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Principled Design and Implementation
of Steerable Detectors

Julien Fageot∗, Virginie Uhlmann∗, Zsuzsanna Püspöki, Benjamin Beck, Michael Unser, Adrien Depeursinge

Abstract—We provide a complete pipeline for the detection of
patterns of interest in an image. In our approach, the patterns
are assumed to be adequately modeled by a known template,
and are located at unknown positions and orientations that we
aim at retrieving. We propose a continuous-domain additive
image model, where the analyzed image is the sum of the
patterns to localize and a background with self-similar isotropic
power-spectrum. We are then able to compute the optimal filter
fulfilling the SNR criterion based on one single template and
background pair: it strongly responds to the template while being
optimally decoupled from the background model. In addition,
we constrain our filter to be steerable, which allows for a
fast template detection together with orientation estimation. In
practice, the implementation requires to discretize a continuous-
domain formulation on polar grids, which is performed using
quadratic radial B-splines. We demonstrate the practical use-
fulness of our method on a variety of template approximation
and pattern detection experiments. We show that the detection
performance drastically improves when we exploit the statistics
of the background via its power-spectrum decay, which we refer
to as spectral-shaping. The proposed scheme outperforms state-
of-the-art steerable methods by up to 50% of absolute detection
performance.

Index Terms—Steerable filters, pattern detection, orientation
estimation, SNR criterion, isotropic self-similar Gaussian model,
radial B-spines.

I. INTRODUCTION

Pattern detection and recognition is a core task of image
analysis in general [1], and finds applications in physics, chem-
istry, medicine, and biology [2]. In images at the microscopic
scale, patterns of interest are characterized by pronounced and
characteristic directional components [3]–[6] and well-defined
geometrical structures, such as centrioles [7], nuclear pores [8],
and flagella bodies [9] in biology, or foam junctions [10]
and crystals in physics. There, structures of interest do not
only appear at different locations in the image, but also at
various orientations. It follows that an important challenge
for accurate pattern detection is to develop detectors that can

This project was supported by the Swiss National Science Foundation
under Grants 200020-162343/1, PZ00P2 154891, and 205320 179069, and
by EMBL internal funding.

Julien Fageot is with the Biomedical Imaging Group, EPFL, 1007 Lausanne,
Switzerland, and with the Signals, Information, and Networks Group, Harvard
University, Cambridge, MA 02138, USA (e-mail: julien.fageot@gmail.com).

Virginie Uhlmann is with the European Bioinformatics Institute (EMBL-
EBI), Cambridge CB10 1SD, UK (e-mail: uhlmann@ebi.ac.uk)
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sense discriminative directions with invariance or equivariance
to translations and local rotations [11].

A. The Detection Problem at a Glance

We focus on the detection of structured patterns composed
of repetitions of a motif with few variations. The pattern can
thus adequately be modeled by a single template instance.
This leads us to formulate the detection problem as follows.
We assume that the image I to analyze is such that

I =
J∑
j=1

T (R−θj (· − xj)) + S, (1)

with T a known template dispatched at J unknown locations
xj and rotated at unknown orientations θj , and S some
background, modeled as an isotropic and self-similar Gaussian
random field.

Our approach is to build a filter that allows for a single-
shot convolution-based detection through the complete image,
carried out in the Fourier domain. We use steerable filters
to efficiently test any possible orientation at any image posi-
tion, without the need for reconvolving the image with pre-
computed rotated versions of the detector as would be done by
classical rotated template matching. The detector is designed
to be discriminative in the sense that it responds strongly
to the template T , while being as insensitive as possible to
the background S. The latter is achieved by adapting the
radial Fourier transform of the steerable detector to the power-
spectrum of S, an operation we refer to as spectral shaping.

An important design feature of our method is that the
detection filter can be obtained from one unique example (the
template T provided by the user) and from the background
model (characterized by a single parameter quantifying its
power-spectrum decay, as we shall describe later). We demon-
strate that it is possible to adapt the steerable detector to the
template and the background’s second order statistics in a very
efficient way with excellent approximation performance, and
then use the steerability property to enable fast and accurate
pattern detection and orientation estimation (parameters xj
and θj in (1), respectively). Since we provide a principled
and efficient methodology for a general detection task, our
method could easily be incorporated in a similar manner as
template matching into more involved processing pipelines
for, e.g., electron microscopy image analysis [12], [13] or
manufacturing [14].

B. Contributions

Our main contributions are summarized as follows.

ar
X

iv
:1

81
1.

00
86

3v
2 

 [
ee

ss
.I

V
] 

 1
4 

A
pr

 2
02

1
Published in "IEEE Transactions on Image Processing", 2021, vol. 30, pp. 4465-4478, 
which sould be cited to refer to this work.
DOI: 10.1109/TIP.2021.3072499

https://doi.org/10.1109/TIP.2021.3072499


2

Theory: Optimal steerable detector with spectral shaping.
We define an SNR criterion for the image model (1), from
which we derive the optimal steerable filter for pattern de-
tection. When the background has a flat power-spectrum (i.e.,
white noise model), the filter is the steerable function that
best matches the template T (Theorem 1). One of our main
contributions is to consider a richer background model with
self-similar and isotropic power-spectrum, for which we also
derive the optimal steerable filter (Proposition 2). It consists
of a spectrally shaped version of the optimal steerable filter
for the flat-spectrum model.

Implementation: Radial B-spline expansion. The optimal
steerable filter is characterized by its Fourier domain angu-
lar/radial decomposition. The angular dependency is controlled
by the use of circular harmonics, which yields an angular low-
pass approximation of the optimal filter. The radial profile of
the optimal filter is captured by developing an interpolation
method based on radial B-splines, relying on the identification
of the optimal B-spline-based steerable filter in Theorem 2.
We are therefore able to construct, from a single occurrence
of a template and background model, the spectrally shaped
spline-based steerable filter that maximises the SNR criterion.

Template detection pipeline. We provide a complete tem-
plate detection algorithm that we evaluate experimentally. We
demonstrate the effectiveness of our approach in comparison
to steerable filters built from Hermite kernels [15] and from
the closely-related Fourier-Argand representation [16]. Our
method clearly outperform competing approaches thanks to
the ability of our optimal detector to adapt to the background
model (spectral shaping).

C. Related Works

A whole range of classical image processing methods for
pattern detection are based on handcrafted filters, transforms
and criteria (e.g., Hough [17], Laplacians of Gaussians [18],
Canny [19], Harris [20]). They are targeting low-level image
features such as lines, blobs, edges, lines or corners and do not
allow modeling more complex patterns in arbitrary templates.

Two main types of approaches are available to detect possi-
bly rotated versions of an arbitrary template: template match-
ing, and steerable filters. Template matching allows locating
occurrences of virtually any object that can be modeled by
a template by minimizing a given matching distance between
the template and a local image neighborhood [21] (e.g., sum of
absolute differences, normalized cross-correlation). However,
rotationally invariant versions of template matching methods
are computationally intensive since matching distances must
be evaluated for every positions and orientations of the pat-
tern. Moreover, standard template matching algorithms are—
often implicitly—designed for backgrounds with flat power
spectrum and therefore require data to be pre-processed, for
instance by applying local background suppression (LBS).

Steerable filters offers an efficient alternative to detect
the locations and orientations of a pattern’s occurrence in
an image [15], [22]–[27]. The steerability property allows
evaluating a filter’s response at any real-valued orientation
by using a simple angular-dependent linear combination of a

small number of basis elements [28], [29], which yields com-
putationally fast algorithms for position detection [16], [26],
[27] and orientation estimation [30]. While they are mostly
known for their ability to detect ridges and edges, steerable
filters can be shaped to provide a low-pass approximation of
any generic template. State-of-the-art steerable-based methods
for pattern detection rely on Hermite kernels [15] or on
the Fourier-Argand representation of steerable filters [16]. As
such, these two approaches are the most closely related to our
work and will therefore be our main points of comparison.

The approach we propose has the specificity to be adaptive:
our framework builds an optimal steerable approximation
of any template of interest relying on a custom spline-
based framework. It considerably reduces the number of
basis function needed to adequately represent the template,
improving the detection performances. A similar principle
was recently exploited in the closely-related Fourier-Argand
representation [16]. Our method however includes in addition a
background model in the filter design criteria, which spectrally
shapes the optimal detector in order to maximally differentiate
it from the background signal. To the best of our knowledge,
this strategy has never been proposed in the steerable liter-
ature so far. It dramatically improves detection performance
in practice and thus offers a theoretically sound and more
sophisticated alternative to standard pre-processing strategies
required by template matching.

We deem it essential to position our work with respect
to deep convolutional neural networks (CNN) approaches
considering the tremendous progress they have allowed for
pattern detection in recent years [31], [32]. CNNs are able to
learn a collection of detectors as deep image operators that
are invariant to translations via convolutional operations. In
their initial formulation, CNNs have no built-in invariance
to rotations, which is often palliated using rotational data
augmentation [33]. More advanced and recent approaches, in-
cluding group equivariant and steerable CNNs [34]–[42], aim
at bridging this gap by designing rotation invariant network
architectures. Nevertheless, CNNs require a large number of
training samples of object and background to adequately learn
deep image detectors, and cannot be trained from a single
example. The problem tackled in this paper, in comparison,
is to build a directly interpretable detector from a single
occurrence of a template, an application for which CNNs are
clearly unsuitable.

D. Outline

The paper is structured as follows. The continuous-domain
theory of SNR-based optimal steerable filter design is pre-
sented in Section II. The implementation of the proposed
theory on discretized image grids and detection algorithm
are detailed in Section III. The performance and parameter
sensitivity of the proposed framework is investigated in Sec-
tion IV. Finally, discussions and conclusions are presented in
Section V.

II. OPTIMAL STEERABLE FILTERS: THEORY

This section is dedicated to our continuous-domain frame-
work for the detection problem. After introducing the main
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notations in Section II-A, we present the SNR criterion for
which the optimal detectors will be constructed in Section
II-B. One challenging aspect of the detection is that the pattern
can be found at an unknown orientation. We address this
problem using steerable filters, introduced in Section II-C. The
main theoretical result of this paper is Theorem 1 in Section
II-D, which gives the formula for the optimal steerable detector
considering the SNR criterion. In Section II-E, we present
a refinement of this result for a richer class of background
models that appears to be much more realistic than the flat
spectrum model. Finally, we show how to define response
maps based on the optimal detector, that can be used for the
detection procedure in Section II-F.

A. Notations

Vectors in the plane are denoted in spatial domain by x =
(x1, x2) ∈ R2 and in Fourier domain by ω = (ω1, ω2) ∈ R2.
We write (r, θ) for the polar coordinates in Fourier domain
where r ≥ 0 and θ ∈ [0, 2π). We switch from Cartesian to
polar coordinates according to (ω1, ω2) = (r cos θ, r sin θ) and
(r, θ) =

(
(ω2

1 + ω2
2)1/2, arctan(ω2/ω1)

)
.

We consider functions f from R2 to R. The Fourier trans-
form of f is f̂ . A function f is square integrable and denoted
by f ∈ L2(R2) if ‖f‖22 =

∫
R2 |f(x)|2dx < ∞. We shall

repeatedly use the Parseval relation 〈f, g〉 = 1
2π 〈f̂ , ĝ〉. The

usual scalar product between two square integrable functions
in Fourier domain is then

〈f̂ , ĝ〉 =

∫
R2

f̂(ω)ĝ(ω)dω =

∫ 2π

0

∫ ∞
0

f̂(r, θ)ĝ(r, θ)rdrdθ.

The rotation matrix of angle α is Rα =

(
cosα − sinα
sinα cosα

)
.

Finally, f ∝ g means that the two functions f and g are
proportional, i.e., f = λg with λ 6= 0.

B. Local Image Model and SNR Criterion

We consider the local version of the image model (1), where
a single template is located at the center of the image. In this
local image model, the image I0 is the sum of a template of
interest T and a background S as

I0(x) = T (x) + S(x). (2)

Mathematically, T is a square-integrable function and S is
modeled as a Gaussian field with zero mean. The goal is
to design detection filters f that (i) strongly responds to the
foreground template T , (ii) responds as little as possible to the
background S, and (iii) can be used efficiently to determine
the orientation of the template T when it is unknown.

The third requirement will be achieved by using steerable
filters, introduced in Section II-C. To tackle the two first point,
we want f to maximizes the signal-to-noise ratio (SNR),
defined as

SNR(f) =
E[〈I0, f〉]2

Var(〈I0, f〉)
, (3)

with E the expected value and Var the variance of the
considered random variables. The SNR criterion is a clas-
sical metric in detection theory [43]. The template T is
deterministic, hence we have that E[〈I0, f〉] = 〈T, f〉 and
Var(〈I0, f〉) = Var(〈S, f〉).

C. Steerable Filters and their Fourier Radial Profiles

We aim at detecting patterns whose orientations are a priori
unknown in an image. This can be performed using steerable
filters, which can be rotated efficiently [29].

Definition 1: A filter f is steerable if the span of its rotated
versions f(Rα·), with α ∈ [0, 2π), is a finite-dimensional
subspace of L2(R2). This means that there exist P ≥ 1 filters
fp, p = 1 . . . P such that , for any rotation angle α ∈ [0, 2π),
we have f(Rα·) =

∑P
p=1 cp(α)fp, for some cp(α) ∈ R,

1 ≤ p ≤ P .

The main advantage of steerable filters is that their rotation
by an arbitrary angle is reduced to a finite dimensional
algebraic problem, allowing for fast pattern detection even
when the orientation is unknown. In Proposition 1, we
characterize steerable filters from their polar decomposition
in terms of the circular harmonic (CH) functions θ 7→ ejnθ,
where n ∈ Z.

Proposition 1: A function f ∈ L2(R2) can be uniquely
decomposed in polar coordinates in Fourier domain as

f̂(r, θ) =
∑
n∈Z

f̂n(r)ejnθ, (4)

where the f̂n jointly satisfy
∑
n∈Z‖f̂n‖22 <∞. The functions

f̂n, called the Fourier radial profiles of f , are given by

f̂n(r) =
1

2π

∫ 2π

0

f̂(r, θ)e−jnθdθ. (5)

Moreover, f is steerable if and only if finitely many f̂n are
non-zero.

Proposition 1 was also enunciated in [16, Section II-B], in
which (4) is referred to as the Fourier-Argand representation.
No proof was however provided, and we therefore include one
in Appendix A for the interested reader. As a consequence,
the general form of a steerable filter in the Fourier domain is
f̂(r, θ) =

∑
n∈H f̂n(r)ejnθ, where H is a finite subset of Z

and f̂n ∈ L2(R2) the non zero Fourier radial profiles. We then
have

f̂(Rα·)(ω) = f̂(Rαω) = f̂(r, θ + α) =
∑
n∈H

ejnαf̂n(r)ejnθ.

(6)
Hence, any rotated version of f is a linear combination of
the inverse Fourier transforms of the f̂n(r)ejnθ for n ∈ H ,
meaning that f is steerable in the sense of Definition 1.

Finally, any function f can be approximated by steerable
functions at an arbitrary precision. Indeed, it is sufficient to
consider the truncated sums

∑
|n|≤N f̂n(r)ejnθ that converge

to f̂ in L2(R2) when the number of harmonics N increases.

D. Optimal Steerable Filter Design for White Background

In this section, we assume that the background S is a
Gaussian white noise, which corresponds to a flat power
spectrum. This implies that Var(〈S, f〉) = σ2‖f‖22, with σ2

the variance of S (see Appendix C). As a consequence, (3)
becomes

SNR(f) =
1

σ2

|〈T, f〉|2

‖f‖22
=

1

σ2

|〈T̂ , f̂〉|2

‖f̂‖22
, (7)
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where we used the Parseval relation for the Fourier domain
expression. In Section II-E, we will also consider more evolved
background models.

For a given finite set of harmonics H , it is then possible to
specify the optimal steerable filter for the SNR criterion (7)
associated to the image model (2).

Theorem 1: A filter f maximizes the SNR criterion (7)
among the space of steerable filters with harmonics in H if
and only if

f̂(r, θ) ∝
∑
n∈H

T̂n(r)ejnθ, (8)

with T̂n the Fourier radial profiles of T given for each
harmonic n by

T̂n(r) =
1

2π

∫ 2π

0

T̂ (r, θ)e−jnθdθ. (9)

The optimal filter is defined up to a multiplicative constant
since SNR(λf) = SNR(f) for every scalar λ 6= 0. The
proof of Theorem 1 is given in Appendix B. The optimal
filter is completely determined by the template to approximate
T and the set of harmonics H . In practice, the main issue
is to compute the integral (9) while knowing only T on a
finite cartesian grid in the Fourier domain. This point will be
discussed extensively in Section III.

E. Isotropic Self-similar Background and Spectral Shaping

The SNR criterion (7) is based on the assumption that the
background S in (1) is adequately modeled as a Gaussian
white noise, corresponding to a nearly constant power spec-
trum PS(ω). We introduce the basics to determine the SNR
criterion for a richer statistical background model. Additional
mathematical details are provided in Appendix C for the
interested reader.

It has been shown in many signal and image processing
applications that the power spectrum of the signal of interest
follows a power law [25], [44]–[46], and is therefore smoother
than a white noise. We shall adopt such a model here for
the background noise S, while further assuming that it is
statistically isotropic, which is equivalent to saying that the
power spectrum is a radial function PS(ω) = PS(r) with
r = ‖ω‖. Mathematically, this means that the power spectrum
of the background S is equal to PS(ω) = PS(r) = σ2/r2γ ,
where σ2 is the variance.

Such a background S is called an isotropic self-similar (ISS)
Gaussian field [47]–[49], and γ is its self-similarity parameter.
For illustration purposes, we represent several ISS Gaussian
fields in Fig. 1, where the theoretical fact that higher γ yield
smoother S [50, Corollary 1] can be visually observed.

From Appendix C, we deduce the general implications of
this background model. First, we shall consider filters such
that 〈S, f〉 is well-defined, which requires that f̂(ω)/‖ω‖γ ∈
L2(R2). Then, 〈S, f〉 is a well-defined Gaussian random
variable with zero mean and variance

Var(〈S, f〉) =
σ2

2π

∫ ∞
0

r1−2γ
∫ 2π

0

|f̂(r, θ)|2dθdr, (10)

Fig. 1. Realizations of ISS Gaussian fields for different values of γ. From
left to right: γ = 0 (white noise), γ = 1, γ = 2.

as shown in Appendix C. Finally, the SNR criterion (3) for
this background model becomes

SNR(f) =
1

σ2

|〈T̂ , f̂〉|2

‖ĝ‖22
, (11)

with ĝ(ω) = f̂(ω)/‖ω‖γ . We now present how to maximize
this new criterion.

Proposition 2: A steerable filter f with finite set of harmon-
ics H maximizes the SNR criterion (11) for the self-similarity
order γ ≥ 0 if and only if

f̂(r, θ) ∝ r2γ
∑
n∈H

T̂n(r)ejnθ, (12)

where T̂n are the Fourier radial profiles of T given by (9).

Proposition 2 is proved in Appendix D. The new optimal
filter is simply the multiplication in the Fourier domain of the
optimal filter of Theorem 1 by r2γ , which corresponds to a
spectral shaping of (8).

In practice, we do not necessarily know the self-similarity
parameter a priori. We can nevertheless estimate γ from
the background S itself. The principle is as follows. For a
test function f and a scale a > 0, we consider a−1f(·/a)
whose L2-norm does not depend on a and which allows
analyzing the background S at scale a. Then, the variance of
Xa = 〈S, a−1f(·/a)〉 is known to be proportional to a2γ [51,
Proposition 5.6]. We therefore perform a multiscale analysis at
various a > 0 to estimate the parameter γ from the theoretical
linear relation between log Var(Xa) and log a, namely

log〈S, a−1f(·/a)〉 = 2γ log a+ b, (13)

where b ∈ R. This method was initially proposed in [51]
to analyse the statistics of natural images and shown to be
robustly usable.

Finally, we remark that one may only have access to I0 =
T + S in (2), and not to the template T itself, to design the
optimal steerable filter. In that case, background substraction
techniques can be used to recover T from I0. This aspect is not
discussed further in the paper and we assume to have access
to a good template representation.

F. Detection Procedure

The objective of the detection process is to reveal the posi-
tions and orientations of patterns corresponding to a template
T (x) in a (larger) image I(x). We model the image I as in
(1). Here, we assume that the template T , the variance, and the
self-similarity of the ISS Gaussian field S are known, while
template locations xj and orientations θj are unknown. In



5

order to detect template locations xj at the correct orientations
θj , we can efficiently compute the two following quantities
using the steerability property (6) of our detector f as

Iang(x0) = arg max
θ0∈[0,2π)

〈I(· − x0), f(Rθ0 ·)〉, (14)

Iamp(x0) = max
θ0∈[0,2π)

〈I(· − x0), f(Rθ0 ·)〉 (15)

= 〈I(· − x0), f(RIang(x0)·)〉,

where Iang(x0) is the estimated orientation of T at x0 ∈ R2

and Iamp(x0) is the amplitude of the maximum response of
f at x0. It is worth noting that Iamp(xj) will be maximized
when Iang(xj) ≈ θj .

III. OPTIMAL STEERABLE FILTERS: DISCRETIZATION

We have now described how to deduce the optimal steerable
filter associated to a template T in a background S. The
formulation of Section II is in the continuous-domain, although
images are in practice stored as discrete arrays in a computer.
The concrete design of detection algorithms therefore requires
the discretization of the proposed theory.

Practically, one should compute the optimal steerable de-
tector f in (8) from a discretized version of the template of
interest T . Computing f requires an angular averaging over the
Fourier transform of the template in (9). The approximation
of (9) on the Cartesian grid is challenging because it involves
evaluating integrals over the angular polar coordinate θ for all
values of r, where much less samples are available when r is
small.

A strategy followed by [16] consists of computing the
Radon transform of f̂ , from which one deduce the radial profils
f̂n [16, Section 2-D-1]. This solution can be efficiently im-
plemented and leads to excellent approximation performance.
However, the Radon transform must be computed for a large
amount of angles in order to limit artefacts in the filtered back-
projection reconstruction.

Here, we propose an alternative discretization that relies on
the expansion of the Fourier radial profiles in terms of radial
B-splines, introduced in Section III-A. We then combine the
circular harmonics and radial B-splines in Section III-B and
obtain the discretized optimal steerable filter in Theorem 2.
Finally, we summarize how to compute the discretized version
of the optimal steerable filter in Section III-C. In comparison
to the one involving Radon transforms, our solution relies on
few B-spline coefficients. As such, it can be less memory
demanding and may be useful for high-resolution images or
large templates. The two methods are however implementing
the same decomposition (4) and are therefore similar in their
goal. Both can be valuable, and the most convenient choice
ultimately depends on the application context.

A. B-Spline Expansion of the Radial Profiles

Splines are widely used in signal processing because of
their excellent approximation properties [52]. Using spline
interpolation, a function is approximated by polynomial pieces
that are smoothly connected together. We consider the case
of junctions between polynomials located on a grid, referred
to as cardinal splines [53], [54]. The theory is traditionally

developed for one-dimensional functions from R to R, and
has to be slightly modified in our context, since we deal with
radial functions.

The B-spline of degree 0 is given by β0(x) = 1[−1/2,1/2](x).
The spline of degree (M + 1) is defined recursively as
βM+1(x) = (βM ∗ β0)(x). In our experiments, we use the
quadratic B-spline β2, which is supported over [−1.5, 1.5]
and is piecewise quadratic on the intervals [k, k + 1], k ∈ Z.
The closed form expression of the quadratic B-spline can be
found for instance in [55]. Thereafter, we write β2 = β to
simplify the notation.

1) Radial B-splines: A radial B-spline is a radial function
f̂(r) in L2(R2) of the form

f̂(r) =
∑
k∈Z

c[k]

r0
β

(
r

r0
− k
)
, (16)

with r0 > 0 the discretization step and c[k] the spline
coefficients of f̂ . The function f̂ is defined for radius
r ≥ 0. One could therefore restrict the sum in (16) to
integers k such that the support of β(·/r0 − k) intersects
R+. For quadratic splines, this corresponds to k ≥ −2.
However, we prefer to keep the summation over all integers,
allowing to consider discrete convolutions between sequences
indexed by k ∈ Z. In what follows, we approximate the
Fourier radial profiles of the template T using radial B-splines.

2) Approximation with Radial B-Splines: A radial function
f̂ ∈ L2(R2) can be approximated by radial B-splines of the
form (16) at arbitrary precision by taking the discretization
step r0 → 0. This is well-known for classical B-splines [55]
and can be adapted to the case of radial B-splines.

The main difference between the usual B-splines expansion
of 1D functions and the B-spline expansion of 2D radial
functions is that one changes the scalar product. We recall
that the 2D scalar product between two radial functions f̂ and
ĝ is given by

〈f̂ , ĝ〉 =

∫ ∞
0

∫ 2π

0

f̂(r)ĝ(r)rdθdr = 2π

∫ ∞
0

f̂(r)ĝ(r)rdr.

To facilitate computations, we identify a radial function
f̂ : R+ 7→ C to its symmetrization f̂ : R 7→ C such that
f̂(−r) = f̂(r). In particular, the scalar product between two
radial functions becomes 〈f̂ , ĝ〉 = π

∫
R f̂(r)ĝ(r)|r|dr. All the

scalar products between radial functions have to be understood
with this symmetrization procedure.

The expansion of a radial function in the quadratic spline
basis requires special attention since the family is not orthog-
onal. We can overcome this by using classical techniques for
B-splines that we adapt to the case of radial B-splines. We set
h[k] = 〈β, β(· − k)〉 for each k ∈ Z. The filter h is nonzero
only for |k| ≤ 2 due to the support of β. The fact that h
differs from the Kronecker δ means precisely that the family of
shifted B-spline is not orthonormal. Since h is compactly sup-
ported, there exists a unique discrete filter hinv = (hinv[k])k∈Z
such that (h ∗ hinv)[k] = (hinv ∗ h)[k] = δ[k] [56], [57].

For any radial function f̂ ∈ L2(R2), its projection to the
space of radial B-splines with discretization step r0 is denoted
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by

Pr0{f̂}(r) =
∑
k∈Z

c[k]

r0
β

(
r

r0
− k
)
, (17)

Proposition 3: Let f ∈ L2(R2). For k ∈ Z, we set

d[k] =
1

2π

〈
f̂(r, θ),

1

r0
β

(
r

r0
− k
)〉

. (18)

Then, the coefficients in the orthogonal projection (17) of f̂
are computed as

c[k] = (hinv ∗ d)[k]. (19)

Proposition 3 is proved in Appendix E. It gives the optimal
approximation of a radial function in terms of radial B-splines
for a given discretization step. Note that the discrete filter hinv
does not depend on the discretization step r0. Practically,
it is computed once using basic signal processing tools, by
adapting the principles exposed in [58] to radial B-splines.
We first obtain the filter h by computing the Gram matrix of
the shifted B-splines, from which we deduce the Z-transform
H(z) of h, which is a polynomial. The Z-transform of hinv
is then given by 1/H(z), from which we can recover hinv by
identifying the poles of the rational function 1/H(z).

B. Combining Radial B-splines and Circular Harmonics

We define the family of functions ϕn,k, n, k ∈ Z, given in
the Fourier domain by

ϕ̂n,k(r, θ) =
1

r0
β

(
r

r0
− k
)

ejnθ. (20)

For a fixed finite set of harmonics H ⊂ Z and discretization
step r0 > 0, one denotes by Pr0,H{f̂} the orthogonal
projection of the function f̂ onto the space generated by the
ϕ̂n,k for n ∈ H, k ∈ Z.

We can combine Proposition 1 and Proposition 3 to
approximate any square-integrable function by steerable
functions whose Fourier radial profiles are B-splines.

Theorem 2: Let r0 > 0 and H ⊂ Z. For any function
T ∈ L2(R2), the orthogonal projection of its Fourier transform
on the ϕ̂n,k, n ∈ H, k ∈ Z is

Pr0,H{T̂}(r, θ) =
∑
n∈H

∑
k∈Z

cn[k]ϕ̂n,k(r, θ), (21)

where cn[k] = (hinv ∗ dn)[k] =
∑
`∈Z hinv[`]dn[k − `] and

dn[k] =
1

2π

〈
T̂ , ϕn,k

〉
=

1

2π

〈
T̂n(r),

1

r0
β

(
r

r0
− k
)〉

.

(22)

Moreover, when r0 → 0 and H → Z, the orthogonal
projection converges to any T for the L2-norm.

Theorem 2 is proved in Appendix E. It allows to compute
an approximation of any template T from the B-spline coeffi-
cients cn[k] of the nth radial profile for each n. Moreover, this
approximation can be as good as required by diminishing the
step size r0 and increasing the number of harmonics. These co-
efficients are obtained via the sequence dn, computing a simple
convolution. Note that this operation is necessary because the
family ϕn,k is not orthogonal. In practice, one obtains the

coefficients dn[k], and therefore cn[k], by computing scalar
products of the form (22).

Theorem 2 means that one can approximate the optimal
steerable filter based on the integral (22). This is a clear
improvement since this 2D integral can be approximated from
the knowledge of T on a finite Cartesian grid. We develop this
last point in the next section.

C. Computing the Discretized Optimal Steerable Detector

In practice, we have access to the template T in a finite pixel
grid. The steps to compute the optimal steerable detector in
Theorem 1 are as follows.
• Fix the set of harmonics H and the discretization step r0.
• Compute the discrete Fourier transform T̂ of T via fast

Fourier transform (FFT).
• Compute the coefficients dn[k] for n ∈ H and k ∈ K,

where K is the set of integers such that r0k remains in the
range of the image. The scalar product (22) is expressed
as an integral in Cartesian coordinates as

dn[k] =

∫
R2

T̂ (ωx, ωy)ϕ̂n,k(ωx, ωy)dωxdωy. (23)

This integral is approximated with its Riemann sum, from
the knowledge of T̂ on the Cartesian grid. The expression
of the basis functions ϕ̂n,k in Cartesian coordinates is

ϕ̂n,k(ωx, ωy) =
1

r0
β

(√
ω2
x + ω2

y

r0
− k

)
ejn arctan(ωy/ωx).

(24)
• For every n ∈ H and k ∈ K, compute the cn[k]

according to cn[k] = (hinv ∗ dn)[k].
• Finally, the optimal spline-based steerable filter fopt is

given in the Fourier domain by

f̂opt(r, θ) =
∑
k∈K

∑
n∈H

cn[k]
1

r0
β(r/r0 − k)ejnθ. (25)

We remark that the Riemann sum approximating the integral
(23) is obtained from a finite number of coefficients only.
Indeed, it deals with the grid points lying in the area delineated
by the radial function β(r/r0−k). When the template is known
only on a coarse grid, the quality of the estimation of dn[k]
can therefore be insufficient. We address this issue by zero-
padding the template T in the spatial domain to increase the
size of the image. This corresponds to a sinc interpolation in
Fourier domain, increasing the number of points on which the
integral (23) is computed. The relevance of our discretization
method for the construction of the optimal steerable detector
is investigated and illustrated in Section IV.

When the background S is adequately modeled as an ISS
Gaussian field of self-similarity parameter γ (see Section II-E),
the optimal detector is characterized in Proposition 2. It is
simply obtained by multiplying (25) by r2γ . We recall that
the estimation of γ can be performed efficiently on a single
realization of the background S using the method developed
in [51].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance and parameter
sensitivity of the proposed optimal steerable filter design. We
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first focus on template approximation, and follow with pattern
detection and orientation estimation. We finally demonstrate
the usefulness of our method on real microscopy images.

A. Benchmarking Methodology

1) Competing Methods: To benchmark the performance of
our method, we perform an experimental comparison with the
two state-of-the-art approaches most closely related to it, [15]
and [16].

In [15], the 2D Hermite kernel is defined as

φp,q,σHer(x) =
1

√
σHer

Hp(x/σHer)Hq(y/σHer)e
−‖x‖2/2σ2

Her ,

(26)
where σHer > 0 is a fixed scale parameter, p, q ∈ N, and Hp

is the Hermite polynomial [15, Eq. (3)]. The Hermite kernel
approximation of a template T is obtained by projecting it
onto the family (φp,q,σHer)p+q≤NHer for a fixed NHer ≥ 0,
which specifies the Hermite-kernel-based filter used for the
detection. This corresponds to using (NHer + 1)(NHer + 2)/2
basis functions, to be compared with the (N + 1) elements
used to generate our spline-based steerable detector, with N
the maximum harmonic. We use equivalent numbers of basis
functions when comparing the Hermite-based and spline-based
methods.

In [16], steerable filters are constructed relying on the
same representation as (4), but the radial profiles are obtained
through a Radon transform. In the absence of spectral shaping,
the only difference between this approach and ours therefore
resides in the strategy adopted to compute the radial profiles,
either via a Random transform or a radial B-spline approxi-
mation. For a fair comparison, we will hence use an identical
number of basis functions N for this method and ours in our
experiments.

2) Dataset: Detection tasks in which a pattern of interest
can appear not only at any location in the image, but also
at any orientation arise in biology, medicine, physics and
chemistry [3], [5]–[10], [59]. However, to the best of our
knowledge, no publicly available dataset allows benchmarking
algorithms on such a task. We therefore created artificial
datasets in order to carry out controlled experiments and
evaluate our method against the state-of-the-art. We used
templates T and backgrounds S to generate two microscopy-
like image collections featuring templates appearing at random
locations xj and random orientations θj , subject to various
background intensity levels.

The images I are generated following the mathematical
model (1). The templates include an elongated curved structure
resembling the digit three, Tthree, and a double helix (DH) point
spread function TDH [6]. They are depicted in Fig. 3. The
dimensions of the templates are 200 × 200 pixels. Tthree was
designed to allow the evaluation of detection performance on
non-polar-separable templates. TDH is a point spread function
used in a microscopy technique in which the PSF orientation
encodes the depth of a fluorescence signal [6]. Tthree and
TDH are blended into backgrounds built from histopathological
images1 and realizations of ISS Gaussian fields (γ = 1.2),

14422 × 2934 image of plasmodium falciparum, courtesy of Dr. M. D.
Hicklin, public domain.

Fig. 2. Controlled experimental dataset to evaluate detection performance.
Left: Tthree in histopathological background (1200×1200). Right: TDH in an
ISS Gaussian field (1200× 1200, γ = 1.2).

respectively (Fig. 2).

B. Template Approximation

We first evaluate the approximation error of our spline-
based steerable filter when compared with the template T . This
scenario corresponds to a background with flat power spectrum
(Theorem 1). The optimal steerable detector is computed
following the steps described in Section III-C. Both qualitative
and quantitative results are showed in Fig. 3 for Tthree (a) and
TDH (b). The approximation performance is measured in terms
of the root mean squared error (RMSE).

The parameter r0 in (25) is determined for each template
independently as a trade-off between achieving a fine-grained
resolution for the interpolation of r and having a sufficient
number of coefficients in the Riemann sum approximating the
integral (23). In all experiments, r0 values of 0.033 and 0.041
were used for Tthree and TDH, respectively. The parameter r0
is inversely proportional to the number of radial splines used
for the reconstruction (range of the parameter k in (20)). It
is the result of a trade-off: a high r0 value leads to poor
approximation performances for the radial splines, but too
small values are problematic for the Riemann sum estimation
of (23).

As we here focus on investigating the benefit of shaping the
radial profile of the filters to the template, we only compare
our method with the one based on Hermite kernels. Since
the template approximation obtained by [16] is constructed
following the same representation (see Proposition 1), we
focus on comparing with the resulting detection performance
of this method in the following section. We report the RMSE
of Hermite kernel-based approximation for different number
of basis functions in Fig. 3. The parameter σHer > 0 in
(26) controls the scale at which one expects templates to
be detected. In our experiments, we selected the optimal
σHer value relying on grid search. Detection quality is highly
sensitive to the choice of this parameter. Although the role
and sensitivity of σHer is similar to that of our method’s r0,
the parameter σHer is part of the continuous-domain theory
of Hermite kernels, while r0 originates from the spline-based
discretization procedure in our case.

In Fig. 3 (c), the RMSE between the original template and
its approximation is plotted as a function of the number of
basis functions used to design the corresponding steerable
filters (see Section IV-A). This reveals that our spline-based
method has excellent approximation properties compared to
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(a) Three: original Tthree and approximations (Spline) f with N = 0, 1, . . . , 9.

(b) DH: original TDH and approximations (Spline) f with N = 0, 1, . . . , 9.

5 10 15 20 25 30 35 40 45
number of basis functions

0
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0.4

0.6

0.8

1
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three, Spline (ours)
DH, Spline (ours)
three, Hermite
DH, Hermite

(c) Evolution of template approximation error (RMSE) with respect to the
number of basis functions used.

Fig. 3. Influence of the number of basis functions for template approximation.

the Hermite-kernel-based one. This is not totally surprising
since optimal radial profiles are designed to minimize the
SNR. Additional information on the approximation properties
of both frameworks can be found in the Supplementary
Material.

Fig. 3 also shows that, although using more harmonics con-
sistently reduces the approximation error, only a small number
of harmonics (e.g., N ≈ 6) is required to accurately model the
template in our method. Such a small amount of harmonics
yields a low-pass approximation of the templates in terms of
circular frequencies, which is striking for Tthree (see Fig. 3 (a)).
For TDH, the RMSE decreases with N in a less regular way,
and the second harmonic is of paramount importance to model
the two characteristic diametrically opposed blobs of the DH.
The RMSE decays much faster for TDH, which is circularly
smoother than Tthree. Fig. 3 (c) also reveals that a Fourier-
based approximation is better-suited for regular patterns such
as the double helix.

C. Estimation of Template Position and Orientation

1) Experimental Setup and Evaluation Metrics: For the fol-
lowing experiments, we rely on the synthetic dataset described
in Section IV-A2. A template’s orientation is estimated accord-
ing to (14), while the amplitude of the maximum response of
the filter f at x0, defined in (15), is used as detection score. A
detection score and angle is thus retrieved at each pixel in the
images Iamp and Iang, respectively. We use a strict detection
criterion in which only a detection matching the pixel at the

center of the template is considered as true positive. It is worth
noting that, since the ratio of true positives to true negatives is
small (e.g., 1/500,000), receiver operating characteristic (ROC)
analysis is inadequate as it mostly focuses on the ability of the
system to find the true positions of the template. Precision-
recall (PR) analysis, on the other hand, better captures the
system’s tendency to generate false detections. We therefore
rely on PR curves to evaluate detection performance. In all
experiments, we provide areas under the PR curve (AUC) with
and without spectral shaping (SS), referred to as “Spline + SS
(ours)” and “Spline (ours)”, respectively. The self-similarity
parameter γ used for the spectral shaping is estimated using
the method described in the last paragraph of Section III-C,
based on 10 realizations of S(x).

Unless mentioned otherwise, we fix a level of background
intensity of σ = 1 and test all methods for M = 30 angle
values uniformly distributed in [0, 2π). The self-similarity
parameters γ were estimated to be 1.35 and 1.21 for the
histopathological images and the ISS Gaussian fields, respec-
tively. A total of N = 20 and N = 8 harmonics were used to
approximate the templates Tthree and TDH, respectively.

2) Robustness to Background Intensity: We first investigate
the robustness of detection performance in various levels of
background intensity for Tthree, in Fig. 4. The use of spectral
shaping grants excellent robustness to noise with a PR AUC
well above all other approaches for all levels of background
intensity. An angular error of less than 10 degrees is observed
for a background intensity level of σ = 5, while the template
can hardly be seen under such a SNR. This highlights the
adequacy of the isotropic and self-similar model for the
histopathological background. The evolution of the PR AUC
and the corresponding cropped response maps suggest that
most false positives occur in the vicinity of the true template
position. The resulting false positive could then be excluded
by local non-maximum suppression.

We compare results obtained with Hermite-kernel-based
steerable detectors [15], Fourier-Argand steerable detectors
constructed with the Radon transform [16], and steerable
detectors obtained with our approach. Hermite-kernel-based
steerable detectors achieve significantly worse performance
than non-spectrally shaped detectors (constructed with the
Radon transform or with radial B-splines), suggesting that
our construction, equivalent to the Fourier-Argand from [16],
is better suited for the detection task considered in Fig. 4.
This tendency is less pronounced for TDH (Fig. 5), which can
be attributed to the fact that this template is initially better
approximated by Hermite kernels (as seen in Fig. 3 (c)). For
detection, the steerable detector of [16] are only slightly
outperformed by ours in the low-noise regime when no spectral
shaping is considered. This competing method however results
in larger angular errors, especially for TDH. This may be
attributed to the fact that the radial B-spline expansion slightly
regularizes the template approximation procedure. In both
experiments, the positive impact of spectral shaping is striking.

When performing a detection task relying on filtering, a
classical issue comes from the direct current (DC) compo-
nent of the input image. If both the filter and background
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Fig. 4. Robustness of detection of Tthree for various levels of background
intensity (histopathological background). Cropped thumbnails of the image
I loc, and amplitude response I loc

amp(x) are shown to illustrate and compare
the spatial distribution of the detection scores around a true positive for
the corresponding level of background intensity σ = 1, . . . , 5. The per-
formance of equivalent steerable detectors built either from Hermite kernels
(NHer = 14, σHer = 15) or from the Fourier-Argand representation using
the Radon transform (Radon) are reported for comparison. The angular errors
are computed for M = 30 angle values.

are not locally zero mean, the filter will indeed strongly
respond in regions where the background is bright, leading
to false positives. A classical procedure for dealing with such
situations is to suppress the background of the input image
in small overlapping neighbourhoods, making it effectively
of zero local mean (LBS, discussed in Section I). Spectral
shaping offers a more elegant way of addressing this problem
by suppressing low frequencies through windowing in the
Fourier domain with r2γ . For the sake of completeness, we
repeated the experiments of Fig. 5 on LBS images and detail
them in the Supplementary Material. The results show that,
as expected, LBS improves the performance of both Hermite-
kernel-based and spline-based steerable filters (ours) without
spectral shaping. Our proposed spectral shaping approach
however improves detection results far beyond what can be
achieved with LBS.
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Fig. 5. Robustness of detection of TDH for various levels of background
intensity (ISS Gaussian fields). The performance of equivalent steerable
detectors built either from Hermite kernels (NHer = 8, σHer = 15) or from
the Fourier-Argand representation using the Radon transform (Radon) are
reported for comparison. The angular errors are computed for M = 30 angle
values.

TABLE I
ESTIMATED SELF-SIMILARITY PARAMETERS γ̃ ARE COMPARED WHEN

BASED ON THE PURE BACKGROUND S(x) VERSUS I(x) CONTAINING THE
TEMPLATES (1). THE VALUES YIELDING OPTIMAL DETECTION

PERFORMANCE γOPT ARE COMPARED.

S(x) γ̃ from S(x) γ̃ from I(x) γopt

ISS Gaussian
fields (γ = 1.2) 1.2 1.21 1.2

histopathological
images 1.31 1.35 1.4

3) Robustness to Self-similarity Parameter γ: The robust-
ness of the estimation of the self-similarity parameter γ and
its influence on the detection performance is studied in Table I
and Fig. 6. The estimated values γ̃ are found to be robust to
the presence of templates for both types of background, which
suggests that the self-similarity parameter can be directly esti-
mated from I(x) when the template density is relatively low.
A value of γ̃ = 1.2 corresponds to the ground truth for ISS
Gaussian fields. The optimal values for the detection of Tthree
and TDH were found to be γthree, opt = 1.2 and γDH, opt = 1.4,
respectively, which are close to γ̃. Even if the correspondence
between γ̃ and γopt is remarkable, a precise estimation of γ
is not found to be critical as the PR AUC plateaus around
γopt. It is worth noting that, when detecting TDH in the ISS
Gaussian field, the assumption of white background (i.e., no
spectral shaping) leads to poor detection performance. This
is consistent with the findings in Fig. 5: the spectral shaping
operation becomes essential with this type of background (ISS
Gaussian fields).

4) Impact of Total Number of Harmonics: We investigated
the importance of the number of harmonics N on template
approximation in Section IV-B. The impact of the latter on de-
tection performance is shown in Fig. 7 for TDH. The observed
AUC and angular errors are consistent with our previous
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Fig. 6. Evolution of the PR AUC as a function of the self-similarity parameter
γ for Tthree and the histopathological background as well as for TDH and the
ISS Gaussian field. γopt values of 1.4 and 1.2 corresponds to the optimal PR
AUC for Tthree and TDH, respectively. In both cases, a precise estimation is
not critical as the AUC plateaus around γopt.
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Fig. 7. Impact of the number of harmonics N on the detection of TDH.
The findings are consistent with the study of template approximation error in
Fig. 3, where the second harmonic is capturing the two distinctive blobs of
the DH.

observations, where the importance of harmonic N = 2 is
highlighted to capture the two blobs of TDH. The performance
is stable for N ≥ 4, and using more harmonics does not
significantly improve the detection. Similar observations are
made on the influence of N for detecting Tthree.

5) Impact of Total Number of Detection Angles: We report
the influence of the number M of tested angles in [0, 2π)
for (14) and (15) in Fig. 8 for Tthree. On the same plot,
we also indicate the baseline angular error corresponding to
the sampling step π/M . Whereas performance consistently
improves with M , relatively coarse angular discretization (e.g.,
M = 12) yields near to optimal detection rates. Once again,
very similar trends were observed on the influence of M for
detecting TDH in ISS Gaussian fields.

D. Application to Real Data Including Template Variations

To showcase the use of our optimal steerable filter design
in real-life conditions, we experiment on publicly available
bioimage data from the Cell Image Library. We consider trans-
mission electron microscopy images of the internal structure
of motile cilia and flagella. These biological structures are
responsible for the propelling movement observed for instance
in sperm cells, which is crucial for assessing male fertility.
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Fig. 8. Number M of angles tested in [0, 2π) for the construction of Iang
and Iamp when detecting Tthree. The baseline angular error π/M is reported.

Fig. 9. Cross-section of rat tracheal epithelial cells (Cell Image Library,
CIL:11623). Left: an image template is approximated (Spline+SS) with N =
6 harmonics. A self-similarity parameter of γ = 0.5 is used for the spectral
shaping. Center: amplitude response of the optimal steerable filter. Right:
detection (circles) and orientation (radius inside circle) results.

They have a remarkably conserved organization composed
of microtubule doublets arranged into a highly symmetrical
bundle.

In Figures 9 and 10, we illustrate how we can build
a steerable filter that detects microtubule doublets from a
single template in two different datasets. As no ground truth
annotation is available for these data, we however have to
limit ourselves to a qualitative evaluation of performance. In
spite of differences in appearance due to image noise and mor-
phological variations of the microtubules, most doublets are
efficiently detected and their orientation appears to be correctly
estimated, as seen from the orientation of the radius depicted
inside each detection circle. Our approach could therefore be
used for instance to quantify changes of microtubule doublet
arrangements in mutants exhibiting motility dysfunctions.

V. DISCUSSION AND CONCLUSION

The main goal of this work is to provide a complete pipeline
for the detection of specific patterns at unknown positions
and orientations in an image. The key ingredients of our
approach are (a) a continuous-domain formulation of the de-
tection problem based on steerable filters and the optimization
of the SNR criterion (Section II), (b) a radial spline-based
discretization scheme (Section III), and (c) a novel spectral
shaping approachß to extract statistical information from the
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Fig. 10. Cross-section of Lepidoptera sperm cells (Cell Image Library,
CIL:35962). Left: an image template is approximated (Spline+SS) with
N = 6 harmonics. A self-similarity parameter of γ = 0.25 is used for the
spectral shaping. Center: amplitude response of the optimal steerable filter.
Right: detection (circles) and orientation (radius inside circle) results.

background noise (the self-similarity parameter γ) and specify
an appropriate image model. We have experimentally studied
our detection procedure’s ability to adequately estimate the
position and orientation of a pattern of interest (Section IV).
We here briefly recap the main contributions of our work.
• We approximated a template with steerable filters, which

provides a low-pass approximation retaining only small
angular frequencies. In practice, we have seen that only
few angular frequencies are required for good template
approximation (Fig. 3) and pattern detection (Fig. 7).

• Our method relies on the assumption that the patterns
of interest in the image are adequately modeled by a
single template T provided by the user, as in (1). Under
this assumption, we are able to precisely detect the
occurrences of this template (Section IV-C) with a strong
robustness to noise (Fig. 4 and 5).

• When compared to state-of-the-art steerable-filter-based
approaches (Hermite kernels [15] and Fourier-Argand
detectors [16]), our method performs consistently better
than its alternatives without spectral shaping. Spectral
shaping (Section II-E) tremendously improves detection
performance (Fig. 6). This demonstrates the relevance of
considering background models with non-flat spectrum.
The proposed isotropic and self-similar model only re-
quires the estimation of one parameter, γ, for which we
provide a theoretically justified procedure. This strategy
is consistent with the more classical one consisting of
using LBS as preprocessing step, but extends it beyond
the sole removal of the zero-frequency.

• We are not only able to recover the positions of the
patterns, but also their a priori unknown orientation. This
information is simply extracted from the angular map Iang
in (14). To refine angular accuracy, one should consider
enough test angles. Higher values of M do not sig-
nificantly improve detection performance but obviously
affect the angular error (Fig. 8). This additional angular
information could be exploited in segmentation [60] or to
extract directional features of the object of interest, e.g.,
in bioimage analysis (Fig. 9 and 10).

Limitations of the current approach includes the modeling
of one single template per detector. However, this potential

weakness is compensated by the ability of the model to
approximate any template with high accuracy. A collection
of detectors can thus be obtained by generating a dedicated
detector for each distinct template class. Detection robustness
with respect to pattern deformations was not explored as it
lies out of the scope of the problem we consider in this work.
Nevertheless, we believe that using steerable models with a
small number of harmonics results in regularized (i.e., low-
pass) detectors capturing the global layout of the template with
enhanced generalization abilities.

APPENDIX

A. Polar Decomposition of L2-functions

We provide here the proof of Proposition 1. We consider a
function f ∈ L2(R2) and its Fourier transform f̂ ∈ L2(R2).
For r ≥ 0 fixed, the function θ 7→ f̂(r, θ) is in L2([0, 2π))
and can therefore be decomposed in Fourier series. We denote
by f̂n(r) the complex Fourier coefficients, such that, for all
θ ∈ [0, 2π),

f̂(r, θ) =
∑
n∈Z

f̂n(r)ejnθ. (27)

Using Parseval’s relation and the orthogonality of the system
(f̂n(r)ejnθ)n∈Z, we have that

‖f‖22 =
1

2π
‖f̂‖22 =

1

2π

∫ ∞
0

∫ 2π

0

|f̂(r, θ)|2rdθdr

=
1

2π

∫ ∞
0

∫ 2π

0

∑
n,m∈Z

f̂n(r)f̂m(r)ej(n−m)θdθ

 rdr

=

∫ ∞
0

∑
n∈Z
|f̂n(r)|2rdr =

∑
n∈Z
‖f̂n‖22.

This proves that f is square-integrable if and only if∑
n∈Z‖f̂n‖22 <∞. Finally, we remark that, for every r ≥ 0,

1

2π

∫ 2π

0

f̂(r, θ)e−jnθdθ =
∑
m∈Z

f̂m(r)
1

2π

∫ 2π

0

ej(m−n)θdθ

= f̂n(r),

which proves (5) together with the fact that the decomposition
is unique.

B. Optimal Steerable Filter: Without Spectral Shaping

This section is dedicated to the proof of Theorem 1. Using
Proposition 1, we decompose the template in Fourier domain
as T̂ (r, θ) =

∑
n∈Z T̂n(r)ejnθ. We set

PH{T̂}(r, θ) =
∑
n∈H

T̂n(r)ejnθ, (28)

where H is the finite set of harmonics. The operator PH
corresponds to the orthogonal projection onto the space of
steerable filters with a set of harmonics H . Then, the orthogo-
nality properties of the circular harmonics ejnθ easily implies
that 〈f̂ , T̂ 〉 = 〈f̂ ,PH{T̂}〉 when f̂ is steerable with set of
harmonics H . The Cauchy-Schwarz inequality now implies
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that |〈f̂ ,PH{T̂}〉| ≤ ‖f̂‖2‖PH{T̂}‖2. Putting things together,
one therefore has

SNR(f) =
|〈T, f〉|2

‖f‖22
=
|〈T̂ , f̂〉|2

‖f̂‖22
=
|〈PH{T̂}, f̂〉|2

‖f̂‖22
≤ ‖PH{T̂}‖22. (29)

Moreover, the upper bound in (29), that does not depend on f ,
is reached if and only if f̂ is proportional to PH{T̂} (equality
case in the Cauchy-Schwarz inequality), as expected. Note that
the above reasoning is valid because the function PH{T̂} is
itself steerable with the adequate set of harmonics.

C. Gaussian Background Models

A two-dimensional random field S : R2 → R can be
observed through a test function f , in which case the quantity

〈S, f〉 =

∫
R2

S(x)f(x)dx

is a random variable. We say that S is Gaussian if all the
random variables 〈S, f〉 are Gaussian for any test function.

The Gaussian white noise W is probably the most fa-
mous two-dimensional Gaussian field. It is the continuous-
domain generalization of a family of independent and identi-
cally distributed Gaussian random variables (discrete Gaussian
white noise). The white noise W is stationary and such that
〈W, f〉 and 〈W, g〉 are independent as soon as 〈f, g〉 = 0.
Observing W through a test function f ∈ L2(R2) gives a
Gaussian random variable 〈W, f〉 with zero-mean and variance
σ2‖f‖22 [46]. We then call σ2 the variance of W .

One can more generally consider random fields S such that
L{S} = W is a Gaussian white noise, where L is a linear
differential operator. As developed more extensively in [46],
one can deduce the expression of the variance of 〈S, f〉 from
the variance of the white noise as follows. Consider a function
g ∈ L2(R2) and set f = L∗{g}, with L∗ the adjoint of L.
Then, we have by duality that

〈S, f〉 = 〈S,L∗{g}〉 = 〈L{S}, g〉 = 〈W, g〉. (30)

In particular, we deduce that 〈S, f〉 ∼ N (0, σ2‖g‖22), which
gives (10).

In our case, we select L = (−∆)γ/2 to be the frac-
tional Laplacian [48], which is self-adjoint in the sense that
((−∆)γ/2)∗ = (−∆)γ/2. This corresponds to the power
spectrum PS(ω) = σ2/r2γ as in Section II-E. We then have
f̂(ω) = ‖ω‖γ ĝ(ω). Hence,

‖g‖22 =
1

2π
‖ĝ‖22 =

1

2π

∫
R2

|f̂(ω)|2

‖ω‖2γ
dω

=
1

2π

∫ ∞
0

r1−2γ
∫ 2π

0

|f̂(r, θ)|2dθdr (31)

implying (10).

D. Optimal Steerable Filter: With Spectral Shaping

The main idea is to reduce Proposition 2 to Theorem 1. The
criterion (11) is optimized among the filters f = (−∆)γ/2g

for some g ∈ L2(R2). For such filters, we have f̂ = ‖·‖γ ĝ,
implying that

|〈T̂ , f̂〉|2

‖ĝ‖22
=
|〈T̂ , ‖·‖γ ĝ〉|2

‖ĝ‖22
=
|〈‖·‖γ T̂ , ĝ〉|2

‖ĝ‖22
. (32)

Therefore, f maximizes (11) if and only if g maximizes
|〈‖·‖γ T̂ ,ĝ〉|2
‖ĝ‖22

among square integrable functions. The lat-
ter is equivalent, according to Theorem 1, to ĝ(r, θ) =∑
n∈H (‖·‖γ T̂ )n(r)ejnθ where the (‖·‖γ T̂ )n are the Fourier

radial profiles of ‖·‖γ T̂ . Because ‖·‖γ is isotropic, we easily
get that (‖·‖γ T̂ )n(r) = rγ T̂n(r). Finally, f maximizes (11) if
and only if

f̂(r, θ) ∝ rγ
∑
n∈H

rγ T̂n(r)ejnθ = r2γ
∑
n∈H

T̂n(r)ejnθ (33)

and (12) is proved.

E. Computing Radial B-spline Expansions

We here provide the proofs of Proposition 3 and Theorem
2. In the two cases, the main argument is the following
classical result, that can be found for instance in [61].

Proposition 4: Assume that (ϕk)k∈Z is a family of square
integrable functions forming a Riesz basis; that is, satisfying

A
∑
n∈Z

c[k]2 ≤
∥∥∑
k∈Z

c[k]ϕk
∥∥2
2
≤ B

∑
k∈Z

c[k]2, (34)

with 0 < A ≤ B < ∞. Then, the orthogonal projection onto
the span V of the ϕk is of the form

PV {f} =
∑
k∈Z

c[k]ϕk, (35)

where the sequence c = (c[k]) satisfies the relation

G{c}[k] =
∑
`∈Z

G[k, `]c[`] = d[k], (36)

for every k ∈ Z. The infinite matrix G = (G[k, `]) and the
sequence d = (d[k]) are defined as

G[k, `] = 〈ϕk, ϕ`〉 and d[k] = 〈f, ϕk〉. (37)
The (infinite) matrix G is called the Gram matrix. The

relation (36) can be compacted as G{c} = d, which we shall
use thereafter. Proposition 4 allows to express the expansion of
functions in non-orthonormal basis from the quantities 〈f, ϕk〉.

We can now prove Proposition 3. The family(
1
r0
β(·/r0 − k)

)
k∈Z

forms a Riesz basis of L2(R) [55], and
this property is easily extended to the case of radial functions
of L2(R2). Therefore, the coefficients d[k] are given by (18)
and the Gram matrix satisfies

G[k, `] =

〈
1

r0
β

(
r

r0
− k
)
,

1

r0
β

(
r

r0
− `
)〉

=

∫
R
β

(
r

r0
− k
)
β

(
r

r0
− `
)
r

r0
d

(
r

r0

)
=

∫
R
β (r)β (r − (`− k)) rdr, (38)

where we used the change of variable r ← (r/r0 − k). In
particular, G[k, `] does not depend on r0 and only on the
difference (` − k). Denoting g[k] = G[0, k], we hence have
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that G{c} = g ∗ c = d, which is equivalent to (19) and proves
Proposition 3.

We obtain Theorem 2 with the same arguments applied
to the family (ϕn,k)n∈H,k∈Z. We recall that two functions
ϕn,k and ϕm,` are orthogonal as soon as n 6= m since the
circular harmonics are. Therefore, one can treat the problem
independently for each harmonics and apply Proposition 3 on
the Fourier radial profiles T̂n of T .

For the last point, quadratic splines are known to well
approximate functions from R to R up to an arbitrary pre-
cision [55]. This fact is easily adapted to the case of two-
dimensional radial functions. We then deduce that, for each n,
the orthogonal projection of T̂n converges to T̂n when the step
size r0 → 0. Then, we remark, using the triangular inequality
and the orthogonal relations between circular harmonics, that

‖T̂ − PH,r0{T̂}‖2 ≤ ‖T̂ − PH{T̂}‖2 + ‖PH{T̂} − PH,r0{T̂}‖2

= ‖T̂ − PH{T̂}‖2 +

(∑
n∈H

‖T̂n − Pr0{T̂n}‖22

)1/2

(39)

where Pr0 is given in (17). For H finite and large enough,
the first quantity in (39) is arbitrarily small. Then, for such
H , one can select r0 such that ‖T̂n−Pr0{T̂n}‖2 is arbitrarily
small for each n ∈ H . Finally, one can approximate T̂ with
arbitrary precision for H large enough and r0 small enough.
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