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Algorithms proposed in computational pathology can allow to automatically analyze
digitized tissue samples of histopathological images to help diagnosing diseases.
Tissue samples are scanned at a high-resolution and usually saved as images with
several magnification levels, namely whole slide images (WSIs). Convolutional neural
networks (CNNs) represent the state-of-the-art computer vision methods targeting the
analysis of histopathology images, aiming for detection, classification and segmentation.
However, the development of CNNs that work with multi-scale images such asWSIs is still
an open challenge. The image characteristics and the CNN properties impose architecture
designs that are not trivial. Therefore, single scale CNN architectures are still often used.
This paper presents Multi_Scale_Tools, a library aiming to facilitate exploiting the multi-
scale structure of WSIs. Multi_Scale_Tools currently include four components: a pre-
processing component, a scale detector, a multi-scale CNN for classification and a multi-
scale CNN for segmentation of the images. The pre-processing component includes
methods to extract patches at several magnification levels. The scale detector allows to
identify the magnification level of images that do not contain this information, such as
images from the scientific literature. The multi-scale CNNs are trained combining features
and predictions that originate from different magnification levels. The components are
developed using private datasets, including colon and breast cancer tissue samples. They
are tested on private and public external data sources, such as The Cancer Genome Atlas
(TCGA). The results of the library demonstrate its effectiveness and applicability. The scale
detector accurately predicts multiple levels of image magnification and generalizes well to
independent external data. The multi-scale CNNs outperform the single-magnification
CNN for both classification and segmentation tasks. The code is developed in Python and
it will be made publicly available upon publication. It aims to be easy to use and easy to be
improved with additional functions.
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1 INTRODUCTION

The implicit multi-scale structure of digitized histopathological
images represents an open challenge in computational pathology.
Training machine learning algorithms that can simultaneously
learn both microscopic and macroscopic tissue structures comes
with technical and computational challenges that are not yet well
studied.

As of 2021, histopathology represents the gold standard to
diagnose many diseases, including cancer (Aeffner et al., 2017;
Rorke, 1997). Histopathology images include several tissue
structures, ranging from microscopic entities (such as single
cell nuclei) to macroscopic components (such as tumor bulks).
Whole Slide Images (WSIs) are digitized histopathology images
that are scanned at high-resolution and are stored in a multi-scale
(pyramidal) format. WSI resolution is related to the spatial
resolution and the optical resolution used to scan the images
(Wu et al., 2010). The spatial resolution is the minimum distance
that the scanner can capture so that two objects are still
distinguished, measured in terms of μm per pixel (Sellaro
et al., 2013). The optical resolution (or magnification) is the
magnification factor (x) of the lens within the scanner (Sellaro
et al., 2013). Currently, the de facto standard spatial resolutions
adopted to scan tissue samples (for example in The Cancer
Genome Atlas) are usually 0.23–0.25 μm (magnification ×40)
or 0.46–0.50 μm (magnification ×20). Tissue samples such as
surgical resection samples (or specimens) are often
approximately 20 mm × 15 mm in size1, while samples such as
biopsies are approximatively 2 mm × 6 mm in size. The size of the
samples combined with the spatial resolution of the scanners
leads to gigapixel images: image size can reach 200 000 × 200 000
pixels, meaning gigabytes of pixel data. The multi-scale WSI
format (Figure 1) includes several magnification levels (with a
different spatial resolution) of the sample, stored in a pyramid,
usually varying between ×1.25 and 40x. The baseline image of the
pyramid is the one at the highest resolution. The multi-scale
structure of the images allows pathologists to analyze the image
from the lowest to the highest magnification level. Pathologists
analyze the images by first identifying a few regions of interest
and zooming afterwards through them to visualize different
details of the tissue (Schmitz et al., 2019). Each magnification
level includes different types of information (Molin et al., 2016),
since tissue structures appear in different ways according to their
magnification level. Therefore, it is essential to detect an
abnormality and detect it in a specific range of levels. The
characteristics of microscopes and scanners often lead to a
scale-dependent analysis. For example, at middle magnification
levels (such as 5–10x) it is possible to distinguish between glands,
while at the highest ones (such as 20–40x) it is possible to better
resolve cells. Figure 2 includes examples of tissues scanned at
different magnification levels.

Computational pathology is the computational analysis of digital
images obtained through scanning slides of cells and tissues (van der
Laak et al., 2021). Currently, deep Convolutional Neural Networks

(CNNs) are the state-of-the-art machine learning algorithms in
computational pathology tasks, in particular for classification (del
Toro et al., 2017; Arvaniti and Claassen, 2018; Coudray et al., 2018;
Komura and Ishikawa, 2018; Ren et al., 2018; Campanella et al.,
2019; Roy et al., 2019; Iizuka et al., 2020) and segmentation
(Ronneberger et al., 2015; Paramanandam et al., 2016; Naylor
et al., 2017; Naylor et al., 2018; Wang et al., 2019) of images.
Their success relies on automatically learning the relevant

FIGURE 1 | An example of WSI format including multiple magnification
levels. The size of each image of the pyramid is reported under the
magnification level in terms of pixels.

FIGURE 2 | An example of tissue represented at multiple magnification
level (5x, 10x, 20x, 40x). The tissues come from colon, prostate and lung
cancer images.

1http://dicom.nema.org/Dicom/DICOMWSI/. Retrieved 13th of November, 2020
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features from the input data. However, usually, CNNs cannot
easily handle the multi-scale structure of the images since they
are not scale-equivariant by design (Marcos et al., 2018; Zhu
et al., 2019) and because of WSI size. The equivariance property
of a transformation means that when a transformation is
applied, it is possible to predict how the representation will
change (Lenc and Vedaldi, 2015; Tensmeyer and Martinez,
2016). This is not normally true for CNNs, because if a scale
transformation is applied to the input data, it is usually not
possible to predict its effect on the output of the CNN. The
knowledge about the scale is essential for the model to identify
diseases, since the same tissue structures, represented at
different scales, include different information (Janowczyk and
Madabhushi, 2016). CNNs can identify abnormalities in tissues,
but the information and the features related to the abnormalities
are not the same for each scale representation (Jimenez-del Toro
et al., 2017). Therefore, the proper scale must be selected to train
CNNs (Gecer et al., 2018; Otálora et al., 2018b). Unfortunately,
scale information is not always available into images. This is the
case, for instance, of pictures taken with standard cameras or
processed in compression and resolution, such as images
downloaded from the web or images included in scientific
articles. Furthermore, modern hardware (Graphic Processing
Units, GPUs) cannot easily handle WSIs, due to their large pixel
size and the limited video random access memory space that has
to temporally store it. The combination of different
magnification levels leads to larger images, making it even
harder to analyze the images.

The characteristics of the WSIs can lead to modification of
CNNs in terms of architecture, both for classification (Jimenez-
del Toro et al., 2017; Lai and Deng, 2017; Gecer et al., 2018; Yang
et al., 2019; Hashimoto et al., 2020) and segmentation
(Ronneberger et al., 2015; Li et al., 2017; Salvi and Molinari,
2018; Schmitz et al., 2019; van Rijthoven et al., 2020), such as
multi-brach networks (Yang et al., 2019; Hashimoto et al., 2020;
Jain and Massoud, 2020), multiple receptive fields convolutional
neural networks (Han et al., 2017; Lai and Deng, 2017; Ullah,
2017; Li et al., 2019; Zhang et al., 2020) and U-Net based networks
(Bozkurt et al., 2018; van Rijthoven et al., 2020). The modification
of architectures to include multiple scales is prevalent in medical
imaging, since it can allow to identify examples of architecture’s
modifications also from other modalities, such as MRI imaging
(Zeng et al., 2021a) and Gold immunochromatographic strip
(GIGS) images (Zeng et al., 2019; Zeng et al., 2021b).

The code library (called Multi_Scale_Tools) described in this
paper contributes to alleviate the mentioned problems by
presenting tools that allow handling and exploiting
histopathological images’ multi-scale structure end-to-end
CNN architectures. The library includes pre-processing tools
to extract multi-scale patches, a scale detector, a component to
train a multi-scale CNN classifier and a component to train a
multi-scale CNN for segmentation. The tools are platform-
independent and developed in Python. The code is publicly
available at https://github.com/sara-nl/multi-scale-tools.
Multi_Scale_Tools is aimed at being easy to use and easy to
be improved with additional functions.

2 METHODS

The library includes four components: a pre-processing tool, a
scale detector tool, a component to train a multi-scale CNN
classifier and a component to train a multi-scale segmentation
CNN. Each tool is described in a dedicated subsection as follows:

• Pre-processing component, Sub-section 2.1
• Scale detector, Sub-section 2.2
• Multi-scale CNN for classification, Sub-section 2.3
• Multi-scale CNN for segmentation, Sub-section 2.4

2.1 Pre-Processing Component
The pre-processing component allows researchers to
generate multi-scale input data. The component includes two
parametric and scalable methods to extract patches from the
different magnification levels of a WSI: the grid extraction
and the multi − center extraction method. Both methods
need a WSI and the corresponding tissue mask as input,
and they both produce images and metadata as output. The
grid extraction methods (Patch_Extractor_Dense_Grid.py,
Patch_Extractor_Dense_Grid_Strong_Labels.py), allow to
extract patches from one magnification level (Figure 3). The
tissue mask is split in a grid of patches according to the following
parameters: magnification level, mask magnification, patch size, and
stride between the patches. The output of the method is a set of
patches selected according to the parameters. The multi − center
extraction methods (Patch_Extractor_Dense_Centroids.py,
Patch_Extractor_Dense_Centroids_Strong_Labels.py) allow to
extract patches from multiple magnification levels. According to
the user’s highest magnification level, the tissue mask is split into a
grid (as done in the functions previously described). The patches
within this grid are called centroids. Each centroid is used to generate
the coordinates for a patch at a lower magnification level, so that the
latter includes the centroid (the patch at the highest magnification
level) in its central section. Themethod’s output is a set of tuples, each
one including patches at different magnification levels (Figure 4).
Compared with other patch extraction methods, such as the one
presented in (Lu et al., 2021), this pre-processing component has two
main characteristics. The first one is that the component extracts
patches from multiple magnification levels of the WSIs, pairing the
patches coming from the same region of the image. The second one is
that the component allows extracting patches from an arbitrary
magnification level, despite the magnification level not being
included in the WSI. Usually, patch extractor methods extract
patches only from the magnification levels stored in the WSI
format (Ma), such as 40x, 20x, 10x, 5x, 2.5x and 1.25x. This
process is driven by the input parameters that include both the
patch size (Pw) and the magnification wanted (Mw). The method
extracts a patch of size Pa from amagnification stored in theWSI and
afterwards the patch is resized to Pw.

Pw : Mw � Pa : Ma. (1)

In both methods, only patches from tissue regions are
extracted and saved using tissue masks, distinguishing between

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6845213

Marini et al. Multi_Scale_Tools

https://github.com/sara-nl/multi-scale-tools.Multi_Scale_Tools
https://github.com/sara-nl/multi-scale-tools.Multi_Scale_Tools
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


patches from tissue regions and patches from the background.
The methods are developed to work with masks including tissue
and, in case they are available, with pixel-wise annotated masks.
In the case of tissue masks, the tissue masks are generated using
HistoQC tools (Janowczyk et al., 2019). The HistoQC
configuration adopted is reported in the repository. In the case
of pixel-wise annotations, the masks must be firstly converted to a
RGB image.

Besides the patches, the methods save also metadata file (csv
files). The metadata includes information regarding the
magnification level where the patches are extracted and the x
and y coordinates of the patches’ upper left corner. The scripts are
developed to be multi-thread, in order to exploit hardware
architectures with multiple cores. In the Supplementary
Materials section, the parameters for the scripts are described
in more detail.

2.2 Scale Detector
The scale detector tool is a CNN trained to estimate the
magnification level of a given patch or image. This task has been
explored in the past Otálora et al. (2018a), Otálora et al. (2018b) in
the prostate and breast tissue types. Similar approaches have been
recently extended to different organs in the TCGA repository Zaveri
et al. (2020). The tool involves the scripts related to the training of
the models (the input data generation, the training and testing
modules) and a module to use the detector as a standalone

component that performs the magnification inference for new
images. The models are trained in a fully-supervised fashion.
Therefore, the scripts to train them need a set of patches and
the corresponding magnification level as input, which are provided
into csv files, including the patch path and the corresponding
magnification levels. Two scripts are developed to generate the
input files, assuming that the patches are previously generated with
the pre-processing components, described in the previous section.
The first script is made to split the WSIs into partitions
(Create_csv_from_partitions.py), which generates three files (the
input data for training, validation and testing partitions) starting
from three files (previously prepared by the user) including the
names of the WSIs. The second script (Create_csv.py) generates an
input data csv starting from a list of files. The model is trained
(Train_regressor.py) and tested (Test_regressor.py) with several
magnification levels that the user can choose (in this paper, 5x,
8x, 10x, 15x, 20x, 30x, 40x were used). Training the model with
patches from a discrete and small set of scales can lead to regressors
that are precise to estimate the magnifications close to input scales,
and less precise when scales are far from them. Therefore, a scale
augmentation technique was applied to patches and labels during
the training (in addition tomore standard augmentation techniques
adopted such as rotation, flipping and color augmentation). In
order to perform scale augmentation, the image is randomly
cropped of a factor and resized to the original patch size. The
factor is applied to perturbate also the magnification level. The scale

FIGURE 3 | An example of the grid extraction method. The patches in green are selected since they contain enough tissue.
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detector component includes also a module to import and use the
model in the code (regression.py). The component works both as a
standalone module (with the required parameters) but it is also
possible to load the functions from the python module. The
Supplementary Materials section includes a more thorough
description of the parameters for the scripts.

2.3 Multi-Scale CNN for Classification
The Multi-scale CNN component includes scripts to train a multi-
scale CNN for classification, in a fully supervised fashion. Two
different multi-scale CNN architectures and two training variants
are proposed and compared with a single-scale CNN. The multi-scale
CNN architectures are composed of multiple branches (one for each
magnification level) trained with patches that come from several
magnifications. Each branch is fed with patches from a specific
magnification level. The first architecture of multi-scale CNN
combines each CNN branch features (the output of the
convolutional layers). The scripts developed to train and test the
models are Fully_supervised_training_combine_features_multi.py
and Fully_supervised_testing_combine_features_multi.py The
second architecture of multi-scale CNN combines the classifier

predictions (the output of each CNN’s fully-connected layers). The
scripts developed to train and test the models are
Fully_supervised_training_combine_probs_multi.py and
Fully_supervised_testing_combine_probs_multi.py Both
architectures are presented in two variants, optimizing respectively
one andmultiple loss functions. In the first variant (one loss function),
the input is a set of tuples of patches from several magnification levels
(one patch for each level), generated using the multi − center
extraction tool (presented in Section 2.1). The input tuples are
generated with a script (Generate_csv_multicenter.py) that exploits
the coordinates of the patches (stored in the metadata) to generate the
tuples (stored in a csv file). The tuple label corresponds to the class of
the centroid patch (the patch from the highest level within the tuple).
Therefore, the model outputs only the class of the tuple. Only one loss
function is minimized in this variant, i.e. the categorical cross-entropy
between the CNN output and the patch ground truth. Figure 5
summarizes theCNNarchitecture. In the second variant (multiple loss
functions), the input is a set of tuples of patches from several
magnification levels (one patch for each level), previously
generated using the grid extraction method (presented in Section
2.1). The input tuples are generated with a script

FIGURE 4 | An example of themulti − center extraction method. The grid is made according to the highest magnification level selected by the used. The patch is the
centroid for patches at lower magnification levels.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6845215

Marini et al. Multi_Scale_Tools

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


(Generate_csv_upper.py) that exploits the coordinates of the patches
(stored in themetadata) to generate the tuples (stored in a csvfile). The
tuple labels correspond to the classes of the patches. Themodel hasn+
1 outputs: the class for each of the nmagnification levels and thewhole
tuple class. In this variant, n + 1 loss functions are minimized (n
representing the number of magnification levels considered). The n
loss functions are the categorical cross-entropy between the output for
each of the scale branches and the tuple labels. The other loss term is
the categorical cross-entropy between the output of the network (after
the combination of the features or the predictions of the single
branches) and the tuple labels. Figure 6 summarizes the CNN
architecture. The Supplementary Materials section includes a more
thorough description of the parameters.

2.4 Multi-Scale CNN for Segmentation
This component includes HookNet (van Rijthoven et al., 2020), a
multi-scale CNN for semantic segmentation. HookNet combines
information from low-resolution patches (large field of view) and
high-resolution patches (small field of view) to semantically segment
the image, using multiple branches. The low-resolution patches
come from lower magnification levels and include context
information, while the high-resolution patches come from higher
magnification levels and includemore fine-grained information. The
network is composed of two branches of encoder-decoder models,
the context branch (fed with low-resolution patches) and the target

branch (fed with high-resolution patches). The two branches are fed
with concentric multi-field-view multi-resolution (MFMR) patches
(284 × 284 pixels in size). Although they have the same architecture,
the branches do not share their weights (an encoder-decoder CNN
based on U-Net). Hooknet is thoroughly described in a dedicated
article (van Rijthoven et al., 2020).

2.5 Datasets
The following datasets are used to develop the Multi_Scale_Tools
components:

• Colon dataset, Sub-section 2.5.1, used in the Pre-processing
component, the Scale detector and the Multi-scale CNN for
classification

• Breast dataset, Sub-section 2.5.2, used in the Multi-scale
CNN for segmentation

• Prostate dataset, Sub-section 2.5.3, used in the Scale detector
• Lung dataset, Sub-section 2.5.4, used in the Scale detector
and the Multi-scale CNN for segmentation

2.5.1 Colon Dataset
The colon dataset is a subset of the ExaMode colon dataset. This
subset includes 148 WSIs (provided by the Department of
Pathology of Cannizaro Hospital, Catania, Italy), stained with

FIGURE 5 | The first multi-scale CNN architecture, in which features are combined from different scale branches, optimizing only one loss function (A) and
optimizing n + 1 loss function (B).
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Hematoxylin and Eosin (H&E). The images are digitized with
an Aperio scanner: some of the images are scanned with a
maximum spatial resolution of 0.50 μm per pixel (20x), while
the others are scanned with a spatial resolution of 0.25 μm per
pixel (40x). The images are pixel-wise annotated by a
pathologist. The annotations include five classes: cancer,
high-grade dysplasia, low-grade dysplasia, hyperplastic
polyp and non-informative tissue.

2.5.2 Breast Dataset
The breast dataset (provided by Department of Pathology of
Radboud University Medical Center, Nijmegen, Netherlands) is a
private dataset including 86 WSIs, stained with H&E. The images
are digitized with a 3DHistech scanner, with a spatial resolution
of 0.25 μm per pixel (40x). The images are pixel-wise annotated
by a pathologist. 6,279 regions are annotated, with the following
classes: ductal carcinoma in-situ (DCIS), invasive ductal
carcinoma (IDC), invasive lobular carcinoma (ILC) benign
epithelium (BE), other, and fat.

2.5.3 Prostate Dataset
The prostate dataset is a subset of the publicly available database
offered by The Cancer Genome Atlas (TCGA-PRAD), that
includes 20 WSIs, stained with H&E. The images come from
several sources and are digitized with different scanners, with a

spatial resolution of 0.25 μm per pixel (40x). The images come
without pixel-wise annotations.

2.5.4 Lung Dataset
The Lung dataset is a subset of the public available database
offered by The Cancer Genome Atlas Lung Squamous Cell
carcinoma dataset (TCGA-LUSC), including 27 WSIs stained
with H&E. The images come from several sources and are
digitized with different scanners, with a spatial resolution of
0.25 μm per pixel (40x). Initially, the images come without
pixel-wise annotation from the repository, but a medical
expert from Radboudc Hospital pixel-wise annotated them
with four classes: tertiary lymphoid structures (TLS), germinal
centers (GC), tumor, and other.

3 EXPERIMENTS AND RESULTS

The Section presents the assessment of the components of the
library Multi_Scale_Tools in dedicated subsections as follows:

• Pre-processing component assessment, Sub-section 3.1
• Scale detector assessment, Sub-section 3.2
• Multi-scale CNN for classification assessment, Sub-
section 3.3

FIGURE 6 | The second multi-scale CNN architecture, in which predictions are combined from different scale branches, optimizing only one loss function (A) and
optimizing n + 1 loss functions (B).
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• Multi-scale CNN for segmentation, Sub-section 3.4
• Library organization, Sub-section 3.5

3.1 Pre-Processing Tool Assessment
The pre-processing component allows to extract a large amount
of patches from multiple magnification levels, guaranteeing
scalable performance. The patch extractor components (grid
and multi-center methods) are tested on WSIs scanned with
Aperio (.svs), 3DStech (.mrxs) and Hamamatsu (.ndpi)
scanners, on data coming from different tissues (colon,
prostate and lung) and datasets. Table 1 includes the
number of patches extracted. The upper part of the table
includes the number of patches extracted with the grid
extraction method, considering four different magnification
levels (5x, 10x, 20x, 40x). The lower part of the Table includes
the number of patches extracted with the multi-center
extraction method, considering two possible combinations
of magnification levels (5x/10x, 5x/10x/20x). In both cases,
patches are extracted with a patch size of 224 × 224 pixels
without any stride. Methods performance are evaluated in
terms of scalability, since the methods are designed to work
on multi-core hardwares. Table 2 includes the time results
obtained with the grid method (upper part) and with the
multi-center method (lower part). The evaluation is made
considering the amount of time needed to extract the
patches from the colon dataset, using several threads. The
results show that both the methods benefit from multi-core
hardwares, reducing the time needed to pre-process data.

3.2 Scale Detector Assessment
The scale detector shows high performance in estimating the
magnification level of patches that come from different tissues.
The detector is trained with patches from the colon dataset and it is
tested with patches from three different tissues. The performance
of themodels is assessed with the coefficient of determination (R2),
the Mean Square Error (MSE), the Cohen’s κ-score (McHugh,
2012) and the balanced accuracy. While the experimental setup
and the metrics descriptions are presented in detail the
supplementary material, Table 3 summarizes the results. The
higher performance is reached on the colon test partition, but
the scale detector shows high performance also on the other tissues.
The scale detector makes almost perfect scale estimations in the
colon dataset (data come from the same medical source and
include the same tissue type), in both the regression and the
classification metrics. The scale detector makes reasonably good
scale estimations also on the prostate data, in both the regression
and the classification metrics, and in lung dataset, where the
performance is the lowest though. The fact that the regressor
shows exceptionally high performance in colon data and good
performance in other tissues means that it has learnt to distinguish
the colon morphology represented at different magnification level
very well and that the learnt knowledge can generalize well to other
tissues too. Even though tissues from different organs share similar
structures (glands, stroma, etc.), themorphology of the structures is
different in the organs, such as prostate and colon glands. Training
the regressor with patches from several organs may allow to close
this gap, guaranteeing extremely high performance for different
types of tissue.

TABLE 1 | Number of patches extracted with the grid extraction method (above) and with the multi-center method (below), at different magnification level.

Grid

Dataset/Magnification 5x 10x 20x 40x Total
Colon dataset (148 WSIs) 15,514 67,592 279,964 1,127,190 1,490,260
Prostate dataset (20 WSIs) 11,468 46,676 187,254 743,583 988,981
Lung dataset (27 WSIs) 22,124 90,307 365,398 886,298 1,364,127

Multicenter

Dataset/Magnification 5x/10x 5x/10x/20x Total
Colon dataset 135,184 839,892 975,076
Prostate dataset 93,352 561,762 655,114
Lung dataset 180,614 1,096,194 1,276,808

TABLE 2 | Time needed to extract the patches (in seconds), varying the amount of threads, using the grid extraction method (above) and using the multi − center method
(below). The method is evaluated on colon dataset (148 WSIs). The number of patches extracted from each method is reported in Table 1.

Magnification/N_threads 10 20 30 40 50

grid extraction
5x 408 ± 3 317 ± 7 285 ± 5 255s ± 5 238 ± 10
10x 553 ± 5 429 ± 6 389 ± 5 384 ± 8 371 ± 8
20x 1,295 ± 100 969 ± 113 876 ± 69 872 ± 41 869 ± 15

multi − center extraction
5x/10x 1,662 ± 30 1,180 ± 119 1,071 ± 50 1,039 ± 18 1,022 ± 14
5x/10x/20x 6,604 ± 104 5,745 ± 45 5,283 ± 161 4,814 ± 137 4,549 ± 82
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3.3 Multi-Scale CNN for Classification
Assessment
The multi-scale CNNs show higher performance in the fully
supervised classification compared to the single-scale CNNs.
Several configurations of the multi-scale CNN architectures are
evaluated. They involve variations in optimization strategy (one or
multiple loss functions), in the magnification levels (combinations of
5x, 10x, 20x) and in how information from the scales is combined
(combining the single-scale predictions or the single-scale features).
Table 4 summarizes the results obtained. The CNNs are trained and
tested with the colon dataset, that come with pixel-wise annotations
made by a pathologist. The performance of themodels is assessedwith
the Cohen’s κ-score and the balanced accuracy. More detailed
descriptions of the experimental setup and the metrics adopted are
presented in the Supplementarymaterial. In the presented experiment,
the best multi-scale CNN architecture is the one that combines
features from 5/10x magnification levels and is trained optimizing
n + 1 loss functions. It outperforms the best single-scale CNN (trained
with patches acquired at 5x) in terms of balanced accuracy, while the
κ-score of the two architectures is comparable. The characteristics of
the classes involved can explain the fact that CNNs trained combining
patches from 5/10x reach the highest results. These classes show
morphologies including several alterations of the gland structure.
Glands can be usually identified at low magnification levels, such
as 5/10x, while at 20x the cells are visible. For this reason, the CNNs
show high performance with patches frommagnification 5/10x, while

including patches from 20x decreases the performance. The fact that
the discriminant characteristics are identified in a range of scales may
explain why the combination of the features shows higher
performance than the combination of the predictions.

3.4 Multi-Scale CNN for Segmentation
Assessment
The multi-scale CNN (HookNet) shows higher tissue segmentation
performance than single-scale CNNs (U-Net). The model is trained
and tested with breast and lung datasets, comparing it with models
trained with images from a single magnification level. The
performance of the models is assessed with the F1 score and the
macro F1 score. More detailed descriptions of the experimental setup
and the metrics adopted are presented in the Supplementary
Material. Table 5 and Table 6 summarize the results obtained
respectively on the breast dataset and on lung dataset. In both the
tissues, HookNet shows an higher overall performance, while some of
the single scale U-Nets have better performance for some
segmentation tasks (such as breast DCIS or lung TLS). This result
can be interpreted as a consequence of the characteristics of the task,
therefore the user should choose the proper magnification levels to
combine, depending of the problem.

3.5 Library Organization
The source code for the library is available on GIT2, while the HookNet
code is available here3. The library is available can be deployed asPython
package directly from the repository or as Docker container that can be
downloaded from4 (themultiscale folder). Interaction with the library is
done through a model class and an Inference class5. The model
instantion depends on the choice of algorithms. For a more detailed
explanation about the hyperparameters and other options please make
sure to browse the Readme file6. An example can be found here7. The
Python libraries used to develop Multi_Scale_Tools are reported in
Supplementary Materials.

TABLE 3 | Performance of the scale detector, evaluated on three different tissue dataset. The scale detector is evaluated in: coefficient of determination (R2), Mean squared
error (MSE), balanced accuracy, Cohen’s κ-score.

Dataset/Metric R2 MSE Balanced accuracy κ-score

Colon dataset 0.9997 ± 0.0001 0.0250 ± 0.0155 0.9859 ± 0.0086 0.9991 ± 0.0004
Prostate dataset 0.8013 ± 0.0798 19.34 ± 7.78 0.9094 ± 0.0268 0.8515 ± 0.0589
Lung dataset 0.6682 ± 0.1549 32.13 ± 15.01 0.7973 ± 0.0458 0.8743 ± 0.0571

TABLE 4 | Performance of the multi-scale CNNs architectures, compared with
CNNs trained with patches from only one magnification level, evaluated in
κ-score and balanced accuracy. Both the multi-scale architectures are presented
(combine features and combine predictions from multi-scale branches) and both
the training variants (one loss function and n + 1 losses). The values marked in
bold highlight the method that reaches the highest performance, respect to
the metric.

Magnification/metric κ-score Balanced-accuracy

Single scale CNNs
5x 0.7127 ± 0.0988 0.6558 ± 0.0903
10x 0.6818 ± 0.0940 0.6200 ± 0.0780
20x 0.6005 ± 0.1106 0.5744 ± 0.0804

Multi-scale CNNs (combine features)
5x/10x (One loss) 0.6955 ± 0.1013 0.6529 ± 0.0859
5x/10x (n + 1 losses) 0.7167 ± 0.1060 0.6813 ± 0.0942
5x/10x/20x (One loss) 0.6630 ± 0.1090 0.6508 ± 0.1089
5x/10x/20x (n + 1 losses) 0.6871 ± 0.1110 0.6364 ± 0.1046

Multi-scale CNNs (combine probabilities)
5x/10x (One loss) 0.6901 ± 0.1136 0.6582 ± 0.0973
5x/10x (n + 1 losses) 0.7026 ± 0.0988 0.6626 ± 0.0897
5x/10x/20x (One loss) 0.6678 ± 0.0973 0.6239 ± 0.0860
5x/10x/20x (n + 1 losses) 0.6784 ± 0.0995 0.6355 ± 0.0835

2https://github.com/sara-nl/multi-scale-tools. Retrieved 11th of January, 2021
3https://github.com/DIAGNijmegen/pathology-hooknet. Retrieved 19th of
June, 2021
4https://surfdrive.surf.nl/files/index.php/s/PBBnjwzwMragAGd. Retrieved 11th of
January, 2021
5https://github.com/computationalpathologygroup/hooknet/blob/
fcba7824ed982f663789f0c617a4ed65bedebb85/source/inference.py#L20. Retrieved
11th of January, 2021
6https://github.com/sara-nl/multi-scale-tools/blob/master/README.md.
Retrieved 11th of January, 2021
7https://github.com/DIAGNijmegen/pathology-hooknet/blob/master/hooknet/
apply.py. Retrieved 19th of June, 2021
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4 DISCUSSION AND CONCLUSION

Multi_Scale_Tools library aims at facilitating the exploitation of
multi-scale structure in WSIs with code that is easy to use and
easy to be improved with additional functions. The library currently
includes four components. The components are a pre-processing tool
to extract multi-scale patches, a scale detector, two multi-scale CNNs
for classification and a multi-scale CNN for segmentation. The pre-
processing component includes two methods to extract patches from
several magnification levels. The methods are designed to be scalable
on multi-core hardware. The scale detector component includes a
CNN allowing to regress themagnification level of a patch. The CNN
obtains high performance in patches that come from the colon (the
tissue used to train it) and it reaches good performance on other
tissues such as prostate and lung too. Two multi-scale CNN
architectures are developed for fully-supervised classification. The
first one combines features from multi-scale branches, while the
second one combines predictions frommulti-scale branches. The first
architecture obtains better performance and outperforms the model
trainedwith patches fromonly onemagnification level. TheHookNet
architecture for multi-scale segmentation is also included into the
library, fostering its usage andmaking the librarymore complete. The
tests show that HookNet outperforms single scale U-Net in the
considered tasks. The presented library allows to exploit the multi-
scale structure of WSIs efficiently. In any case, the user remains a
fundamental part of the system for several components, such as

identifying the scale that can be more relevant for a specific problem.
The comparison between the single-scale CNNs and the multi-scale
CNN is an example of this. The CNN is trained to classify between
cancer, dysplasia (both high-grade and low-grade), hyperplastic polyp
and non-informative tissue. In the classification task, the highest
performance is reached using patches of magnification 5x and 10x,
while patches from 20x lead to lower classification performance. This
can likely be related to the fact that the main feature related to the
considered classes is the structure of the glands, therefore high
magnifications (e.g. 20x) limitedly introduce helpful information
into the models. The importance of the user to select the proper
magnification levels is highlighted even more in the segmentation
results. Considering low magnifications, the models show good
performance in ductal carcinoma in-situ and invasive ductal
carcinoma segmentation since these tasks need context about
the duct structures in the breast use case. Considering higher
magnifications, the models perform well in invasive lobular
carcinoma and benign tissue segmentation, where the details
are more important. The methods identified to pair images from
several magnification levels can pave the way to multi-modal
combination of images too. The combination may increase the
information included in the single modality, increasing the
performance of the CNNs. Some possible applications can be
the combination of WSIs stained with different reagents, such
H&E and immunohistochemical (IHC) stainings, the
application in Raman spectroscopy data, combining
information about tissue morphologies and architectures with
protein biomarkers, and the combination of patches from
different focal planes.
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