapes often have an extremely high call density. The
2021 BirdCLEF dataset contained 100 fully annotated soundscapes recorded in
South and North America.

training data was provided by the Xeno-canto community and consisted of more
than 60,000 recordings covering 397 species from two continents (South and
North America). Participants were allowed to use metadata to develop their
systems. Most notably, we provided detailed location information on recording
sites of focal and soundscape recordings, allowing participants to account for
migration and spatial distribution of bird species. A validation dataset with 200
minutes of soundscape data was also provided.

The hidden test data contained 80 soundscape recordings of 10-minute du-
ration covering four distinct recording locations. Validation data only contained
soundscapes for two of the four locations. All audio data were collected with
passive acoustic recorders from deployments in Colombia (COL), Costa Rica
(COR), the Sierra Nevada (SNE) of California, USA and the Sapsucker Woods
area (SSW) in Ithaca, New York, USA. Expert ornithologists provided annota-
tions for a variety of quiet and extremely dense acoustic scenes (see Figure 4).

The goal of the task was to localize and identify all audible birds within the
provided soundscape test set. Each soundscape was divided into segments of 5
seconds, and a list of audible species had to be returned for each segment. The
used evaluation metric was the row-wise micro-averaged F1-score. In previous
editions, ranking metrics were used to assess the overall classification perfor-
mance. However, when applying bird call identification systems to real-world
data, confidence thresholds have to be set in order to provide meaningful re-
sults. The F1-score as balanced metric between recall and precision appears to
better reflect this circumstance. Precision and recall were determined based on
the total number of true positives (TP), false positives (FP) and false negatives
(FN) for each segment (i.e., row of the submission). More formally:

Micro-Precision =
TPsum

TPsum + FPsum
, Micro-Recall = TPsum

TPsum + FNsum

The micro F1-score as harmonic mean of the micro-precision and micro-recall
for each segment is defined as:



Fig. 5: Scores achieved by the best systems evaluated within the bird identifica-
tion task of LifeCLEF 2021.

Micro-F1 = 2× Micro-Precision × Micro-Recall
Micro-Precision + Micro-Recall

The average across all (segment-wise) F1-scores was used as the final met-
ric. Segments that did not contain a bird vocalizations had to be marked with
the “nocall” label, which acted as an additional class label for non-events. The
micro-averaged F1-score reduces the impact of rare events, which only contribute
slightly to the overall metric if misidentified. The classification performance on
common classes (i.e., species with high vocal presence) is well reflected in the
metric.

3.3 Participants and Results

1,004 participants from 70 countries on 816 teams entered the BirdCLEF 2021
competition and submitted a total of 9,307 runs. Details of the best methods and
systems used are synthesized in the overview working notes paper of the task [31]
and further developed in the individual working notes of participants. In Figure
5 we report the performance achieved by the top 50 collected runs. The private
leaderboard score is the primary metric and was revealed to participants after
the submission deadline to avoid probing the hidden test data. Public leader-
board scores were visible to participants over the course of the entire challenge.

The baseline F1-score in this year’s edition was 0.4799 (public 0.5467) with
all segments marked as non-events, and 686 teams managed to score above this
threshold. The best submission achieved a F1-score of 0.6932 (public 0.7736)
and the top 10 best performing systems were within only 2% difference in score.
The vast majority of approaches was based on convolutional neural network



ensembles and mostly differed in pre- and post-processing and neural network
backbone. Interestingly, the choice of CNN backbone does not seem to have sig-
nificant impact on the overall score. Off-the-shelve architectures like MobileNet,
EfficientNet, or DenseNet all seem to perform well on this task. Participants
mostly used mel scale spectrograms as model inputs and the most commonly
used augmentation method was mix-up (i.e., overlapping samples to emulate
simultaneously vocalizing birds). Post-processing in the form of bagging and
thresholding scores, location based filtering, or even decision trees as separate
stage to combine scores and metadata appeared to be the most important mea-
sure to achieve high scores.

4 GeoLifeCLEF challenge: species prediction based on
occurrence data, environmental data and remote
sensing data

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated working note [37].

4.1 Objective
Automatic prediction of the list of species most likely to be present at a given
location is useful for many scenarios related to biodiversity management and
conservation. First, it can improve species identification tools (whether auto-
matic, semi-automatic or based on traditional field guides) by reducing the list
of candidate species observable at a given site.

Moreover, it can facilitate decision making related to land use and land man-
agement with regard to biodiversity conservation obligations (e.g. to determine
new buildable areas or new natural areas to be protected).

Last but not least, it can be used in the context of educational and citi-
zen science initiatives, e.g. to determine regions of interest with a high species
richness or vulnerable habitats to be monitored carefully.

4.2 Data Set and Evaluation Protocol
Data collection. The data for this year’s challenge is the same as last year

reorganized in a more easy-to-use and compact format. A detailed description
of the GeoLifeCLEF 2020 dataset is provided in [6]. In a nutshell, it consists
of over 1.9 million observations covering 31, 435 plant and animal species dis-
tributed across US and France (as shown in Figure 7). Each species observation
is paired with high-resolution covariates (RGB-IR imagery, land cover and alti-
tude) as illustrated in Figure 6. These high-resolution covariates are resampled
to a spatial resolution of 1 meter per pixel and provided as 256 × 256 images
covering a 256m × 256m square centered on each observation. RGB-IR imagery
come from the 2009-2011 cycle of the National Agriculture Imagery Program
(NAIP) for the U.S.11, and from the BD-ORTHO® 2.0 and ORTHO-HR® 1.0
11 https://www.fsa.usda.gov

https://www.fsa.usda.gov


Fig. 6: In the GeoLifeCLEF dataset, each species observation is paired with high-
resolution covariates (clockwise from top left: RGB imagery, IR imagery, altitude,
land cover).

databases from the IGN for France12. Land cover data originates from the Na-
tional Land Cover Database (NLCD) [21] for the U.S. and from CESBIO13 for
France. All elevation data comes from the NASA Shuttle Radar Topography
Mission (SRTM)14. In addition, the dataset also includes traditional coarser res-
olution covariates: bio-climatic rasters (1km2/pixel, from WorldClim [20]) and
pedologic rasters (250m2/pixel, from SoilGrids [19]).

Train-test split. The full set of occurrences was split in a training and test-
ing set using a spatial block holdout procedure as illustrated in Figure 7. This
limits the effect of spatial auto-correlation in the data [46]. Using this splitting
procedure, a model cannot achieve a high performance by simply interpolating
12 https://geoservices.ign.fr
13 http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/
14 https://lpdaac.usgs.gov/products/srtmgl1v003/

https://geoservices.ign.fr
http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/
https://lpdaac.usgs.gov/products/srtmgl1v003/


(a) US
(b) France

Fig. 7: Occurrences distribution over the US and France in GeoLifeCLEF 2021.
Blue dots represent training data, red dots represent test data.

between training samples. The split was based on a global grid of 5km × 5km
quadrats. 2.5% of these quadrats were randomly sampled and the observations
falling in those formed the test set. 10% of those observations were used for the
public leaderboard on Kaggle while the remaining 90% allowed to compute the
private leaderboard providing the final results of the challenge. Similarly, another
2.5% of the quadrats were randomly sampled to provide an official validation
set. The remaining quadrats and their associated observations were assigned to
the training set.

Evaluation metric. For each occurrence in the test set, the goal of the task
was to return a candidate set of species likely to be present at that location. To
measure the precision of the predicted sets, top-30 error rate was chosen as the
main evaluation criterion. Each observation i is associated with a single ground-
truth label yi corresponding to the observed species. For each observation, the
submissions provided 30 candidate labels ŷi,1, ŷi,2, . . . , ŷi,30. The top-30 error
rate is then computed using

Top-30 error rate =
1

N

N∑
i=1

ei where ei =

{
1 if ∀k ∈ {1, . . . , 30}, ŷi,k ̸= yi

0 otherwise

Note that this evaluation metric does not try to correct the sampling bias in-
herent to present-only observation data (linked to the density of population,
etc.). The absolute value of the resulting figures should thus be taken with care.
Nevertheless, this metric does allow to compare the different approaches and
to determine which type of input data and of models are useful for the species
presence detection task.
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Fig. 8: Results of the GeoLifeCLEF 2021 task. The top-30 error rates of the
submissions of each participant are shown in blue. The provided baselines are
shown in orange.

4.3 Participants and Results

Seven teams participated to the GeoLifeCLEF 2021 challenge (hosted on Kag-
gle15) and submitted a total of 26 submissions: University of Melbourne, DUTH
(Democritus University of Thrace), CONABIO (Comisión Nacional para el Cono-
cimiento y Uso de la Biodiversidad), UTFPR (Federal University of Technology
– Paraná) as well as three participants for which we could not identify the affil-
iation and which we denote here, respectively, as Team Alpha, Team Beta and
Team Gamma. Details of the methods used in the submitted runs are synthe-
sized in the overview working note paper for this task [37]. Runs of the winning
team are further developed in the individual working note [48].

In Figure 8, we report the performance achieved by the collected runs. The
main outcome of the challenge is that a method based on a convolutional neu-
ral network (CNN) trained solely on RGB imagery (University of Melbourne
- Run 1) easily beats a classical model used for species distribution modelling
[9] consisting of a random forest using punctual environmental variables (RF
(environmental vectors)). This might come as a surprise as it did not make use
of any bioclimatic or soil type variable which are often considered as the most
informative in the ecological literature.

Generally speaking, CNN-based models trained on high resolution patches
used in runs by University of Melbourne and Team Alpha as well as in the baseline
CNN (high resolution patches) are very competitive and efficient compared to the
15 https://www.kaggle.com/c/geolifeclef-2021/

https://www.kaggle.com/c/geolifeclef-2021/


traditional model (RF (environmental vectors)). This observation tends to show
that (i) important information explaining the species composition is contained
in the high-resolution patches, and, (ii) convolutional neural networks are able
to capture and exploit this information.

One question raised by the challenge is how to properly aggregate the differ-
ent variables provided as input. Adding altitude data to the model (University of
Melbourne - Run 2) provides an improvement in prediction accuracy backing the
intuition that this variable is informative of the species distribution. However,
aggregating all the variables does not mechanically lead to higher performance:
CNN (high resolution patches) makes use of the additional land cover data but
its performance is not as good as the two runs from University of Melbourne. It
seems that it is important not to aggregate the features representation of those
variables too early in the architectures of the networks: concatenation of higher-
level features (University of Melbourne - Run 2) is more efficient than early
aggregation (CNN (high resolution patches)). Furthermore, it is unclear for now
whether the information contained in the high-resolution patches is complemen-
tary or redundant to the one captured from the bioclimatic and soil variables
and whether they should be used together or not. Finally, there remains consid-
erable room for improvement on this challenge as the winning solution does not
make use of all the different patches provided and its top-30 error rate is still
high, near 75% error rate.

5 SnakeCLEF challenge: Automated snake species
identification with Country-Level Focus.

A detailed description of the task and a more complete discussion of the results
can be found in the dedicated overview paper [44].

5.1 Objective

To build an automatic and robust image-based system for snake species iden-
tification is an important goal for biodiversity, conservation, and global health.
With over half a million victims of death and disability from venomous snakebite
annually, such a system could significantly improve eco-epidemiological data and
treatment outcomes (e.g. based on the specific use of antivenoms) [1,4]. This ap-
plies especially in remote geographic areas, where snake species identification
assistance has a bigger potential to save lives.



Snake species identification difficulty lies in the high intra-class and low inter-
class variance in appearance, which may depend on geographic location, color
morph, sex, or age (Figure 10 and Figure 9). At the same time, many species are
visually similar to other species (e.g. mimicry). Our knowledge of which snake
species occur in which countries is incomplete, and it is common that most or
all images of a given snake species might originate from a small handful of coun-
tries or even a single country. Furthermore, many snake species resemble species
found on other continents, with which they are entirely allopatric. Knowing the
geographic origin of an unidentified snake can narrow down the possible correct
identifications considerably. In no location on Earth do more than 125 of the ap-
proximate 3,900 snake species co-occur [47]. Thus, regularization to all countries
is a critical component of an automated snake identification system.

5.2 Dataset and Evaluation Protocol

Dataset Overview: For this year’s challenge, we have prepared a dataset con-
sisting of 386,006 images belonging to 772 snake species from 188 countries and
all continents. The dataset has a heavy long-tailed class distribution, where the
most frequent species (Thamnophis sirtalis) is represented by 22,163 images and
the least frequent by just 10 (Achalinus formosanus).

Such a distribution with small inter-class variance and high intra-class vari-
ance creates a challenging task. We provide a simple train/val (90% / 10%) split
to validate preliminary results while ensuring the same species distributions.
The test set data consist of 23,673 images submitted to the iNaturalist platform
within the first four months of 2021. Unlike in previous years, where the final
testing set remained undisclosed, we provided the test data without labels to
the participants.

Metadata: Besides images, we provided 3 level hierarchical taxonomic labels
(family, genus, species) and location context (continent, country). The geograph-
ical information was included for approximately 85% of the development images

Fig. 9: Naja nigricincta from northern Namibia (left) and South Africa (right),
demonstrating geographical variation within a species. © Di Franklin - iNatu-
ralist, and © bryanmaritz - iNaturalist

https://www.inaturalist.org/observations/33842350
https://www.inaturalist.org/observations/33842350
https://www.inaturalist.org/observations/37126740


Fig. 10: Variation in Vipera berus (European Adder) color and pattern. Examples
from Germany, Switzerland and Poland. © Thorsten Stegmann - iNaturalist, ©
jandetka - iNaturalist, © jandetka - iNaturalist, and © chorthippus - iNaturalist.

and all test images. Additionally, we provide a mapping matrix (MM) describing
species-country presence to allow better worldwide regularization.

MMcs =

{
1 if species S ∈ country C
0 otherwise

(1)

The vast majority (77%) of all images came from the United States and
Canada, with 9% from Latin American and the Caribbean, 5.7% from Europe,
4.5% from Asia, 1.8% from Africa, and 1.5% from Australia/Oceania. Bias at
smaller spatial scales undoubtedly exists as well [38], largely due to where partic-
ipants in citizen science projects are concentrated. Nevertheless, snake species
from nearly every country were represented, with 46/215 (21%) of countries
having all of their snake species represented, mostly in Europe. Nearly half of
all countries (106/215; 49%) had more than 50% of their snake species repre-
sented (Figure 11). Priority areas for improvement of the training dataset in
future rounds are countries with high diversity and low citizen science participa-
tion, especially Indonesia, Papua New Guinea, Madagascar, and several central
African and Caribbean countries (Figure 12).

Evaluation: The main goal of this challenge was to build a system that is
capable of recognizing 772 snake species based on the given unseen image and

https://www.inaturalist.org/observations/73853126
https://www.inaturalist.org/observations/70402276
https://www.inaturalist.org/observations/70402741
https://www.inaturalist.org/observations/74928109


Fig. 11: Percentage of snake species per country included in SnakeCLEF2021.
The countries with biggest coverage are in Europe, Oceania, and North America.

relevant geographical location, with a focus on worldwide performance. To as-
sure that, we defined the macro F1 country performance MacroF1c as the main
metric. We calculate it as the mean of country F1 scores:

Macro F1c =
1

N

N∑
c=0

F1c , F1c =
1∑k

s=1 MM cs

×
N∑
s=0

F1sMM cs (2)

where c is country index, s is species index, and country performance (F1c).
To get the F1S we use following formula for each species:

F1s = 2× Ps ×Rs

Ps +Rs
(3)

5.3 Participants and Results

A total of 7 teams participated in the SnakeCLEF 2021 challenge and submitted
a total of 46 runs. We have seen a vast increase in interest related to automatic
snake recognition from the last year [8]. Interestingly, three participating teams
are originated from India – the country with the most snakebites worldwide [39].
Details of the best methods and systems used are synthesized in the overview
working notes paper of the task [44] and further developed in the individual
working notes. In Figure 13, we report the performance achieved by all collected
runs. The best performing model achieved an impressive MacroF1c of 0.903.

The main outcomes we can derive from that results are the following:

Object detection improves classification: Utilization of the detection
network for a better region of interest selection showed a significant performance



Fig. 12: Worldwide snake species distribution, showing the number of species
that are found in each country. Large countries in the tropics (Brazil, Mexico,
Colombia, India, Indonesia) have more than 300 species.

gain in the case of the winning team. However, such an approach requires addi-
tional labelling procedure and the build of two neural network models. Further-
more, a two-stage solution might be too heavy for deployment on edge devices;
thus, its usage is probably impossible.

CNN outperforms ViT in Snake Recognition: Similarly to last year
challenge [43], all participants featured deep convolutional neural networks. Be-
sides CNNs, Vision Transformers (ViT) [7] were utilized by two teams. Interest-
ingly, the performance of the ViT was slightly worst, which is contradictory to
their performance in fungi recognition [45], thus showing that ViT might not be
the best option for all fine-grained tasks.
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6 Conclusions and Perspectives

The main outcome of this collaborative evaluation is a new snapshot of the per-
formance of state-of-the-art computer vision, bio-acoustic and machine learning
techniques towards building real-world biodiversity monitoring systems. This
study shows that recent deep learning techniques still allow some consistent
progress for most of the evaluated tasks. One of the main new outcomes of
this edition of LifeCLEF is the appearance of Visual Transformers among the
best models of the SnakeCLEF task, which is the most straightforward task of
LifeCLEF to experiment this new type of models. Even if their performance is
still slightly inferior to that of convolutional neural networks, there is no doubt
that they are now an alternative to be considered in the future. On the con-
trary, the 50 best methods of the BirdCLEF sound recognition task are solely
based on convolutional neural networks ensembles. Interestingly, the choice of
the CNN backbone does not seem to be the most determining factor of the bet-
ter performance. The devil is in the detail, typically in the pre-processing and
post-processing methodologies. The geolifeclef task also confirms the power of
convolutional neural networks for this type of task, revealing their ability to
recognise species habitats even when they are only trained on remote sensing
images only (i.e. without any additional environmental data as input). Regard-
ing the cross-domain plant identification task, the main outcome was that the
performance of state-of-the-art domain adaptation methods such as FSDA can
be improved by bringing additional information to the adversarial discriminator
such as species traits or species taxonomy.
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