
Machine Learning-Based Quality-Aware Power and Thermal 
Management of Multistream HEVC Encoding on Multicore Servers

Arman Iranfar, Student Member, IEEE, Marina Zapater, Member, IEEE, and David Atienza, Fellow, IEEE

Abstract—The emergence of video streaming applications, together with the users’ demand for high-resolution contents, has led to
the development of new video coding standards, such as High Efficiency Video Coding (HEVC). HEVC provides high efficiency at the
cost of increased complexity. This higher computational burden results in increased power consumption in current multicore servers. To
tackle this challenge, algorithmic optimizations need to be accompanied by content-aware application-level strategies, able to reduce
power while meeting compression and quality requirements. In this paper, we propose a machine learning-based power and thermal
management approach that dynamically learns and selects the best encoding configuration and operating frequency for each of the
videos running on multicore servers, by using information from frame compression, quality, encoding time, power, and temperature. In
addition, we present a resolution-aware video assignment and migration strategy that reduces the peak and average temperature of
the chip while maintaining the desirable encoding time. We implemented our approach in an enterprise multicore server and evaluated
it under several common scenarios for video providers. On average, compared to a state-of-the-art technique, for the most realistic
scenario, our approach improves BD-PSNR and BD-rate by 0.54 dB, and 8%, respectively, and reduces the encoding time, power
consumption, and average temperature by 15.3%, 13%, and 10%, respectively. Moreover, our proposed approach enhances BD-PSNR
and BD-rate compared to the HEVC Test Model (HM), by 1.19 dB and 24%, respectively, without any encoding time degradation, when
power and temperature constraints are relaxed.

F

Index Terms—HEVC standard, multicore servers, encoding efficiency,
encoding configuration, reinforcement learning.

1 INTRODUCTION

Video streaming services are expected to account for 80%
of global traffic by 2019 [1], with services such as Net-
flix and YouTube accounting for over 50% of downstream
traffic [2]. Due to the great variety of devices accessing
media content as well as the users’ demand for higher
quality video, encoding has become a key application in
current High Performance Computing (HPC). To satisfy the
emerging large video resolutions, the High Efficiency Video
Coding (HEVC) standard provides twice the compression
of its predecessors [3] while maintaining the same video
quality, at the price of increasing the encoder complexity
by several times [4]. HEVC also brings more flexibility in
terms of encoding parameters, which makes selecting the
most appropriate encoding configuration more challenging.

The undeniable complexity of HEVC, together with
the increase of video streaming users, poses an important
challenge for power- and thermal-aware resource allocation
and management of these applications when running on
multicore servers. In particular, users daily upload more
than 65 years of contents to YouTube servers [5]. In order
to satisfy massive streaming to a wide variety of personal
devices, video providers need to decode and encode the
video into several formats (a process named transcoding [6]).
This poses a high computational burden on the providers’
server facilities, leading to the need of developing runtime
quality-aware power and thermal management for multi-
core servers. Current research in the area is mostly focused
on the software optimization of one or several blocks of
the encoding algorithm. However, to address the challenge

This work has been partially supported by the EC H2020 MANGO project
(GA No. 671668), and the ERC Consolidator Grant COMPUSAPIEN (GA
No. 725657).

of power and thermal management for HEVC, application-
level configuration and system-level parameters need to be
jointly integrated on top of algorithmic optimization. To
the best of our knowledge, such a holistic approach, that
tackles encoding efficiency (i.e., quality and compression)
and encoding time, together with power consumption and
thermal control, for several videos running on multicore
servers, has not been addressed in the literature.

In addition, when dealing with multiple encoding re-
quests on a multicore server, a proper video (i.e., work-
load) assignment strategy is vital for reducing the thermal
hot spots while maintaining the desirable encoding time.
Indeed, the increased complexity of HEVC requires high-
performance architectures and induces more frequent hot
spots.

In this paper, we propose a machine learning (ML)-
based approach for power and temperature management
of multistream HEVC encoding on multicore servers, where
multiple video streams need to be processed concurrently.
The initial idea of this paper was presented in our previous
work [7]. We build upon the observations that different
encoding configurations and frame properties result in dif-
ferent combinations of power, temperature, video quality,
compression, and encoding time. Consequently, our pro-
posed ML-based approach, using Q-learning (QL) algo-
rithm, learns and applies the best encoding configuration
and per-core frequency for each of the videos being encoded
on a multicore server. Our proposed methodology situates
on top of any algorithmic optimization and is able to im-
prove the target objectives beyond the given baseline ap-
plication. In addition, we present a resolution-aware video
assignment strategy for multicore servers, in order to reduce
the thermal hot spots without encoding time degradation.

In particular, our main contributions are as follows:

• we propose an reinforcement learning (RL)-based ap-
proach to utilize both application- and system-level
parameters in order to increase encoding efficiency

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works.



while satisfying power and thermal constraints with-
out encoding time degradation. Our approach is able
to learn from the obtained encoding time, encoding
efficiency, and server’s power and temperature, and
dynamically sets both encoding configuration and
frequency during runtime for arbitrary video.

• we develop a resolution-aware video assignment
strategy to reduce temperature while maintaining the
desired encoding time.

• we evaluate how our approach is able to perform
power and thermal management of multicore servers
when multiple videos are processed at the same time.
We accurately evaluate our solution in a multicore
enterprise server, where we collect power and tem-
perature traces, as well as application-specific param-
eters, at runtime. For the evaluation, we consider
several possible scenarios on the servers of video
providers. Specifically, we show how it benefits from
resource availability to improve encoding efficiency.

The rest of paper is organized as follows. Related works
are briefly reviewed in Section 2. Section 3 illustrates the
motivation behind this work. In Section 4, we present a
heuristic video assignment strategy. In Section 5, we present
our ML-based runtime management in detail. Experimental
setup and results are explained in Section 6 and 7, re-
spectively. Finally, the main conclusions of this work are
summarized in Section 8.

2 RELATED WORK

Power and thermal management of multicore processors
[8], [9] and research in multimedia applications [10], [11]
have been extensively discussed in the literature. In par-
ticular, there are several works providing power reduction
and/or encoding time enhancement for multimedia work-
loads most of which targeting the previous standards, such
as H.264/AVC [12] (e.g., [13], [14]). However, these works
need modifications to conform with HEVC requirements
due to its higher complexity.

On the HEVC side, although a few works tackle the de-
coder design and optimization (e.g., [15]), latest research has
focused more on the encoder as it is approximately 100 times
more complex [4]. In this context, the majority of the work
includes algorithmic optimization with various objectives
such as power and complexity reduction, encoding time
enhancement, etc.

Several works focus on the time reduction and per-
formance improvement of HEVC encoders [16], [17]. One
approach to increase the throughput of the encoder is taking
advantage of the tile feature in the HEVC standard. In
this context, Shafique et al. [18] and Khan et al. [19] effi-
ciently split a frame into different number of tiles and gain
speedups since each tile can be processed independently
and, hence, regarded as a thread.

Moreover, the HEVC encoder complexity is highly de-
pendent on the depth levels of Coding Units (CUs) [3].
Thus, CU depth reduction has been addressed by recent
works [20], [21], where it is shown that the reduction of
the computational complexity of the encoder leads to a
decreased energy or latency of the application.

Picture 
partitioning

Deblocking filter
Sample Adaptive 

Offset filtering

Buffer 

Inverse Quantization

Transformation
/Quantization

Entropy 
Coding

Input 
video

Inverse Transformation

Bit 
Stream

Prediction

Coding Unit (CU) Size Quantization Parameter (QP)

Search Area (SA)

Group Of Picture (GOP) Size

Figure 1. HEVC encoder block diagram and main configuration param-
eters

Finally, several works directly aim at power reduction of
HEVC streaming by proper thread allocation [22], and mem-
ory bandwidth reduction [23]. On the decoder side, a power-
aware streaming framework is proposed by [24], targeted at
mobile devices. The number of reference frames also influ-
ences the power consumption since as it increases, more
data must be transferred and processed. Some works [25]
decrease the memory bandwidth and, hence, power con-
sumption by reducing the reference frames.

In all of the above works, the encoder optimization does
not consider temperature as an important issue of today’s
multicore servers. Nevertheless, a few works consider tem-
perature constraints as well as encoding efficiency of next
generation video encoders [26], [27], [28], [29]. In particu-
lar, Palomino et al. [28] employ an adaptive approximate
computing method at both algorithm and data levels to
optimize the thermal profile. Alternatively, the authors in
[26], first, perform an offline analysis to explore the relation
of video properties and encoding configuration with CPU
temperature. Then, they propose an application-driven ther-
mal management policy. Shafique and Henkel [29] address
the complexity reduction of HEVC, use hardware acceler-
ators for low-power HEVC, and apply a dynamic thermal
management similar to [30].

The most similar work to ours is TONE [27]. Authors,
first, extract Pareto optimal curves of the temperature asso-
ciated with different encoding configurations. Then, a pre-
diction model based on frame complexity is used to predict
the temperature resulted from next frame. If a temperature
threshold is exceeded, a new encoding configuration opti-
mizing the encoding efficiency, is selected. To recap, TONE
[27] provides a multi-objective solution for HEVC encoding
with respect to video quality, compression, and temperature.

Nonetheless, none of these works ( [26], [27], [28], and
[29]) considers power consumption, temperature, encoding
time, and encoding efficiency jointly. Moreover, when mul-
tiple videos are running at the same time on a multicore
platform, power and thermal management of HEVC is more
challenging and has not been addressed so far. As opposed
to previous works, we propose an ML-based runtime power
and thermal management approach which exploits configu-
ration parameters in addition to CPU frequency for multi-
stream HEVC encoding on multicore servers. In addition,
we present a low-overhead video assignment strategy to
reduce the temperature of the chip, while maintaining the
encoding time requirements.



3 ANALYSIS OF THE HEVC ENCODER

In this work, we consider the Peak Signal-to-Noise Ratio
(PSNR), measured in dB, as the quality; bitrate, measured
in bits per second (bps), as the compression; and encod-
ing time as the application output metrics. The goal is to
achieve higher PSNR along with more compression (lower
bitrate) while reducing the encoding time per frame. In
this work, we have studied all configuration parameters
available in the reference software HM 16.3 (more than 100)
by conducting experiments using the experimental setup
explained in Section 6. Since not all encoding parameters
affect the output PSNR, bitrate, power, temperature, and
encoding time considerably, we take into account those with
the largest impact (shown in Table 2). Moreover, although
some parameters can take a wide range of values, we limit
this range based on our observation on the output PSNR and
bitrate, as well as according to the Joint Collaborative Team
on Video Coding (JCT-VC) documentation [31]. The idea
behind constraining some of the encoding parameters is to
avoid irrelevant ones, which will finally result in no gain
with respect to the objectives, but with larger time required
for the convergence of ML algorithm.

Figure 1 illustrates a simplified HEVC encoder block di-
agram. Each block contains several parameters to configure
the encoder (i.e., configuration parameters). Prior to all the
blocks, the largest CU (LCU) size is specified. Search range,
prediction mode, GOP (group of picture) size, and reference
frames are used in the prediction block. Also, the quantiza-
tion parameter (QP) is used to control the level of quantiza-
tion. All these parameters can be dynamically tuned frame-
by-frame, except for the GOP size that can only be changed
every several frames. Finally, when GOP = 1, frames are
considered as I-frame, while when GOP = 8 or 16, only the
first frame is considered as I-frame and the rest in the GOP
structure are B-frames.

In contrast to the HEVC decoder, the diversity of the
HEVC encoder parameters and their wide value range [4]
requires a careful study of their respective impact on encod-
ing efficiency and time, power consumption, and tempera-
ture. Although QL, as a model-free ML algorithm, does not
depend on any characterization of single or multiple videos
running on the server, the following study motivates why an
ML-based approach is necessary for quality-aware power
and thermal management of multistream HEVC encoding
on multicore servers.

3.1 Impact of Video Content on Encoding Efficiency,
Encoding Time, Power, and Temperature

Apart from the inherent and exclusive features of each video
type, such as frame resolution, bit depth, etc., the contents
of a video play a major role in the obtained encoding time,
quality, compression, power consumption, and peak tem-
perature, resulted from a specific encoding configuration.

For this section, all test sequences are encoded using the
default Main Intra configuration provided by the reference
software, HM 16.3 [32]. For all experiments throughout
this work, data are gathered from the experimental setup
specified in Section 6 with the maximum frequency oth-
erwise noted. Figure 2 shows the encoding time, bitrate,
and PSNR obtained when encoding seven different 8-bit
test sequences, whose specifications are shown in Table 1.

159

164

169

Te
nc
	(s
)

157

167

177

Te
nc
	(s
)

72

78

84

Te
nc
	(s
)

73

74

75

76

Te
nc
	(s
)

150

155

160

Te
nc
	(s
)

660

785

910

Te
nc
	(s
)

135

140

145

Te
nc
	(s
)

33
35
37
39
41
43
45

1 51 101 151 201

PS
NR

	(d
B)

Frame

2
10
18
26
34
42
50
58

Bi
tr
at
e	
(M

bp
s)

Cactus BQTerrace SVT04a OldTownCross Calender OldTownCross_HighRes Tennis

Figure 2. Per-frame bitrate, encoding time (Tenc), and PSNR for seven
test sequences with Main Intra configuration

These videos cover a wide variety of frame-to-frame motion,
and texture within a frame. While Cactus and BQTerrace
are among the test sequences introduced by JCT-VC [31],
the rest are being frequently used in benchmarking video
coding applications [33], [34], [35].

As shown in Figure 2, the obtained metrics not only
do differ considerably from one video resolution to another
(OldTownCross vs. OldTownCross HR), but they also differ
vastly from one video to another of the same resolution
(Cactus vs. Calendar), and even, within a video (all videos).

Such variations in video contents impact the encoding
time directly through affecting the memory sub-systems. In
fact, while the CPU is fully utilized throughout the video
encoding (tested on an Intel S2600GZ server with a E5-
2620 CPU), the number of accesses/misses to/from L2 cache
and Last Level Cache (LLC) change vastly as the contents
vary from one frame to another. This behavior is consistent
across different platforms (Intel Xeon X5650 and E5-2620,
and AMD Opteron 6272 and 6300).

Figure 3 shows the number of accesses to L2 and LLC,
and misses from LLC for test sequence Tennis every sec-
ond collected by Oprofile [36]. Comparing the number of
accesses to L2 and LLC with the encoding time per frame for
the Tennis sequence clearly shows the importance of video
contents on memory hierarchy and, hence, on the encoding
time as the trend thoroughly coincides with this metric (the
same trend is observed for misses from L2).



Table 1
Test sequences and their relevant features used in this work

SVT04a OldTownCross Tennis Cactus Calendar BQTerrace OldTownCross HR
Resolution 1280x720 1280x720 1920x1080 1920x1080 1920x1080 1920x1080 3840x2160

Frame rate (Hz) 50 50 24 50 50 60 50
Frame count 500 500 240 500 500 600 500
Target bitrate 4000kbps 4000kbps 4000kbps 6000kbps 6000kbps 6000kbps 8000kbps

50 100 150 200
Frame

136

138

140

142

144

(a) Encoding time/frame (sec)

1 2 3
Time (sec) #104

5.35

5.4

5.45

5.5

5.55

5.6
#107

(b) Number of L2 Accesses per
second

1 2 3
Time (sec) × 104

3.2

3.22

3.24

3.26

3.28
× 106

LLC Accesses

LLC Misses

1 2 3

Time (sec) × 104

1.86

1.88

1.9

1.92

1.94

× 104

1 2 3

Time (sec) × 104

0

1

2

3

4
× 106

1 1.1 1.2 1.3 1.4 1.5

Time (sec) × 104

1

1.5

2

2.5
× 106

LLC Accesses

LLC Misses

(c) Number of LLC Accesses and Misses per second

Figure 3. Number of accesses to L2, accesses to LLC, misses from LLC
and encoding time/frame for Tennis

As Figure 3a and Figure 3b show, there is a correlation
between the number of L2 accesses and encoding time. In
this sense, when the number of L2 (or LLC) accesses is small,
lower encoding time/frame is observed. Although such a
pattern seems to be absent in the trend of LLC misses in
Figure 3c, this figure contains important information. In fact,
LLC misses consist of two traces. The first one (bottom left)
includes the spikes (in the range of 1 ∼ 2 × 106) which
represent misses due to loading a new frame from the main
memory. The second trace (bottom right) appears around 2×
104 and follows the same variations as that of the encoding
time/frame. This paper focuses on the latter as it is more
correlated to the obtained encoding time/frame trace.

The similarity between content variations (reflected in
encoding time) and memory sub-system events demon-
strates the importance of frame-by-frame power and ther-
mal management, since such variations ultimately affect the
power and temperature of the chip. Figure 4 shows the
power and temperature variations with respect to content
variations in the input test sequence Tennis.

0.5 1 1.5 2
Time (sec) #104

16

16.5

17

17.5

18

C
P

U
 +

 D
R

A
M

 P
ow

er
  (

W
) 

(a) Power consumption

0 0.5 1 1.5 2
Time (sec) #104

53

54

55

56

C
or

e 
T

em
pe

ra
tu

re
  (
° 

C
) 

(b) Core Temperature

Figure 4. Content-based power and temperature variation

0

100

200

300

400

22 27 32 37 16 32 64 1 8 16

Ti
m

e
/F

ra
m

e
 (

se
c) QP LCU GOP

1646
(a)

16.5

17

17.5

56

57

Po
w

er
 (

W
)

22 27 32 37 16 32 64 1 8 16

0

4

8

12

16

36

38

40

42

44

46

22 27 32 37 16 32 64 1 8 16

B
it

ra
te

 (
M

b
p

s)

P
SN

R
 (

d
B

)

(b)

Figure 5. Impact of different encoding parameters on (a) encoding time,
and (b) on PSNR and bitrate, for the test sequence Tennis

40 45 50 55 60 65

QP=22
QP=27
QP=37
CU=16
CU=32
GOP=8
GOP=16
f=2GHz
baseline

Millions

L2_MISS

(a) L2 Accesses

1 2 3 4 5 6 7

QP=22
QP=27
QP=37
CU=16
CU=32
GOP=8
GOP=16
f=2GHz
baseline

Millions

LLC_REFS

(b) LLC Accesses

0.04 0.065 0.09

QP=22
QP=27
QP=37
CU=16
CU=32
GOP=8
GOP=16
f=2GHz
baseline

Millions

LLC_MISSES

(c) LLC Misses

Figure 6. Average number of accesses to L2, accesses to LLC, and
misses from LLC every second

15
15.5
16
16.5
17
17.5

64 32 16

54

55

56

57

LCU

Te
m

p
e

ra
tu

re
 (

o
C

) 

Temperature Power

15.5

16

16.5

17

17.5

54

55

56

57

1 8 16

GOP

Temperature Power

15.5

16

16.5

17

17.5

54

55

56

57

22 27 32 37

Po
w

er
 (

W
)

QP

Temperature Power

Figure 7. Application parameters’ impact on CPU power and tempera-
ture for Tennis running on one core

3.2 Impact of Encoding and System Parameters on En-
coding Efficiency, Time, Power, and Temperature

Figure 5 shows, on average, how different parameters affect
encoding time, PSNR and bitrate. Although not shown in
the figure, similar tradeoffs are observed for search range
and reference frames, for all videos considered in this paper.



Similar to the video contents, encoding parameters affect
the memory sub-systems considerably, resulting in signif-
icant change in encoding time, power consumption, and
temperature. Figure 6 shows how different encoding config-
urations in addition to the operating frequency change the
average number of L2 and LLC accesses, and LLC misses for
test sequence Tennis. For this figure we use the default main
Intra configuration (QP=32, GOP=1, CU=64) with the maxi-
mum frequency (2.4 GHz) as the baseline. Then, we provide
the number of memory events by changing these system-
and application-level parameters. Because these metrics are
correlated with encoding time, as previously shown, im-
provements on encoding time at the CPU level will also
have a beneficial impact on the power consumption of the
memory subsystem, due to the reduced accesses to memory.
Such observations imply the significance of application-
level parameters in encoding efficiency and time, ultimately
affecting power and temperature of the chip. Figure 7 shows
how power and temperature are affected by LCU, GOP, and
QP, which are the most important encoding parameters.

Finally, while CPU frequency does not affect the encod-
ing efficiency, it plays a major role in encoding time, power
consumption, and peak temperature. Therefore, frequency
has to be considered as a major runtime parameter along
with all application parameters.

3.3 Discussion
The great number of different combinations of configuration
parameters, in addition to sudden content variations within
a video and the substantial differences across videos, require
a more exhaustive solution than those proposed by previous
works.

In this paper, we propose a two-stage power- and
thermal-aware video assignment strategy and runtime man-
agement for multistream HEVC encoding shown in Fig-
ure 8. When the users’ encoding requests along with the
corresponding videos are received, first, each video and,
in particular, each frame, should be assigned to a core
in the multicore server. Meanwhile, an ML-based runtime
management takes care of adjusting the cores frequencies
and tuning the application-level parameters. In particular,
we adopt the QL algorithm, which is able to learn the states
resulted from the taken actions. This approach suits well
multicore servers where multiple videos are to be processed
at the same time.

Our approach can be implemented on top of any HEVC
implementation, regardless of its specific performance, such
as x2651, as a parallel implementation, as long as they
implement a wide range of control parameters. In particular,
although x265 supports frame-level parallelization, our ob-
servation shows the same behavior as for HM 16.3 in figures
2, 3, 4, 5, 6, and 7. Consequently, the runtime adaptation
of encoding parameters is a promising solution for quality-
aware power and thermal management of next generation
encoders.

4 HEURISTIC VIDEO ASSIGNMENT AND MIGRA-
TION

Video assignment plays an important role in power con-
sumption, peak temperature, and encoding time. This is

1. http://x265.org/

ML Runtime 
management

Server

Video Assignment/
Migration

Users’ 
Encoding 
Requests

ID’s of ON Cores

Te
m

pe
ra

tu
re

Encoding Efficiency, 
Time, Power, 
Temperature

Video Types
ID’s of ON Cores

C
o

re
s’

 F
re

q
u

en
cy

, 
E

n
co

d
e

r 
P

ar
am

et
er

s

Figure 8. Proposed Approach

Figure 9. Average encoding time/frame for different videos when en-
coded by default Main Intra configuration

especially due to significant difference in thermal charac-
teristics of different video types. Thus, a proper video as-
signment strategy aware of the exclusive features of videos
such as resolution may provide reduced peak/average tem-
perature. In addition, a proper video assignment strategy
is able to affect the encoding efficiency. In other words,
the temperature reduction resulted from the video assign-
ment provides the ML-based runtime manager with more
opportunities to increase the encoding efficiency and time
by tuning the application- and system-level parameters.

As indicated in Section 3.2, higher frequency leads to
higher temperatures and hot spots. On the other hand,
Figure 9 shows the time spent on average for a frame to be
processed for each of the seven different videos included in
Table 1. These results refer to the use of the default main intra
configuration (average and standard deviation are highly
dependent on the encoding configuration and increase con-
siderably if GOP is not one). Although video contents play a
significant role on encoding time, the major driver of encod-
ing time per frame is resolution. Consequently, use of higher
frequencies is necessary for videos with higher resolution.
However, when the power consumption is constrained by
a power budget or a power cap, all the videos running
concurrently on the target multicore server cannot benefit
from the highest available frequency.

Based on such observation, we propose a video assign-
ment and migration strategy which takes into account the
resolution of the videos and current thermal profile of the
chip, shown in the pseudo code of Algorithm 1. In this
pseudo code, Nc is the total number of cores on the target
multicore server, ri is the resolution of the video running
on the ith core, where i ∈ {1, ..., Nc}, C shows the set of
available cores, Θ represents the set of temperature values
read from the available sensors, and rnew represents the



Algorithm 1: Video assignment strategy
Input : Nc, f loorplan,Θ,Rs = {ri},C = {ck}, rnew
Output: nc ; // Index of the assigned core

1 forall k do

2 Mk =

Adjacentk∑
i

ri,k + rnew

3 if Num(argmin
k

(Mk)) > 1 then

4 nc ← argmin
j

(θj)

5 else
6 nc ← argmin

k
(Mk)

resolution of the unassigned video. Once a new video starts,
the best core to process it is determined based on a merit
function M (line 2). For each available core k, the value of
the merit function,Mk, is calculated by summing the resolu-
tion of the videos running on the adjacent cores in addition
to rnew (line 2). Thereafter, the core whose merit function
value is the smallest will be selected as the destination core
for the new video (line 6). If there is more than one core with
the minimum M value, we choose the one with the lowest
temperature (line 4).

In the proposed video assignment strategy, we first rely
on the resolution of the assigned videos (ri) and the new
video (rnew), rather than on the instantaneous temperature,
or even on the temperature history. Thus, the merit function
considers the resolution of videos being processed on the
adjacent cores of the available candidate, as well as the
resolution of the new video. The higher this sum is, the
higher the temperature becomes in the long term. In fact,
as the current temperature could be strongly affected by
a temporal high resolution video which does not exist
anymore (i.e., its executions finished a few seconds ago),
it is not possible to assign the new incoming video simply
based on the temperature history as it does not guarantee
to lower the average temperature in the future. Moreover,
this strategy does not decide based on the instantaneous
temperature, which is mainly the result of content variation
of a video.

Since in multistream encoding on multicore servers after
proper assignment of new videos other videos may leave
the server, video migration from one core to the other is
vital to satisfy encoding time and temperature requirements.
Therefore, in this paper, we propose video migration every
few seconds. In particular, if there is (are) any available re-
source(s), the video running on the hottest core should move
to an available one. Since the resolution plays a major role,
we use the same merit function as for the video assignment
except for the change of the subscript from ”new” to ”hot” to
indicate that this re-assignment is performed for the video
experiencing a high temperature. Unlike the initial video
assignment strategy, only those unoccupied cores whose
current temperatures are lower than the hottest occupied
core are considered as proper candidates. Here, once again,
for each idle core, ck, the value of the merit function, Mk is
calculated by summing the resolution of the videos running
on the adjacent cores, ci,k, this time, in addition to rhot.

The migration overhead depends on the encoding con-
figuration and the resolution of the video. The latter plays

a more important role and induces a maximum perfor-
mance overhead of 0.2, 0.3, and 1.2 seconds, respectively,
for 1280x720, 1920x1080, and 3840x2160 videos studied in
this work. Comparing these value with average encoding
time for different frame resolutions demonstrates that for
the current HEVC test model [32] migration is applicable.
Video migration conditions are checked every 2 minutes,
and applied if a proper candidate is found, resulting in less
than 1% performance overhead in the worst case.

In the proposed video assignment and migration strat-
egy, if all cores are occupied, any new incoming video (en-
coding request) needs to wait in the non-preemptive queue
until an available resource exists. In particular, we assume a
first-come first-served policy to assign each video to a core.
Hence, from all queued encoding requests, at each decision
time (once a new available core is found), we serve only the
first one in the queue. Also, since the proposed strategy can
be used in the servers of video providers such as YouTube
and Netflix, we assume that no other simultaneous tasks
are running on the cores and, hence, no scheduling conflict
occurs [37].

5 ML-BASED RUNTIME MANAGEMENT

Although each HEVC encoder block has its own model, the
interaction of the application parameters and input video
with the processing platform cannot be characterized by
any already known model where it would be possible to
apply more conventional power and thermal management
strategies, while considering encoding efficiency and time.
Moreover, when encoding multiple videos with different
contents and different encoding parameters, it is truly chal-
lenging to provide a modeled environment with predictable
results. Nonetheless, in this context, RL can be used as is the
best learning method when the goal is to perform a multi-
objective optimization in a very dynamic environment. This
dynamism exists in power and thermal management of mul-
ticore servers for HEVC encoder with its hundreds of possi-
ble encoding parameters, as well as several video types and
content variation within videos. In fact, RL algorithms cope
with environment-dependant problems using a dynamic
optimization programming approach [38]. Consequently, RL
is able to figure out interactions of the application parame-
ters, input contents, and output system- and application-
level metrics, and choose accordingly the best strategy at
each specific moment to maximize the defined objective or
set of objectives. As a result, they are promising solutions for
dynamic power and thermal management of multistream
HEVC encoding.

As a result, in this work, we adopt a QL algorithm
that dynamically determines the best possible encoding
configuration and per-core frequency to increase video qual-
ity and compression, without encoding time degradation
under power and temperature constraints. QL, as a model-
free algorithm of RL, makes acting optimally in Markovian
domains possible by learning from consequences of the
previously taken actions. Compared to other well-known
RL algorithms, QL is able to interact with more sophisticated
industrial applications [39].

There are several works proposing alternative multi-
objective RL algorithms [40], [41], [42]. In particular,



<αth2>αth1

Frames

YES

Frames

ExploitationExploration

Exploration-Exploitation

α=?

αth2<α <αth1

New 
State?

State Determination

Proposed ML-based Runtime ManagementInput Streams

Server

Power 
Temperature Enc. Time

PSNR/
Bitrate

Encoding Configuration
DVFS

Figure 10. ML-based approach block diagram

Pareto Q-Learning (PQL) [42] provides an alternative multi-
objective QL algorithm. However, the proposed PQL algo-
rithm only suits problems with terminal states, where a se-
quence of actions at one episode of time leads to a final state.
In our problem, however, at each decision time, only one
action can be applied. Moreover, content variation within
the videos, as well as the actions taken for other videos
running on the multicore server, can considerably affect the
current state of each video, which makes impractical the
definition of a terminal state at runtime.

5.1 Q-Learning Background Concepts

The QL model is composed of a finite action set, A, a
finite state space, S, and an agent. The agent acts based
on a learned policy,π, which is a mapping from the state
space to the action set while taking into account the reward
value granted to each state-action pair. This value implies
whether, given a state, an action is worth to apply. The QL
agent maximizes this reward by storing a Qπ(s, a) value
to represent the quality of each state-action pair in a Q-
table. This value demonstrates the most probable long-term
reward, considering starting from state, s, applying action
a, and following the policy π. The Q-values and the Q-table
are updated as follows [38]:

Qt+1(st, at) = Qt(st, at) + α(st, at)× [Rt+1+

γmaxQt+1(st, a)−Qt(st, at)]
(1)

where Qt(st, at) and Qt+1(st, at) are, respectively, the cur-
rent and updated Q-values corresponding to at action and
st state, Rt+1 is the reward observed after at is applied for
state st, α(st, at) determines the learning rate, and γ is the
discount factor and controls the significance of the history
of the Q-values against the recently obtained reward.

5.2 Proposed QL-Based Quality-Aware Power and ther-
mal Management

Figure 10 shows a general description of our proposed
approach. We consider three phases for the QL algorithm in-
cluding exploration, exploration-exploitation, and exploitation.
In the exploration phase, once the first frame arrives, an
action is selected randomly from an action pool, including
all available configuration modes and operating frequencies.
Therefore, the state transitions from an initial state to a new
one observed by the ML agent. Thereafter, the new Q-value

corresponding to the selected action and the initial state is
calculated.

As the second frame arrives, once again, a random action
is selected. However, this time, the action is selected from
a subset of the initial action pool. The previous randomly
selected action, in fact, blocks some of the configuration
modes to be selected, for one or several incoming frames,
since their reward is not observed instantly. For instance,
when a configuration mode including GOP of size 8 is
selected, observing the reward for this specific part of the
whole selected configuration mode must be postponed until
the 8th frame is encoded.

The exploration phase for each pair of state-action contin-
ues until the learning rate decreases down to a predefined
threshold. We define the learning rate as a function of
number of state-action observations as:

α(st, at) = λ/Num(st, at) (2)

where λ is constant and set to 0.3, to increase the learning
speed. In addition, αth1 and αth2 are experimentally set to
0.2 and 0.1 respectively. α(st, at) determines the learning
rate and shows if the state-action pair of (st, at) has been
sufficiently observed or not. This is important especially
in stochastic environments where applying an action at
at state st may not always result in a specific next state
st+1. On one hand, if it is set to 1, the previous learning
process (old data) is overridden and a new learning pro-
cess starts. On the other hand, when it is set to zero, the
agent does not learn. For fully deterministic environments,
α(st, at) = 1 provides optimal learning. However, stochas-
tic problems (as discussed in [38]) require a decreasing-to-
zero α(st, at) to achieve an optimal learning phase. Alterna-
tively, α(st, at) = 0.1 is a good compromise, as suggested
by [38], and no variations of this parameter are needed.
However, as discussed in the paper, to facilitate transitions
between our proposed learning phases, we followed the
varying learning rate approach, which depends on the
number of observations of each state-action pair. Thus, we
empirically explored the best values with different video
encoding inputs and configurations, and we found λ = 0.3
and α(st, at) = 0.3/1. These values satisfy convergence
conditions [38] and provide quick learning, and are similar
to those found by [43] in the literature.

In the exploration-exploitation phase, the agent keeps up-
dating the Q-values, while selecting the best possible action.

In the exploitation phase, the learning process stops and
the agent relies on the obtained rewards and available Q-
table to choose the most appropriate action for each state.
However, if a new state is observed, the exploration phase
starts again, but only for this newly observed one. This
is, in fact, one of the major advantages of our work when
compared to TONE [27]. Since the Pareto optimal curves
are extracted statically, TONE is not able to select the best
encoding configuration if a different video type affects the
system and application states differently. In contrast, learn-
ing from new states and actions is an inherent feature of
machine learning.

In the following subsections we define the states and
available actions, as well as the reward function.



5.3 State Definition
5.3.1 System-Level States

Power consumption. The instant total power consumption
of the target multicore server, ranging from static power,
Pstatic, and a user-defined power cap, Pcap, are split into
npower intervals to create the power state subset.
Temperature. Temperature varies from ambient tempera-
ture (θambient) to critical temperature. In this work, we
control the peak temperature of the multicore server and
define a temperature constraint (θconst) below the critical
temperature (θcritic). The interval between θambient and
θconst is divided into nθ intervals.

Power consumption and per-core temperature data are
measured directly from the multicore server (Section 6).

5.3.2 Application-Level States
PSNR. Usual PSNR values for lossy video compression
range from 30 dB to 50 dB, for a bit depth of 8 [44]. This
range is divided into npsnr intervals to constitute the quality
state subset.
Bitrate. The achievable bitrate varies from a few hundreds
of kbps to several thousands of kbps. Nonetheless, a target
bitrate (BRtarg) for each video type is defined based on the
required link speed. Thus, the following subset is used in
this work: (≤ 0.75BRtarg), (0.75BRtarg-BRtarg), (BRtarg-
1.25BRtarg), and (≥1.25BRtarg).
Encoding time. The current version of reference software
(HM 16.3) does not provide real-time encoding. As a result,
for different video types and contents the encoding time
varies considerably. Therefore, states must be defined re-
garding a unique reference for each individual video type.

The reference software [32] reports PSNR, bitrate, and
time. We use these data to build the application-level states.
Moreover, although the overall state set is extremely large,
the ML agent does not have to explore all these states, since
a great number of them do not occur. For instance, it is not
possible that the highest PSNR and the lowest bitrate are
observed at the same time for a specific frame.

5.4 Action Pool and Action Set Definition
The action pool proposed in this work consists of the most
effective encoding configuration modes in conjunction with
the available CPU frequencies. Table 2 shows the design
parameters and the corresponding values considered as the
available actions to the ML agent.

Even with the constrained action set, there are 684 differ-
ent combinations of encoding parameters and operating fre-
quencies that can be applied for a single video at a specific
state if static profiling approach instead of machine learning
is used. In particular, when GOP size is one, QP, CU, and
frequency can take all their available values of Table 2

Table 2
Application and system parameters, and corresponding selected values

QP 22 27 32 37
Search Range 128 64 32
LCU size 64 32 16
GOP size 16 8 1
# of reference frames 4 2 1
Frequency (GHz) 2.4 2.0 1.8

(i.e., 4, 3, and 3, respectively) and there will be no choice
for the rest, while if GOP is not one (eight or 16) action
could be any combination of the encoding parameters and
the available frequencies. Due to content variation within
a single video, the application-level and system-level state
changes constantly at runtime. This requires profiling every
single frame, which means running each frame with all 684
different combinations of actions to figure out the best one.
More importantly, configuring the encoding parameters is
even more challenging when multiple videos running on
a multicore server are taken into account. This is because
power, temperature and encoding time objectives, which are
the main optimization targets of our work, are considerably
affected by operating frequency, and available power and
temperature budget. Moreover, when several videos are
running on the server, the outcome of one of those 684
different combinations of encoding parameters and frequen-
cies will be strongly affected by the values chosen for other
videos, thus an exhaustive profiling is required to include
all possible combinations of encoding parameters and fre-
quencies for all encoded videos in parallel. In addition,
all combinations of frames that can potentially be running
simultaneously should be also profiled carefully.

Different combinations of system and application pa-
rameters may ultimately result in a unique application- and
system-level output. Although a few works such as [22]
tried to partially model these outputs based on application
parameters, these models are very platform-dependent and
only take a few encoding parameters. Nevertheless, RL is
able to consider any interaction between arbitrary encoding
and system parameters on any arbitrary platform as their
effect will cumulatively appear in the defined states.

5.5 Reward Function

The proposed reward function must provide a proper feed-
back from the selected action for a previous state. Since
in this work we look for a solution to take bitrate, PSNR,
power consumption, temperature and processing time into
account, we propose a reward function composed of 5 sub-
functions, one for each of these parameters.

The higher compression obtained by HEVC, in compar-
ison with other video encoding standards, is one of the
most important features to be maintained. However, the best
achievable bitrate differs from one format to another. Thus,
we assume a specific target bitrate for each video type. In
particular, we propose the following reward function:

Rbr =

{
−aBR2 + bBR BR < BRtarg
−c×BR
BRtarg

+ d BR > BRtarg
(3)

where BR shows the bitrate. The maximum reward is given
to BR = BRtarg and it degrades faster when the bitrate is
larger than the target value. The quadratic part provides a
larger difference between the granted rewards from point
to point when the attained bitrate is far from the target.
This difference decreases as the obtained bitrate approaches
the target, letting the agent take into account other reward
functions. a = 1/BR2

targ and b = 2/BRtarg provide such
behavior by making Rbr local maximum at BR = BRtarg .
The decreasing slope for the linear part is defined by c. We
experimentally found c equal to 2 sufficient. Therefore, d is
equal to 3 to provide continuity for the reward function.



The reward sub-function corresponding to PSNR is de-
fined as:

Rpsnr = a× e(PSNR/PSNRmax) − b (4)

where PSNRmax is 50 dB as discussed in Section 5.3. Also,
a and b are constants and defined such that the maximum
value obtained from this sub-function is one while the
minimum (assuming PSNRmin = 30 dB) is zero. The
exponential reward helps getting higher rewards as the
PSNR approaches to the maximum value.

In this work, we seek for shorter encoding time and the
reward sub-function is proposed as follows:

RT = 1− T/Tref (5)

where T is the encoding time of the frame, and Tref is
the reference time (see Section 5.3). Tref is a user-defined
value and varies depending on the frame resolution. In this
work, we assume 75, 150, and 750 seconds, respectively, for
1280x720, 1920x1080, and 3840x2160 resolutions.

In order to meet the user-defined power cap, the reward
function provides a negative value, which is large enough
to cancel probable positive rewards attained by other sub-
functions, if the constraint is not met (also applied for tem-
perature reward). Higher Q-values are given to those state-
action pairs leading to lower power consumption. Hence,
the reward sub-function is:

Rpower =

{
−4 P > Pcap
Pstatic/P P ≤ Pcap (6)

where P is the total power consumption of the multicore
server.

The temperature reward sub-function must facilitate pre-
venting any state-action pair resulting in temperature higher
than the peak temperature constraint. Thus, similar to [43],
we employ a reward sub-function defined as:

Rθ =

{
−4 θ > θconst
e(θambient−θ) θ ≤ θconst

(7)

When the temperature is below the constraint, the reward
exponentially increases as it approaches towards the am-
bient temperature. Nonetheless, reaching the ambient tem-
perature is ideal and not a goal of this work. Therefore, the
values corresponding to this reward function are compara-
tively small and dominated by other reward functions.

The proposed reward functions for power and tempera-
ture only depend on the ambient temperature and the static
power consumption which may differ for different systems
and environments. However, it does not affect the validity
of the proposed approach when the environment changes.

Figure 11 shows the individual reward functions (for
BRtarg = 5 Mbps and Tref = 150 sec). Finally, Eq. (8)
forms our total reward function.

Rtot = c1Rbr + c2Rpsnr + c3Rθ + c4RT + c5Rpower (8)

The proposed reward function simply sums all the sub-
functions without considering interactions among them.
First, we recall that although the output PSNR, bitrate, en-
coding time, as well as the system power and temperature,
all vary with changes in the encoding configuration, they
are also strongly dependant on the video contents. Hence,
modeling the total reward function with the interactions
among its sub-functions will only add to the complexity of
the reward function, providing only minor gains. Moreover,

the interrelation of power and temperature in SoCs, and
particularly in multicore servers, is not straightforward,
due to heat sharing. As a consequence, we consider both
temperature and power independently in the reward sub-
functions. Furthermore, the temperature reward function
in our formulation affects the total reward function less
significantly than what the power does. In fact, the main
role of Rθ is taking care of the peak temperature of each
individual component, while on the other hand, Rpower
is in charge of total power consumption of the chip. The
maximum value of all reward sub-functions is normalized
to 1. When the power and temperature constraints are vio-
lated, a sufficiently large negative reward is considered so
that the corresponding action can be discarded from future
decisions. Reward functions are depicted in Figure 11.

Coefficients c1 to c5 are introduced to manipulate the
effect of each reward sub-function. These constants are in
charge of tuning the total reward to emphasize more on a
particular sub-function. For our setup, since we are using
sub-functions with different behaviours for each reward
based on our comprehensive study of the application, this
objective is already fulfilled. Thus, we set all these constants
equal. With these equal weights, as shown in Section 7.4, the
outcome solution is only marginally outperformed by the
optimal solution. Yet, we may weigh specific constants more
than the others to emphasize a specific objective based on
our requirements posed by the system and/or application.

6 EXPERIMENTAL SETUP

6.1 Experimental Platform
The proposed runtime power and thermal management ap-
proach can be used for any platform architecture and HEVC
implementation since it focuses on leveraging application-
level parameters. As a result, the underlying architecture or
platform, regardless of its type, needs to deal with an opti-
mized application code, which ultimately leads to improved
encoding efficiency and time. In this work, we perform the
experiments on an Intel S2600GZ server running CentOS
6.5. The server includes a 6-core SandyBridge-EP processor.
The platform supports per-core DVFS and a frequency range
from 1.4 GHz to 2.0 GHz spaced by 100 MHz, as well as a
turbo boost frequency of 2.4 GHz. Our server comes with
32KB instruction and data L1, 256KB private L2, and a 15MB
shared L3. We use Intel’s Running Average Power Limit
(RAPL) to collect power measurements of CPU and DRAM,
while Intelligent Platform Management Interface (IPMI) is
used to gather CPU temperature sensor measurements,
based on the same methodology used in [45].

Our server is equipped with the default PWM-based
thermal management mechanism of commercial servers,
which keeps fan speed at low speed until 75◦C, and then
increases it to keep the CPU temperature below this value.
Since cooling power is a cubic function of fan speed, we
set the CPU thermal constraint equal to 70◦C, in order to
provide more power saving. In addition, the CPU power
constraint is set to 33 watts. Finally, given that the room
temperature of our server is fixed at 24◦C, we use the fol-
lowing temperature state subset: (θambient, θconst+θambient

2 ),
( θconst+θambient

2 , θconst), and (≥ θconst). We also split the
range (Pstatic, Pcap) into 5 equal portions. Although all
temperature data for the runtime management are gathered



30 40 50
PSNR (dB)

0

0.5

1

1.5
r ps

nr

(a)

0 5 10 15
Bitrate (Mbps)

-2

-1

0

1

r br

(b)

0 20 40
Power (W)

-4

-2

0

2

r po
w

er

(c)

120 140 160 180
Encoding time (sec/Frame)

-0.2

0

0.2

r tim
e

(d)

20 40 60 80
3 (°C)

-4

-2

0

2

r 3

(e)

Figure 11. Reward functions of a) PSNR, b) bitrate, c) power, d) encoding time, and e) temperature

via the available per-core thermal sensors, in order to vi-
sualize the thermal profile of the chip, we use the power
traces measured on the server and an approximate floorplan
available online for 6-core SandyBridge processors2 to feed
the 3D-ICE [46] simulator.

Finally, in order to perform per-core DVFS via the OS,
we change the governor of the CPU frequency scaling to
”userspace” via cpupower utility. We perform video assign-
ment and migration through taskset utility. Moreover, since
the predefined power/thermal budgets are lower than those
defined in the CPU datasheet3, the default shutdown mech-
anism or any other default power/thermal management
schemes are not invoked by the OS. Hence, the OS does
not intrude our proposed approach.

6.2 Compared Approaches
To make our solution as general as possible, we implement
our ML-based approach and TONE [27] on top of the HEVC
test model HM 16.3 [32]. HM 16.3 is the reference software
for the HEVC standard introduced by Joint Collaborative
Team on Video Coding (JCT-VC). It implements all the
control parameters allowed by the standard, a feature which
is not available in many other implementations. In order
to provide a fair comparison with the reference software,
with respect to power and temperature, we implement an
RL-based power and thermal management approach [47],
which outperforms other recent pro-active approaches (such
as TAPE [9]), on top of the reference software, and call it
HM∗.

Although there are several works for power and thermal
management of multimedia workloads, we choose TONE
for comparisons as it is the only existing thermal manage-
ment work for HEVC encoders that uses application-level
parameters. As we aim at approaching towards a target
bitrate, for a fair comparison, we adapt TONE [27] so that it
avoids reducing the bitrate far below the target.

6.3 Scenario Definition
In order to provide a better insight in how our ML-based
approach is able to dynamically manage the output encod-
ing efficiency and time, we compare it with the HM 16.3
reference software. In this so-called Scenario 0, we study all
test sequences while they are running alone with the maxi-
mum available core frequency. Since a single video running

2. http://www.anandtech.com/show/5091/intel-core-i7-3960x-
sandy-bridge-e-review-keeping-the-high-end-alive

3. https://www.intel.com/content/www/us/en/motherboards/server-
motherboards/server-board-s2600gl-gz.html

33
35
37
39
41
43
45
47

2 27 52 77 102 127 152 177 202

P
SN

R
 (

d
B

)

Bitrate (Mbps)

Scen. 0: ML Scen. 0: HM

Tennis
Calendar

SVT0a4
Cactus OldTownCross

OldTownCross_HR

BQTerrace

(a) Encoding efficiency

42 62 82

Bitrate (Mbps)

-6

-4

-2

0

B
Q

Te
rr

ac
e

0

0.5

1

1.5

2

2.5

3

En
co

d
in

g 
Ti

m
e 

Im
p

ro
ve

m
e

n
t 

(%
)

(b) Encoding time

Figure 12. ML vs. default HM in Scenario 0

on our experimental platform does not violate the power
and thermal constraints, power and thermal management
over the HM is bypassed. Besides, the proposed ML-based
approach can now only consider the reward functions of
encoding efficiency and time.

Thereafter, we evaluate the efficacy of the proposed
approach against HM∗ (see Section 6.2) and TONE [27] in
three scenarios. In the first scenario, we assume that all cores
are fully utilized by receiving instances of the same video. In
the second scenario, we assume a more realistic case where
videos are randomly started on cores and finish. In this
scenario we assume multiple instances of the same video.
In the third scenario, we assume the same scenario as the
second one but with different videos. In last two scenarios,
in order to assign the videos to the cores we take advantage
of the proposed video assignment strategy while DVFS is
performed by our ML-based approach. Since in the last
two scenarios videos randomly start and finish, we perform
the experiments 100 times to obtain statistically significant
results. At each run, we consider the average PSNR and
bitrate for each instance separately. Finally, the average of all
results over these 100 runs are reported as the final obtained
gains. In all scenarios, to provide a fair comparison with
HM, adaptive search range (ASR) and adaptive QP selection
(AdaptiveQP) options are enabled, while the target bitrates
(TargetBitrate) are set to those specified in Table 1.

7 EXPERIMENTAL RESULTS

7.1 Evaluation of Encoding Efficiency and Time

In what follows, a scenario-wise discussion on the exper-
imental results is presented. While Figure 12 shows the
results of Scenario 0, Figure 13 and Figure 14 show the
encoding efficiency and encoding time, respectively, for
other scenarios.



JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR

33
34
35
36
37
38
39
40
41
42
43
44
45
46

2 22 42 62 162 182 202

P
SN

R
 (

d
B

)

Bitrate (Mbps)

Tennis

Calendar

SVT0a4

Cactus

BQTerrace

OldTownCross_HR

OldTownCross

Scen. 1, 2, 3: HM
Scen. 1: TONE Scen. 2: TONE Scen. 3: TONE

Scen. 1: ML Scen. 2: ML Scen. 3: ML

Figure 13. PSNR vs. bitrate achieved by ML, TONE, and HM∗ for all test
sequences and scenarios

-5 
-3 
-1 
1
3
5
7
9
11
13

BQ
Te
rr
ac
e

Ca
ct
us

O
ld
To
w
nC

ro
ss
_H

R

O
ld
To
w
nC

ro
ss

SV
T0
a4

Te
nn

is

Ca
le
nd

ar

BQ
Te
rr
ac
e

Ca
ct
us

O
ld
To
w
nC

ro
ss
_H

R

O
ld
To
w
nC

ro
ss

SV
T0
a4

Te
nn

is

Ca
le
nd

ar

BQ
Te
rr
ac
e

Ca
ct
us

O
ld
To
w
nC

ro
ss
_H

R

O
ld
To
w
nC

ro
ss

SV
T0
a4

Te
nn

is

Ca
le
nd

ar

Scen.	1 Scen.	2 Scen.	3

En
co
di
ng
	T
im

e	
Im

pr
ov
em

en
t	(
%
) TONE ML

Figure 14. Encoding time of ML and TONE compared to HM∗, for all test
sequences and scenarios

7.1.1 Scenario 0
Figure 12a, shows the PSNR and bitrate obtained by the
default HM and the ML-based approach for different test
sequences. As shown in the figure, the proposed approach
leads to larger improvements (i.e., shift to the upper left
corner) in encoding efficiency when there is more frame-to-
frame content variations, as in the case of Tennis and SVT04a
(see Figure 2 to compare content variations within a single
video). Such improvements come with a small encoding
time enhancement, as shown in Figure 12b. This encoding
time improvement comes from the more efficient and in-
telligent adaptation of encoding parameters compared to
when ASR and AdaptiveQP options are enabled in HM.
In fact, our ML-based approach is able to more efficiently
find the most appropriate encoding parameters based on
the contents of the video.

7.1.2 Scenario 1
In the first scenario, where all cores are occupied by in-
stances of the same video, variations between frames result
in a great opportunity for reducing the power consumption
and, hence, the average temperature of the target multicore
server, while improving the encoding efficiency in terms
of video quality and compression. The improvement in
encoding time compared to that of HM∗ in Scenario 1 lies
in the fact that our ML-based power and thermal manage-
ment uses DVFS and encoding parameters jointly, while
the power and thermal management scheme of HM∗ leads

0
1
2
3
4
5

Scen. 1 Scen. 2 Scen. 3

Pe
ak

 T
em

pe
ra

tu
re

 (￮
C

)

Proposed TONE

(a)

-2

0

2

4

6
Scen. 1 Scen. 2 Scen. 3

A
ve

ra
ge

 T
em

pe
ra

tu
re

 
(￮

C
)

Proposed TONE

(b)

-5
-2.5

0
2.5

5
7.5
10

Scen. 1 Scen. 2 Scen. 3

Po
w

er
 C

on
su

m
pt

io
n 

(%
)

Proposed TONE

(c)

Figure 15. (a) peak temperature, (b) average temperature, and (c) power
consumption of the proposed approach (ML) and TONE compared to
HM∗

Memory Controller

Core1

Reserved Reserved

LLC

Queue, Uncore & I/O
355

349

343

337

331

325

319

315

Core2

Core3

Core4

Core5

Core6

(a)

355

349

343

337

331

325

319

315

Core2

Core3

Core4

Core5

Core6

Core1

Reserved Reserved

Memory Controller

Queue, Uncore & I/O

LLC

(b)

75

69

63

57

51

45

40
35

Core2

Core3

Core4

Core5

Core6

Core1

Reserved Reserved

Memory Controller

Queue, Uncore & I/O

LLC

(c)

Figure 16. Thermal map (◦C) of the third Scenario for (a) ML and video
assignment (b) only ML (c) TONE

to application of lower core frequency for some frames.
Thus, it is not able to further improve the encoding time
by tuning the encoding parameters. TONE, on the other
hand, suffers the most from encoding time degradation
as neither does it take advantage of intelligent DVFS, nor
tune the encoding parameters with respect to the output
encoding time. Nonetheless, such an improvement provided
by ML comes with the cost of less encoding efficiency
compared to that obtained through Scenario 0, since the ML
agent compensates the encoding time through adapting the
computational complexity of the encoder which ultimately
results in PSNR loss and less compression.

7.1.3 Scenarios 2 and 3

The main benefit of ML can be seen in the second and third
scenarios, which are closer to the real cases of YouTube and
Netflix servers. In Scenario 2, the HM∗ and TONE, unaware
of the available potentials due to changes in the number of
videos being processed, fail to improve encoding efficiency.
On the contrary, our ML-based approach succeeds to in-
crease the video quality (PSNR), and decreases the bitrate.
More importantly, the proposed approach further improves
the encoding time in comparison with HM∗ and TONE
due to the same reasons already explained for Scenario
1. In particular, encoding time enhancement comes from
more frequent opportunities of intelligently using higher
operating frequencies, especially when some videos leave
the server. Indeed, thanks to another video leaving the
server, the increased available power budget allows other
cores run with higher frequency and/or ML agent tunes the
encoding parameters of the videos.

The PSNR and compression obtained in these scenarios
are higher than those in Scenario 1, although smaller than in
Scenario 0. In contrast, as shown in Figure 13, the obtained
PSNR and bitrate points by TONE are almost overlapping
each other meaning that very marginal improvements in
encoding efficiency are obtained.



100 150 200
Frame

40

45

50

P
S

N
R

 (
dB

)
Proposed: Core 1
Proposed: Core 2
HM 16.3
TONE

(a)

100 150 200
Frame

0

2

4

6

8

B
itr

at
e 

(M
bp

s)

(b)

100 150 200
Frame

110

120

130

140

150

160

T
im

e/
F

ra
m

e 
(s

ec
)

t
1
 ! t

3
 ! 

(c)

2 3 4 5 6
Time (sec) #104

0

10

20

30

40

T
ot

al
 P

ow
er

 (
W

)

t
1
 ! A t

2
t
3
!

Proposed
TONE
HM 16.3

(d)

Figure 17. Frame-by-frame results for Tennis: proposed ML-based approach (Core 1 and Core 2) versus TONE and HM 16.3 (the best core)

0
0.1
0.2
0.3

Scen. 
1

Scen. 
2

Scen. 
3

PSNR Loss (dB)

(a)

0%
2%
4%
6%

Scen. 
1

Scen. 
2

Scen. 
3

Bitrate

(b)

0%
3%
6%
9%

Scen. 
1

Scen. 
2

Scen. 
3

Power 

(c)

0%
2%
4%
6%

Scen. 
1

Scen. 
2

Scen. 
3

Enc. Time

N/2

N

2☓N

(d)

0%
1%
2%
3%
4%

Scen. 
1

Scen. 
2

Scen. 
3

⍬avg

(e)

Figure 18. a) PSNR loss (dB), and increase (%) in b) bitrate, c) power, d)
encoding time, and e) average temperature when scaling up the decision
interval compared to when using N/N interval

The same trend is observed in Scenario 3, where different
videos with different contents and resolutions result in more
opportunities of well-tuning the encoding parameters. In
other words, when the number of videos and their con-
tents running on the multicore server changes, system state
changes and, hence, proper decision taken by our ML-based
approach leads to improving encoding efficiency and time.
However, similar to the previous scenarios, HM∗ and TONE
are unaware of such variations, thus, they fail to achieve any
improvement in encoding efficiency.

7.2 Discussion on Power/Thermal Awareness

Figure 15 shows power consumption, average temperature,
and peak temperature achieved through our proposed ML-
based approach compared to HM∗, and to TONE [27], for
scenarios 1 to 3. Our proposed ML-based approach is able to
reduce the average temperature for the second and the third
scenarios compared to HM∗ and TONE. However, while
peak temperature decreases compared to TONE, the peak
temperature reduction is not as large as the reduction in the
average temperature. This is because the peak temperature
occurs mostly due to a rapid change in the video contents,
or mainly in the second and the third scenarios, because of
releasing an additional video on the target multicore server,
resulting in a spike in the temperature.

Finally, Figure 16 shows the thermal profile of the chip
at specific time for the third Scenario. At this given moment,

the total power consumption obtained from TONE, ML-
based approach with, and without the proposed video as-
signment are all at the maximum level. As shown in Figure
16, the best thermal profile, in terms of lower temperature
and less thermal gradients is achieved when the proposed
ML-based approach is accompanied by the resolution-aware
video assignment. This implies that although runtime man-
agement of multistream encoding on the multicore server is
necessary, a proper thermal-aware video assignment is also
vital. In particular, our proposed video assignment and mi-
gration strategy leads to peak temperature reduction. Such a
thermal profile eventually provides more opportunities for
the QL agent to increase encoding time efficiency.

7.3 Frame-by-Frame Evaluation of the ML-based Ap-
proach
Figure 17 illustrates the second Scenario, frame-by-frame,
for Tennis where some videos leave the server. For the sake
of clarity, the behavior of only 2 cores is shown for our
approach, while only the curve related to the core with the
best behavior is depicted for TONE and HM 16.3. At time t1
(see Figure 17d), one video leaves the server. TONE and HM
16.3 suffer from significant PSNR loss and deviation from
target bitrate (Figure 17a and b). Our approach, however,
instantly reacts and keeps the same power state by increas-
ing the frequency of other cores to increase the encoding
time (Figure 17c). In addition, it finds an opportunity to
exploit other more efficient encoding configurations. The
same happens at t2 and t3, respectively. Our ML-based ap-
proach improves the encoding time on core 1 and 2 during
the whole encoding process by 10% and 27%, respectively.
As these results show, our ML-based solution outperforms
TONE [27], especially when the temperature is below its
constraint. This is due to the fact that TONE [27] starts
seeking for an appropriate encoding configuration only if
the temperature exceeds the threshold. However, when only
few cores are active, temperature drops, hence, granting an
opportunity to our approach for increasing the frequency
and/or using another appropriate encoding configuration.

7.4 Overhead and performance of the ML-based ap-
proach
In this work, although we deal with a multi-objective prob-
lem, we use a scalarization function over the predefined
reward sub-functions. Despite its simplicity, scalarization
works well for our specific target problem and the defined



reward functions, and our solution is very close to the
optimal one. As an example, for the Tennis test sequence
in Scenario 2, our ML-based solution provides the optimal
solution for 226 frames out of 240 total frames. Even for
the rest 14 frames, the Euclidean distance of our solution
from the optimal one is in order of 10−3. Moreover, similar
results are obtained in our experiments with all the other
considered test sequences and scenarios.

The proposed ML-based approach does not have to be
applied on a per-frame basis due to the fact that video
contents, in spite of their constant variation, are rarely
changing rapidly between two consequent frames. Hence,
based on the frame rate of each running video, our proposed
ML-based approach can be applied at different intervals
to achieve less runtime overhead without degrading the
fulfillment of our goals. Figure 18 shows how scaling the
intervals of applying our proposed ML-based approach
influences the encoding efficiency, time, power consump-
tion, and average temperature during the exploitation phase
compared with the per-frame basis (N/N ). In this Figure,
N is the frame rate when denoted as N Hz (such as 24
Hz, thus, the evaluated intervals are equal to 12, 24, and
48). As shown in Figure 18, there is slight degradation in
the achieved PSNR, deviation from bitrate, power saving,
average temperature, and encoding time when using larger
decision interval. However, this degradation differs between
the scenarios. For the first scenario, where the changes in the
defined states only depend on the variation of the video
content, increasing the decision intervals to 2 × N leads
to negligible degradation. On the contrary, in the second
scenario, the defined states change as a result of changes
in the number of running videos. In addition, the different
videos used in the third scenario add to the dynamism of
the states. Thus, more noticeable degradation is observable
for these two scenarios. For a fair comparison, we did
not apply our proposed video assignment strategy for the
second and third scenarios when evaluating the impact of
decision intervals.

Our ML-based approach is limited by the sensor polling
frequency, the availability of the application statistics, the
readings from the Q-table, and updating it in exploration
and exploration-exploitation phases. Updating the Q-table,
however, consists of simple arithmetic operations, resulting
in negligible overhead. Moreover, the proposed ML-based
approach is used as a runtime power and thermal manager
once it reaches the exploitation phase. Thus, these two phases
are performed offline except when a new state is observed
in the exploitation phase. As explained in Section 5, the ML
agent has to select a random action in order to further
explore this state. On average, 820 frames are required
for each resolution (since we keep one Q-table per video
resolution, as it has its own target bitrate and reference
encoding time) after which the optimal decision is known
for more than 96% of the observable states.

8 DISCUSSION AND CONCLUSION

In this work, we have presented a comprehensive quality-
aware power and thermal management approach for next
generation video coding which takes video quality, encod-
ing time and compression into account. Our ML-based ap-
proach is the first work that utilizes application parameters

together with DVFS, based on frame-to-frame variations
between different videos and within a video for multicore
servers. We also proposed a resolution-aware video assign-
ment strategy which allowed for reduced encoding time as
a result of reduced hot spots.

We evaluated the proposed approach against the state-
of-the-art [27] on an enterprise multicore server, under
different scenarios simulating YouTube and Netflix servers.
Overall, the proposed approach outperformed TONE [27]
mainly due to its awareness of the content variation within
and across videos, and inaccuracy of the temperature pre-
diction proposed in TONE for multicore servers. All in all,
although our ML-based approach considered five objectives
and constraints, two more than TONE, since in all scenarios
all objectives have improved, the results would be consis-
tently better if fewer objectives (the same as TONE) are
considered. In such a case, we expect that our proposed ap-
proach further outperforms TONE. On average, for the most
realistic scenario, compared to TONE [27], our ML-based
approach improved BD-PSNR and BD-rate [48] by 0.54 dB,
and 8%, respectively, and reduced the encoding time, power
consumption, and average temperature by 15.3%, 13%, and
10%, respectively. Moreover, our approach improved BD-
PSNR and BD-rate compared to HM 16.3 by 1.19 dB and
24%, respectively, without any encoding time degradation,
when power and temperature constraints were relaxed.

REFERENCES

[1] Cisco Systems, Inc., “Cisco visual networking index: Forecast and
methodology 2015-2020. cisco whitepaper.” 2016.

[2] Sandvine, Inc., “Global internet phenomena report,” 2013.
[3] J. V. Team, “Advanced video coding for generic audiovisual ser-

vices,” ITU-T Rec. H, vol. 264, pp. 14 496–10, 2003.
[4] F. Bossen, B. Bross et al., “HEVC complexity and implementation

analysis,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 22, no. 12, pp. 1685–1696, 2012.

[5] (2017) DMR youtube report. [Online]. Available:
http://expandedramblings.com/index.php/youtube-statistics/#

[6] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding ar-
chitectures and techniques: an overview,” IEEE Signal processing
magazine, vol. 20, no. 2, pp. 18–29, 2003.

[7] A. Iranfar, M. Zapater, and D. Atienza, “A machine learning-based
approach for power and thermal management of next-generation
video coding on mpsocs,” in CODESS+ISSS, 2017.

[8] A. Bartolini, M. Cacciari et al., “Thermal and energy management
of high-performance multicores: Distributed and self-calibrating
model-predictive controller,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 24, no. 1, pp. 170–183, 2013.

[9] T. Ebi, A. Faruque et al., “Tape: thermal-aware agent-based power
economy for multi/many-core architectures,” in Proceedings of the
2009 International Conference on Computer-Aided Design. ACM,
2009, pp. 302–309.

[10] C. Jiang and S. Nooshabadi, “Parallel multiview video coding
exploiting group of pictures level parallelism,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 8, pp. 2316–2328,
2016.

[11] X. Li, M. A. Salehi et al., “Cost-efficient and robust on-demand
video transcoding using heterogeneous cloud services,” IEEE
Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp.
1–1, 2017.

[12] J. V. Team, “Advanced video coding for generic audiovisual ser-
vices,” ITU-T Recommendation H. 264 & ISO/IEC 14496-10, 2005.

[13] H. Kim and Y. Altunhasak, “Low-complexity macroblock mode
selection for h. 264-AVC encoders,” in Image Processing. ICIP’04.
Int. Conf. on, vol. 2. IEEE, 2004, pp. 765–768.

[14] D. S. Turaga, M. van der Schaar, and B. Pesquet-Popescu, “Com-
plexity scalable motion compensated wavelet video encoding,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 15, no. 8, pp. 982–993, 2005.

[15] E. Raffin et al., “Low power HEVC software decoder for mobile
devices,” Journal of Real-Time Image Processing, pp. 1–13, 2015.



[16] G. Correa, P. Assuncao et al., “Complexity scalability for real-time
HEVC encoders,” Journal of Real-Time Image Processing, vol. 12,
no. 1, pp. 107–122, 2016.

[17] G. Tian and S. Goto, “Content adaptive prediction unit size de-
cision algorithm for HEVC intra coding,” in Picture Coding Symp.
IEEE, 2012, pp. 405–408.

[18] M. Shafique, M. U. K. Khan, and J. Henkel, “Power efficient and
workload balanced tiling for parallelized high efficiency video
coding,” in Image Processing (ICIP), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 1253–1257.

[19] M. U. K. Khan, M. Shafique, and J. Henkel, “Software architecture
of high efficiency video coding for many-core systems with power-
efficient workload balancing,” in Proceedings of the conference on
Design, Automation & Test in Europe. European Design and
Automation Association, 2014, p. 219.

[20] G. Corrêa, P. Assuncao et al., “Complexity control of high ef-
ficiency video encoders for power-constrained devices,” IEEE
Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1866–1874,
2011.

[21] G. Correa, P. Assuncao et al., “Dynamic tree-depth adjustment for
low power HEVC encoders,” in Electronics, Circuits and Systems
(ICECS), 2012 19th IEEE International Conference on. IEEE, 2012,
pp. 564–567.

[22] M. U. K. Khan, M. Shafique, and J. Henkel, “Power-efficient
workload balancing for video applications,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2089–
2102, 2016.

[23] D. Zhou, L. Guo et al., “Reducing power consumption of hevc
codec with lossless reference frame recompression,” in Image Pro-
cessing (ICIP), 2014 IEEE International Conference on. IEEE, 2014,
pp. 2120–2124.

[24] Y. He, M. Kunstner et al., “Power aware hevc streaming for
mobile,” in Visual Communications and Image Processing (VCIP),
2013. IEEE, 2013, pp. 1–5.

[25] Z. Ma and A. Segall, “Frame buffer compression for low-power
video coding,” in IEEE Int. Conf. on Image Processing. IEEE, 2011,
pp. 757–760.

[26] D. Palomino, M. Shafique et al., “HEVCDTM: Application-driven
dynamic thermal management for high efficiency video coding,”
in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014. IEEE, 2014, pp. 1–4.

[27] ——, “TONE: Adaptive temperature optimization for the next
generation video encoders,” in Proceedings of the 2014 international
symposium on Low power electronics and design. ACM, 2014, pp.
33–38.

[28] ——, “Thermal optimization using adaptive approximate com-
puting for video coding,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016. IEEE, 2016, pp. 1207–1212.

[29] M. Shafique and J. Henkel, “Low power design of the next-
generation high efficiency video coding,” in Design Automation
Conference (ASP-DAC), 2014 19th Asia and South Pacific. IEEE,
2014, pp. 274–281.

[30] M. Shafique, B. Molkenthin, and J. Henkel, “An hvs-based adap-
tive computational complexity reduction scheme for h. 264/AVC
video encoder using prognostic early mode exclusion,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2010, pp. 1713–
1718.

[31] F. Bossen and H. Common, “test conditions and software reference
configurations, jct-vc doc,” L1100, Jan, 2013.

[32] P. Bordes, P. Andrivon et al., “Joint collaborative team on video
coding (JCT-VC) of itu-t sg 16 wp 3 and iso/iec jtc 1/sc 29/wg
11,” 2016. [Online]. Available: https://HEVC.hhi.fraunhofer.de

[33] F. De Simone, L. Goldmann et al., “Performance analysis of vp8
image and video compression based on subjective evaluations,”
in Applications of Digital Image Processing XXXIV, vol. 8135. Inter-
national Society for Optics and Photonics, 2011, p. 81350M.

[34] A. S. Motra, A. Gupta et al., “Fast intra mode decision for hevc
video encoder,” in Software, Telecommunications and Computer Net-
works (SoftCOM), 2012 20th International Conference on. IEEE, 2012,
pp. 1–5.

[35] T. K. Tan, R. Weerakkody et al., “Video quality evaluation method-
ology and verification testing of hevc compression performance,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 26, no. 1, pp. 76–90, 2016.

[36] J. Levon and P. Elie, “Oprofile: A system profiler for linux,” 2004.
[37] V. K. Adhikari, Y. Guo et al., “Measurement study of netflix, hulu,

and a tale of three cdns,” IEEE/ACM Transactions on Networking
(TON), vol. 23, no. 6, pp. 1984–1997, 2015.

[38] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[39] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[40] P. Vamplew, J. Yearwood et al., “On the limitations of scalarisation
for multi-objective reinforcement learning of pareto fronts,” in
Australasian Joint Conference on Artificial Intelligence. Springer,
2008, pp. 372–378.

[41] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Hypervolume-
based multi-objective reinforcement learning,” in International
Conference on Evolutionary Multi-Criterion Optimization. Springer,
2013, pp. 352–366.

[42] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement
learning using sets of pareto dominating policies,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 3483–3512, 2014.

[43] A. Iranfar, S. N. Shahsavani et al., “A heuristic machine learning-
based algorithm for power and thermal management of hetero-
geneous MPSoCs,” in Low Power Electronics and Design (ISLPED),
2015 IEEE/ACM International Symposium on. IEEE, 2015, pp. 291–
296.

[44] S. T. Welstead, Fractal and wavelet image compression techniques.
SPIE Optical Engineering Press, Bellingham, WA, 1999.

[45] J. C. Salinas-Hilburg, M. Zapater et al., “Unsupervised power
modeling of co-allocated workloads for energy efficiency in data
centers,” in Proceedings of the 2016 Conference on Design, Automation
& Test in Europe. EDA Consortium, 2016, pp. 1345–1350.

[46] A. Sridhar, A. Vincenzi et al., “3D-ICE: Fast compact transient
thermal modeling for 3d ics with inter-tier liquid cooling,” in
Proceedings of the International Conference on Computer-Aided Design.
IEEE Press, 2010, pp. 463–470.

[47] T. Ebi, D. Kramer et al., “Economic learning for thermal-aware
power budgeting in many-core architectures,” in Proceedings of the
seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 2011, pp. 189–196.

[48] G. Bjontegarrd, “Calculation of average psnr differences between
rd-curves,” VCEG-M33, 2001.

Arman Iranfar (S’17) received the B.S. degree
in Electrical engineering from Isfahan University
of Technology, Iran, in 2013 and the M.S. degree
in Electrical Engineering, circuits and systems
from the University of Tehran, Iran. He is cur-
rently pursuing the Ph.D. degree in Electrical
Engineering in Swiss Federal Institute of Tech-
nology Lausanne (EPFL). His research interests
include reliability and power and temperature
management of multicore servers.

Marina Zapater (M’16) is currently is a Post-
Doctoral researcher in the Embedded Systems
Laboratory (ESL) at the Swiss Federal Insti-
tute of Technology in Lausanne (EPFL). She
was non-tenure track Assistant Professor in the
Computer Architecture Department at Universi-
dad Complutense de Madrid, Spain, in the aca-
demic year 2015-2016. She received her Ph.D.
degree in Electronic Engineering from Univer-
sidad Politecnica de Madrid in 2015, an M.Sc.
in Telecommunication Engineering degree and a

M.Sc. in Electronic Engineering degree, both from the Universitat Po-
litecnica de Catalunya, in 2010. Her research interests include proactive
and reactive thermal and power optimization of complex heterogeneous
systems, energy efficiency in data centers, ultra-low power architectures
and embedded systems. In this area, she has co-authored over 30 pub-
lications in top-notch international conferences and journals, and she
has participated in several national and international research projects.
She is a member of IEEE and CEDA and has served as TPC member
of several conferences, including VLSI-SoC and MCSoC.



David Atienza (M’05-SM’13-F’16) is associate
professor of electrical and computer engineer-
ing, and director of the Embedded Systems
Laboratory (ESL) at the Swiss Federal Insti-
tute of Technology Lausanne (EPFL), Switzer-
land. He received his PhD in computer sci-
ence and engineering from UCM, Spain, and
IMEC, Belgium, in 2005. His research inter-
ests include system-level design and thermal-
aware optimization methodologies for 2D/3D
high-performance multi-processor system-on-

chip (MPSoC) and ultra-low power system architectures for wireless
body sensor nodes. He is a co-author of more than 250 papers in peer-
reviewed international journals and conferences, several book chapters,
and seven patents. Dr. Atienza received an ERC Consolidator Grant in
2016, the IEEE CEDA Early Career Award in 2013, the ACM SIGDA
Outstanding New Faculty Award in 2012, and a Faculty Award from Sun
Labs at Oracle in 2011. He served as DATE 2015 Program Chair and
DATE 2017 General Chair. He is an ACM Distinguished Member and an
IEEE Fellow.


