
1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2919555, IEEE
Transactions on Services Computing

1

MAGNETIC: Multi-Agent Machine Learning-Based
Approach for Energy Efficient Dynamic

Consolidation in Data Centers
Kawsar Haghshenas, Ali Pahlevan, Student Member, IEEE , Marina Zapater, Member, IEEE, Siamak

Mohammadi, senior Member, IEEE, and David Atienza, Fellow, IEEE

Abstract—Improving the energy efficiency of data centers while guaranteeing Quality of Service (QoS), together with detecting
performance variability of servers caused by either hardware or software failures, are two of the major challenges for efficient resource
management of large-scale cloud infrastructures. Previous works in the area of dynamic Virtual Machine (VM) consolidation are mostly
focused on addressing the energy challenge, but fall short in proposing comprehensive, scalable, and low-overhead approaches that
jointly tackle energy efficiency and performance variability. Moreover, they usually assume over-simplistic power models, and fail to
accurately consider all the delay and power costs associated with VM migration and host power mode transition. These assumptions
are no longer valid in modern servers executing heterogeneous workloads and lead to unrealistic or inefficient results. In this paper, we
propose a centralized-distributed low-overhead failure-aware dynamic VM consolidation strategy to minimize energy consumption in
large-scale data centers. Our approach selects the most adequate power mode and frequency of each host during runtime using a
distributed multi-agent Machine Learning (ML) based strategy, and migrates the VMs accordingly using a centralized heuristic. Our
Multi-AGent machine learNing-based approach for Energy efficienT dynamIc Consolidation (MAGNETIC) is implemented in a modified
version of the CloudSim simulator, and considers the energy and delay overheads associated with host power mode transition and VM
migration, and is evaluated using power traces collected from various workloads running in real servers and resource utilization logs
from cloud data center infrastructures. Results show how our strategy reduces data center energy consumption by up to 15%
compared to other works in the state-of-the-art (SoA), guaranteeing the same QoS and reducing the number of VM migrations and
host power mode transitions by up to 86% and 90%, respectively. Moreover, it shows better scalability than all other approaches, taking
less than 0.7% time overhead to execute for a data center with 1500 VMs. Finally, our solution is capable of detecting host performance
variability due to failures, automatically migrating VMs from failing hosts and draining them from workload.

Index Terms—Host Power Mode, Machine Learning, Migration Cost, Power Mode Transition Cost, VM Consolidation, VM Migration,
Energy Efficiency, Cloud Data Centers.
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1 INTRODUCTION

H IGH energy consumption and performance variability prob-
lems are two major challenges in modern cloud data centers,

as they greatly affect operational expenses, total cost of ownership
and revenue [1]. Global data center electricity usage accounted
for 1.1-1.5% of total electricity use in 2010 [2] and increases at
yearly rate of 2.1% [3]. As most data centers rely on fossil fuels
as their main energy source, huge energy consumption also results
in high carbon emissions and environmental concerns. However,
according to a recent report by Shehabi et al. in 2016 [4], a
potential of 45% reduction in electricity demand of data centers
can be achieved compared to current trends, by improving their
energy efficiency. Moreover, for the significantly large data cen-
ters, hardware failures and software anomalies are more frequent,
leading to application performance variability and, eventually,
Quality of Service (QoS) degradation [5].
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To improve the energy and resource efficiency of virtualized
data centers, the most common approach is exploiting Virtual Ma-
chine (VM) consolidation, a technique that tries to pack as many
VMs as possible on one physical host. Furthermore, by switching
idle hosts to low power modes, live VM migration allows to
consolidate VMs dynamically to have a better VM placement and
increase energy savings. In this sense, the low power modes of
recent servers, more efficient in terms of energy and transition
overheads [6], allow further savings when compared to traditional
switch-off techniques. However, given the variable nature of VMs
loads, and energy and delay overheads of both migration and
Power Mode Transitions (PMTs), dynamic consolidation may
degrade QoS (and even increase overall energy consumption) if
not effectively applied [7].

Most previous works in this context are migration overhead
oblivious [8], [9], [10], whereas just few of them estimate these
costs and take them into account [11], [12], [13]. Nevertheless,
in such cases they assume that hosts would be switched-off when
they have no load [10], [14]. In this regard, some research proposes
heuristics to appropriately set the hosts’ power modes [15], [16],
keeping idle hosts in intermediate sleep modes to wake them up
quickly in the presence of new loads. Meanwhile E-eco [15] is the
closest to the scope of our work, as it uses dynamic VM consol-
idation together with host power management. As shown in the
results of this paper, our solution outperforms E-eco, increasing
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energy savings by 15% while maintaining the same QoS, and is
able to scale to larger scenarios. Moreover, as opposed to all other
solutions in the state-of-the-art (SoA), our approach is also able to
tackle performance variability detection and mitigation.

Application performance variability is one of the major chal-
lenges in data centers, and may originate from both internal
and external sources, e.g., aged or failing hardware, thermal
control, orphan processes or operating system issues [5]. Most
of these anomalies lead to performance degradation during host
operation [1] and, therefore, to QoS degradation. Detecting per-
formance variability is usually accomplished by means of real-
time continuous monitoring and analyzing system logs. However,
as the size of data centers increases, the amount of metrics to be
collected and analyzed is paramount. The manual analysis of these
volumes of data therefore becomes impractical [17], requiring
the development of techniques to automatically detect and isolate
servers that exhibit a severe degree of performance variability.

Our work tackles the aforementioned challenges by proposing
a comprehensive cost- and failure-aware VM migration and host
power mode selection run-time management policy that manages
VMs and hosts in a data center. Our main goal is to minimize
energy consumption while meeting QoS requirements, keeping
low the number of migrations and PMTs. At the same time, our
approach is able to detect hosts under-performing or exhibiting
any kind of performance variability due to hardware or software
failures, and automatically drains the node from workload, migrat-
ing VMs to other hosts to avoid QoS degradation.

In particular, our centralized-distributed approach consists on
two units: i) a distributed Machine Learning (ML)-based multi-
agent power mode selection unit, and ii) a centralized heuristic
migration unit. The power mode selection unit determines the
optimum power mode of each host based on its CPU utilization
and number of VMs running. Given that the problem to be solved
is NP-hard [18], our solution is based on the Q-Learning (QL)
technique, which belongs to the Reinforcement Learning (RL)
category [19], [20]. RL is highly recommended for multi-agent
systems as they do not need to model the environment, and
allow agents to take actions while they learn [21]. In multi-agent
systems, agents lack full information about their counterparts, and
thus the multi-agent environment constantly changes as agents
learn about each other and adapt their behaviors accordingly. After
performing power mode selection phase, a centralized migration
unit detects the over-utilized hosts and migrates VMs to allow
driving the hosts to the power modes selected by the power
mode selection unit. Finally, CPU frequency is adjusted using
Dynamic Voltage and Frequency Scaling (DVFS) to further re-
duce energy. Throughout the paper, we refer to our Multi-AGent
machine learNing-based approach for Energy efficienT dynamIc
Consolidation as MAGNETIC.

In summary, the main contributions of our work are as follows:
• We propose a scalable centralized-distributed ML-based host

power mode selection and VM migration policy to dynam-
ically consolidate VMs in hosts, reducing energy by up to
15% when compared to existing SoA approaches, with only
minimal QoS degradation (< 1% difference) (see Section
6.4). MAGNETIC considers the overhead of VM migration
and host PMT and reduces them by up to 86% and 90%
respectively when compared to SoA.

• Thanks to the distributed nature of the power mode selection
unit, that utilizes a multi-agent QL algorithm, our solution
outperforms all other approaches in the SoA in terms of

scalability. Furthermore, MAGNETIC’s run time overhead is
below 0.7% and 2.7%, for data centers with 1500 and 3800
VMs, respectively.

• Additionally, MAGNETIC is able to detect performance
variability due to hardware or software anomalies exhibited
by hosts. In particular, we show how a power mode selection
agent is able to detect performance variation, and migrate all
VMs from a degraded host. As an example, power mode
selection agent switches a host performing at 50% of its
maximum capacity, into the low power mode, in less than
8 hours (i.e., 100 iterations) since the anomaly started (see
Section 6.7). Moreover, during this period, the combined
action of power mode selection unit and migration unit try
to keep the QoS by migrating the VMs of the degraded host.

• Our solution is evaluated using power models validated
against real traces from enterprise servers, and account for
both migration and PMT overheads. The models and pro-
posed techniques, as well as our baselines for comparison
have been incorporated into the CloudSim simulator [22].

The remainder of this paper is organized as follows. Section 2
summarizes related work. Then Section 3 introduces the power
model that we have used. Section 4 formulates the problem for-
mulation, whereas Section 5 describes our proposed MAGNETIC
approach. In Section 6, the experimental setup is described and
results are provided. Finally, a summary of our conclusions is
drawn in Section 7.

2 RELATED WORK

2.1 Energy-aware Dynamic VM Consolidation
Previous approaches on energy-aware dynamic VM consolidation
can be categorized based on: i) their capabilities for considering
power and delay overheads associated with VM migration and
PMT, and ii) their control policy level (centralized, distributed).

Most of the previously published papers in this regard have
proposed centralized approaches to decide VM migrations and
hosts’ power modes [8], [9], [10], [11], [12], [13], [15].

Abdullah et al. [8] have proposed a method that is composed
of Fast Best-Fit Decreasing (FBFD) and Dynamic Utilization Rate
(DUR) algorithms to consolidate VMs dynamically. Also, the
underutilized host selection in [8] is the same as Power Aware
Best Fit Decreasing (PABFD) algorithm proposed by Beloglazov
et al. [10], however, two different strategies are applied to detect
over-utilized hosts in [8]. Beloglazov et al. [10] have introduced
several dynamic consolidation algorithms which work along with
PABFD algorithm. The main differences between these algorithms
are their overloaded host detection and VM selection methods. A
similar approach has been proposed by Kansal et al. [9] which
applies a meta-heuristic approach to detect overloaded hosts and
forces the maximally loaded VMs to migrate to the least loaded
active hosts. These approaches fall short in considering migration
overheads in their control policy of dynamic consolidation that
can lead to higher migration counts.

Nguyen et al. [11] have proposed a VM consolidation algo-
rithm with multiple usage predictions (VMCUO-M) to predict
resource utilization, and characterize overloaded and underloaded
hosts. Sercon [13] is another migration cost-aware algorithm,
which minimizes the total number of active hosts together with the
number of migrations, saving energy due to the lower number of
migrations, but being still unaware of migration overheads. Verma
et al. [12] proposed pMapper algorithm, which improves energy
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efficiency by minimizing migration costs. All the above mentioned
algorithms are PMTs overhead oblivious methods as they do not
account for the power-delay costs associated with PMTs.

In contrast to all these works, Rossi et al. [15] propose a
performance-aware energy efficient hosts management approach
that switches some idle hosts into intermediate sleep power
modes to improve performance. The authors also investigate the
efficiency of various sleep power modes. However they disregard
the impact of VM migration overhead.

Although most of the approaches in data center resource
management are fully centralized, some papers have proposed
distributed and semi-centralized approaches which lead to better
scalability and shorter runtime. Feller et al. [23] have proposed
a fully decentralized dynamic consolidation technique that is
applicable to unstructured peer-to-peer networks. Their proposed
approach is built on top of the Cyclon protocol [24] which allows
to periodically construct time-varying randomized P2P overlays.
Contrary to our work, this algorithm does not consider the over-
heads of migrations and PMTs and has been designed to increase
Turned-off hosts with a lower number of migrations. Then, Wu
et al. [14] propose a semi-centralized technique based on an
Improved Grouping Genetic Algorithm (IGGA) which switches
off idle hosts to save energy, and takes into account migration
costs. The main bottleneck of IGGA is its large runtime overhead,
especially for large-scale data center scenarios.

Finally, a lot of studies exist trying to improve energy effi-
ciency of a data center. To the best of our knowledge, our proposed
QL-based approach is the first work that manages both hosts and
VMs in a semi distributed manner, taking into account the power
and delay overheads associated with both migrations and PMTs.

2.2 Performance Variability Awareness
Application performance variation can be caused by software
anomalies or hardware failures that can directly impact QoS.

Many works detect anomalies through log file analysis [25],
[26]. Diagnosing anomalies and failures through monitoring in-
frastructures and analyzing log files is a difficult task due to the
need to collect large amounts of noisy and high-dimensional data
at runtime. Recent studies propose anomaly diagnosis methods
via monitoring tools with different sampling time period (e.g.,
every one minute or greater sampling period). In this way, some
works detect anomalies based on the changes on host resources
utilization. For this purpose, they manually select the samples
of power, file system as well as memory demands congestion
[25], [26]. Nevertheless, these works do not take into account an
automated method to efficiently tackle these problems.

Other works exist that propose statistical techniques and ma-
chine learning-based methods to detect some specific anomalies
such as network congestion, operating system performance issue,
temperature-related issues, or hard disk and memory access errors
with high precision [27], [28], [29]. Xu et al. [27] present a frame-
work to detect anomalies through statistical techniques and switch
to backup VMs or servers in the presence of failure. resource
allocation method using backup VMs and links. Ibidunmoye et al.
[29] investigate using ML algorithms to predict QoS and detect
performance degradation. However, these methods neither con-
sider the availability of computing nodes nor react to anomalies for
energy efficiency with respect to the power and delay overheads
associated with both migrations and PMTs.

In contrast, in this paper we exploit VMs resource usage and
their performance characteristics to diagnose anomalies instead
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Fig. 1: Power modes transition periods and power consumption

of using log files. Our proposed approach detects performance
degradation and migrates the degraded host’s VMs to switch it
into the low power modes.

3 POWER MODEL OF THE DATA CENTER

This section introduces the power models used in this paper to
estimate data center energy consumption. In particular, we model
overall data center power as the sum of the power consumption
of all hosts (i.e., physical servers). Moreover, we account for the
overhead of migrations by modeling the energy cost per VM, as
described in the next subsections.

For the sake of clarity, Table 1 summarizes the main parame-
ters and notations used throughout this paper.

3.1 Host Power Model
The power consumption of a host depends on both its specific
hardware configuration and the utilization of its various processing
components, including CPU, memory, hard disk, I/O, and network.
Most power models estimate host power using a linear or square
regression of CPU utilization. This estimation usually disregards
memory power, and is only valid for one specific application, as
shown in previous works [30], [31]. However, these models have
been used by most of the works in the dynamic consolidation
area, regardless of the application and workload traces, leading to
over-simplified and unrealistic results, as we show in Section 6.

Hosts running modern operating systems can benefit from dif-
ferent power modes, which generally include: Turned-off, Active,
DeepSleep (DSleep), and Sleep (see Fig. 1). A Turned-off host
consumes zero power. Nevertheless, hosts are rarely Turned-off in
today’s data centers due to the very large time delay and energy
loss of booting the server and resuming to Active mode. Therefore,
we have not considered Turned-off as an available power mode in
this paper (and therefore is not shown in Fig. 1). When a server
is Active but not running any workload, we consider it is idle.
Idle hosts are put into sleep modes (DSleep or Sleep) in order
to save power. Sleeping hosts consume a constant power that
is significantly lower than idle power. There are associated time
delays and energy losses when a server is suspended to or resumed
from these sleep modes. These are smaller when resuming from
sleep to active, than when going from active to sleep. During the
transition, the power consumption of the host for both suspending
and resuming periods is similar and close to the maximum power
of the host (Pmax), but has a different delay overheads [16], [32].
Therefore, the energy consumption is Etrans = Ptrans ·Ttrans, where
Ptrans ≈ Pmax and Ttrans represent the power and delay overheads
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TABLE 1: Overview of the used notation

General Parameters and Variables

M Number of VMs Ci
Reqt

Requested computational resources of host i during time
slot t

N Number of hosts C j
Reqt

Requested computational resources of VM j during time
slot t

Pi Power of the physical host i Ci
Alloct

Allocated computational resources of host i during time
slot t

PIdle Physical host’s idle power C j
Alloct

Allocated computational resources to VM j during time
slot t

PSleep Physical host’s power in Sleep mode memi
max Maximum memory of host i

PDSleep Physical host’s power in DeepSleep (DSleep) mode Ci
max Maximum computational resources of host i

Pdynamic
i
k

Dynamic power of the physical host i when running application
k mem j

Alloct Allocated memory to VM j during time slot t

Ptrans Physical host’s power during the transition mode fi(t) CPU frequency of host i during time slot t
Ttrans The latency of the physical host’s transition mode E j

mig Energy overhead of migrating VM j
Etrans Physical host’s energy consumption for a transition V j

mig Network traffic of migrating VM j

EDC(t1 ,t2)
Energy consumption of the data center’s IT equipment during
(t1, t2)

SV The set of all VMs of the data center
SLAv(t1 ,t2) SLA violation of the data center during (t1, t2) SH The set of all hosts of the data center
E i

t Energy consumption of host i during time slot t
Indices

t Index for time j Index for VM
i Index for host k Index for application

of the transition, respectively, as shown in Fig. 1. DSleep is a
sleep mode with lower power consumption compared to Sleep
mode, whereas the delay and energy overheads when a server is
suspended to or resumed from DSleep is higher than Sleep (see
Section 6.1 for the specific values in our experimental setup).

Then, as power consumption of active hosts changes dynam-
ically using DVFS and setting CPU resource limits with respect
to the characteristics of the running workload, we use the power
measurements presented in [33] to estimate the active power
consumption of the considered host for different applications of
the PARSEC benchmark suite [34]. For each application, the
power consumption is measured as a function of CPU resources,
i.e., the aggregated maximum computing capacity of the cores
of a processor. For most PARSEC applications, there is a lin-
ear relationship between power and CPU resource limits, with
the slope of the curve varying for each application. For most
applications, the maximum power consumption happens at the
maximum computing capability. However, for some of them that
experience resource contention, after reaching a certain amount of
CPU resources, power consumption remains constant [33].

If we consider that each VM runs one PARSEC application,
static and dynamic consolidation algorithms lead to packing more
than one application (i.e., VM) on one host. By running a variety
of applications on a server, power consumption estimation gets
even harder. As extending the power model to include all appli-
cation mixes is unfeasible, we have estimated total server power
consumption by adding the host’s dynamic power consumption
due to each application running on it. Dynamic power refers to
the power usage of a host under a given load minus the host’s idle
power. Therefore, total power consumption of host i is calculated
as follows:

Pi = Pi
Idle +

Mi

∑
k=1

Pi
dynamic(Uk) (1)

where PIdle stands for host’s idle power consumption.
Pi

dynamic(Uk) accounts for dynamic power of host i when running
application k, and is proportional to the CPU resource utilization
when running application k, (Uk). As we suppose that each VM
runs one application, Mi stands for the number of VMs running on
host i.

To compute the host’s dynamic power for each application in

PARSEC benchmark, the total CPU power has first been measured
on the host for the different utilization rates (from 0 to 100%,
discretized in 11 uniform levels). After removing the idle power
from the measured total power for each utilization, dynamic
power is computed. For values between two consecutive utilization
levels, we use a linear interpolation to compute its dynamic power
consumption. For PARSEC applications running on the server,
described in Section 6.1, this linear model results in an error below
5% when compared to the real data [33].

Besides these power modes, DVFS is applied to active hosts
to assign minimum voltage and frequency to each processor
considering their requested computational resources.

3.2 VM Migration Energy Model

To compute the energy overhead of migration, we use a linear
model presented in [35]. This model takes into account the
network, as well as the energy consumption of the source and
destination hosts. In a homogeneous network environment, the en-
ergy consumption for data transmission and reception are roughly
the same when the data transmitted and received on source and
destination hosts are equal. Therefore, the VM migration energy
overhead is mainly determined by data transmission and reception
over the networks. Hence, based on the experiments shown in
[35], the energy consumption of migrating VM j consists of a
linear component that increases with the traffic of VM migration
over the network plus an offset which depends on the source and
destination hosts, as follows:

E j
mig = a ·V j

mig +b (2)

where network traffic V j
mig is measured in Megabytes and energy

E j
mig is measured in Joules. Parameters a and b are the network and

host configuration dependent constants, and assume that migration
overhead is proportional to the amount of data volume and not
related to the processing on the hosts. This linear model is
proved to exhibit a maximum error of less than 10% [35]. In
a live migration scenario, all the memory pages of the VM to
be migrated are accessed and transferred through the network
between the source and the destination hosts.
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4 PROBLEM FORMULATION OF HOST AND VM
MANAGEMENT

The problem of allocating VMs to physical hosts is referred to as
VM allocation. Besides initial VM allocation, live VM migration
is used to dynamically improve VMs placement. Over time, this
procedure allows cloud providers to pack VMs into fewer hosts
dynamically, and set more hosts into low power modes.

Furthermore, utilizing various sleep modes with different
power consumption and inter-mode overheads, improves data
center resource efficiency. Considering dynamic consolidation
accompanied with host power mode selection in this paper, pro-
vides more opportunities for improving resource efficiency. In this
way, the control knobs are VM migration and host PMT. Both
operations are associated with power and delay overheads that
should be considered in the optimization.

The first objective of our approach is increasing energy sav-
ings, which leads to packing more VMs on one host. As this
procedure may affect QoS, minimizing Service Level Agreement
(SLA) violation is considered as the second objective. We allocate
host CPU capacity (C j

Alloc, measured in million instructions per
second, i.e., MIPS) to VMs, up to their current requested MIPS.
Therefore, two conflicting objectives here are minimizing energy
consumption and minimizing the difference between requested
(C j

Req) and allocated (C j
Alloc) MIPS, which represents the SLA

violation. Moreover, once a workload has been assigned a certain
capacity, if the real MIPS measured differ from the allocated
MIPS, we consider that the host is experiencing performance
variability due to a hardware or software anomaly (i.e., the host is
failing and workload should be migrated from it).

We formulate our optimization problem in equations (4)-(7).
Let SH and SV represent the set of hosts and VMs of the data
center, respectively, with N and M denoting their number of
members during the time period (t1, t2) correspondingly. At each
time t, each VM is running on a host that is described by ai j(t):

ai j(t) =

{
1 if V M j is assigned to hosti, ∀ j ∈ SV & ∀i ∈ SH

0 otherwise
(3)

Based on the above explanations, we can formulate the opti-
mization problem for the time period (t1, t2) as follows:

Min.
t2

∑
t=t1

EDC(t1,t2)+SLAv(t1,t2) (4)

Subject to
N

∑
i=1

ai j(t) = 1 ∀ j ∈ SV (5)

M

∑
j=1

C j
Alloct ·ai j(t)<Ci

max ∀i ∈ SH (6)

M

∑
j=1

mem j
Alloct ·ai j(t)< memi

max ∀i ∈ SH (7)

The first constraint (5) ensures that each VM is running only
on one host, and the set of constraints (6) and (7) guarantee
that the allocated CPU and memory resources from a host to its
VMs is not higher than its capacity. Ci

max and memi
max represent

maximum CPU and memory capacity of host i. The first and
second terms of the objective function represent the total energy
consumption of the IT equipment (EDC(t1,t2)) and average SLA

violation (SLAv(t1,t2)) of the data center for the time period (t1, t2).
EDC(t1,t2) can be defined as:

EDC(t1,t2) =
M

∑
j=1

E j
mig ·λ

j
mig+

N

∑
i=1

[Pi
trans ·T i

trans ·λ i
trans +Pi · (t2− t1−T i

trans ·λ i
trans)]

(8)

where the first term includes the energy consumption due to all
migrations performed in the previous time slot. The second term
represents the energy consumption during power mode transition
phase, and the third represents the energy consumption of the
host after setting the new power mode. Variables Pi

trans and T i
trans

represent power and delay overhead of power mode transition of
host i. The binary decision variable λ

j
mig shows whether VM j has

been migrated in the previous time slot or not. Also, the binary
decision variable λ i

trans indicates whether the power mode of host
i has been changed in the previous time slot or not.

The SLA violation is defined based on the ’difference between
requested and allocated MIPS’ of the VMs. Therefore, the second
objective of the resource management optimization problem is
represented as follows:

SLAv(t1,t2) =
M

∑
j=1

(C j
Req−C j

Alloc) · (t2− t1) (9)

where C j
Req refers to requested MIPS of VM j and C j

Alloc stands
for its allocated MIPS during time period (t1, t2).

The nature of the VM allocation problem along with host
power mode selection is NP-hard. Therefore, potentially subop-
timal solutions are required to obtain reasonable results in as
short as possible runtime. In this paper, a machine learning based
approach is proposed, where further details are provided in the
next section.

5 MAGNETIC: PROPOSED MULTI-AGENT MA-
CHINE LEARNING-BASED APPROACH FOR ENERGY
EFFICIENT DYNAMIC CONSOLIDATION

Dynamic consolidation algorithms are designed to optimally mi-
grate ’some VMs’ to ’destination hosts’ in order to improve energy
efficiency. This paper proposes the MAGNETIC approach that,
besides the dynamic consolidation, decides the ’appropriate power
mode for all hosts’ in constant time intervals and also drains
under performing hosts from workload, assuming that they may
be experiencing hardware or software failure. In this way, our
proposed approach manages VMs and hosts of the data center
simultaneously at constant time intervals. Indeed, the number
and the resources of the VMs do not change between time
slots and VMs are only created or destroyed at the beginning
of time slots. This not only leads to a better placement and
configuration in terms of energy consumption, but also prevents
unnecessary VM migrations and PMTs, as well as reliability
issues. Furthermore, our proposed approach considers power and
delay overheads related to VM migrations and host PMTs, which
results in minimizing number of migrations and PMTs.

This centralized-distributed management approach is com-
prised of distributed per-host power mode selection agents, to-
gether with a central unit that decides VM migrations. First, the
power mode selection unit chooses the most appropriate power
mode for each of the hosts through a multi-agent QL-based algo-
rithm, improving the trade-off between energy consumption and
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Fig. 2: Structure diagram of the proposed approach

SLA violation. Then, the migration unit performs the necessary
migrations to satisfy these power modes. The migration unit also
detects over-utilized hosts and forces some of their VMs to migrate
to resolve their overutilization. Fig. 2 shows a diagram of the
proposed approach, containing the above mentioned operations,
which are applied in constant time intervals. The concepts of
agent, state, and reward in this figure are explained in the following
subsections. Next, we describe in detail the two units of the pro-
posed approach and investigate their computational complexity.

5.1 Host Power Mode Selection Unit

Power mode selection unit consists of the ML-based distributed
learning agents, one per host, each of which decides the optimal
power mode of one host. Our proposed multi-agent power mode
selection unit, besides eliminating centralized management strat-
egy, which is practically impossible for large scale data centers,
benefits from the large amount of workloads, and therefore differ-
ent states, available in data centers, to select the optimal actions.

As there are no labeled training examples that power mode
selection agents could use to learn, we use QL, which belongs
to the semi-supervised learning algorithms category known as RL
[19]. RL algorithms have the ability to find the optimal policy in
a trial and error manner by observing the environment rewards.
General RL frameworks consist of three main components: state,
action, and reward. An agent selects an optimal action considering
its state and receives a reward from the environment related to its
selected action. The received reward shows the success/failure rate
of the agent’s decision. RL techniques are highly recommended
for multi-agent systems because they neither need environment
nor neighbors models. They allow an agent to take actions while
it learns based on just its own state [21], [36], [37]. In a multi-
agent RL approach, agents do not have full information about their
counterparts and environment, so the multi-agent environment
constantly changes as agents learn about each other and adapt
their behaviors accordingly. In a multi-agent system, it is possible
to apply QL in a straightforward fashion to each agent [21].

5.1.1 Q-Learning Basic Concepts
In QL algorithm, a Q value is associated with each state-action
pair (s,a) and each state-action pair (s,a) creates an entry in a Q
table that is initially set to zero. The Q value of each state-action

pair (s,a) is updated every time the agent observes a state s and
takes an action a as the optimal action. In this way, the optimal
action a∗ is selected by:

a∗= argmaxai∈AQ(s,ai) (10)

where A represents the set of actions that are available at state s.
As the process continues, each agent improves its current policy
by updating the Q values stored in the Q table. If the initial Q
function Q0(s,a) at time slot 0 is defined as:

Q0(s,a) = Ψ(s,a) (11)

for t = 0,1,2, ..., the Q value of a (s,a) pair is updated by:

Qt+1(s,a)← [(1−αt(s,a)) ·Qt(s,a)+

αt(s,a) · (rt+1(s,a)+ γ ·argmaxai∈AQ(s′,ai))]
(12)

where γ represents the discount factor and αt(s,a) is the learning
rate of the agent. The discount factor γ is in the range of [0, 1]
and is used to determine the effect of near-future information. If γ

is closer to 1, the weight of future reinforcements will be higher.

Learning Rate Discussion: learning rate αt(s,a) deter-
mines how newly acquired information overrides old informa-
tion. Setting αt(s,a) = 1 makes the agent focus on the imme-
diate reward rt+1(s,a) and the estimated total future rewards
argmaxai∈AQ(s′,ai) [19]. Therefore, if we want agents to learn as
they act, αt needs to be a constant value, thus the agent learns from
newly acquired information regardless of the number of visits.
Nevertheless, if we prefer that, after a certain time, the agent stops
learning, we can define the learning rate as the inverse function of
the number of visits. More specifically, if we define αt(s,a) as:

αt(s,a) = 1/(1+Visitst(s,a)) (13)

where Visitst(s,a) indicates the number of preceding selections
of action a in state s, it can be shown that when αt(s,a) =
1/95 ≈ 0.01, the results from new visits hardly change the Q
values that already have been learned [21]. As shown in the result
section, setting the learning rate as in Equation (13) yields the
best results in terms of energy efficiency. However, setting it to a
constant value, enables our technique to detect host performance
variability. As the defined reward function in this paper consists of
allocated MIPS to the hosts’ running VMs, the agents can observe
the performance variation revealed in allocated MIPS, and if we
use a constant value for αt(s,a) parameter, agents can influence
observed anomalies in their action selection polices.

We consider two phases to train the reinforcement model: (1)
exploration and (2) exploration-exploitation. In the exploration
phase, at the first time slot, each agent selects an action randomly
from an action pool, which includes all the available power modes.
Thereafter, the new Q-value corresponding to the selected action
and the initial state is calculated. In subsequent time slots, when
a state is observed again, the action is selected among a subset
of actions that has not been selected yet. In the exploration-
exploitation phase, the QL algorithm makes an optimal balance
between exploration and exploitation. ε − greedy is one of the
widely used methods for exploration/exploitation balancing [38].
In this method, at each time slot, the agent selects a random action
with the probability of 0 < ε < 1 instead of selecting the learned
optimal. This action selection policy is defined as follows:

π(s) =

{
argmaxai∈AQ(s,ai), if ξ < ε

random action f rom A, otherwise
(14)
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Algorithm 1 Host Power Mode Selection Unit Procedure

Start of the time period (t, t +1)
1: HostList: all hosts
2: for i = 1 : N do
3: S← Observe current state of host i.
4: ξ ← Generate a random number between 0 and 1.
5: a*← Select optimal action using π(s) (Equation 14).
6: end for

End of the time period (t,t+1)
7: for i = 1 : N do
8: r← Receive reward host i using (Equation 17).
9: S’← Observe subsequent state of host i.

10: Update the Q function using (Equation 12).
11: end for

where ξ is a uniform random number drawn at each time slot and
can balance the trade-off between exploitation and exploration so
that the algorithm converges to the optimal policy.

5.1.2 State and Action Definition
To apply QL for selecting host’s power mode, we need to define
the state space and the set of available actions. The state of an
agent is defined by the state variables: CPU utilization (Ut ) and
number of VMs (NV Mt ). Therefore, the state space S can be
defined by:

S = {s|sx,y = (Ut ,NV Mt),x = 0 : U1 and y = 0 : U2} (15)

The range of host’s CPU utilization is [0,100]%. We map this
utilization onto the discrete range of [0,U1] where x = 0 and
x = 10 corresponds to the CPU utilization of 0% and 90-100%,
respectively. The value of the variable y is determined by the
number of VMs on the host. In this paper, we have set U1 and
U2 to 10 and 1, respectively. Hence, CPU utilization discretization
is done in steps of 10, and variable y is defined as follows:

y =

{
0 if NV Mt ≤ 2
1 otherwise

(16)

The variable y forces the agent to consider the number of
running VMs on its corresponding host in its action selection
policy. In this way, the agent distinguishes between the cases
where the host has the same CPU utilization but the number of
running VMs is different. As selecting an inappropriate action for
a host with more running VMs causes higher SLA violation, we
have heuristically selected a small enough value, 2 (in (16)), for
the boundary between high number and low number of VMs.

At each state s, the available action set for the agent is
{Active,Sleep,DSleep} which represents the available power
modes. Therefore at each time slot, the agent decides to drive the
host to one of the power modes. Algorithm 1 reviews the described
process of host power mode selection unit.

5.1.3 Reward Function Definition
The main objective of server consolidation is energy savings.
However, maximizing energy savings usually degrades QoS.
Therefore, QoS has to be considered as a second objective (or
a constraint) in the optimization problem. We consider energy
consumption and QoS two conflicting objectives and involve these
objectives in the reward function of the learning process.

As mentioned before, SLA violation is defined based on the
difference between requested and allocated CPU resources (see
Equation 9) to its running VMs. Hence, SLA violation is zero

if the MIPS allocated to the VMs of a host (Ci
Alloct ) is equal

to or higher than its requested MIPS (Ci
Reqt ). To consider both

energy consumption and SLA requirements objectives, this paper
proposes the following reward function:

ri
t+1 =



(−1) ·N(E i
t ) if Ci

Reqt = 0
}

Item 1

c1 ·N(E i
t )− if Ci

Reqt > 0

c2 ·N(Ci
Reqt) & Ci

Alloct = 0

}
Item 2

c1 ·N(E i
t )+ c2 ·N(Ci

Alloct) otherwise
}

Item 3

(17)

where E i
t represents the total energy consumed by host i in the

last time slot t (N(E i
t ) is normalized E i

t to [0,1]). This reward is
forwarded to agent i at the beginning of time slot t+1.

The three items of the reward function cover different host’s
states. The first corresponds to the case where the host has no
running VMs. The second is related to the case where the host has
been switched to Sleep or DSleep while hosting some VMs. In
this case, the agent gets a penalty proportional to the difference
between requested and allocated MIPS. For a host driven to a
sleep mode, higher Ci

Reqt produces lower reward and consequently
teaches the agent to not drive the host to a sleep mode when Ci

Reqt

is high. Finally, the third term helps the agent to drive the host to
higher utilization to get a higher reward. Actually, the difference
between the second and third items is on Ci

Alloct that must be zero
for the second item (host has been driven to a sleep mode) and
higher than zero for the third item (host is in Active mode). As
the agents desire to decrease energy and increase allocated MIPS,
c1 and c2 in the reward function have to be in the ranges of [-1,
0] and [0, 1], respectively. These two weights are used to improve
the trade-off between objectives. The energy part of the reward
function, E i

t , consists of three terms:

E i
t = Pi

transt ·T
i

transt ·λ
i
trans+

Pi
t · (Ttimeslot −T i

transt ·λ
i
trans)+1/2 ·E i

migrations
(18)

The first represents the energy overhead of the host power
mode transition. The second concerns the energy consumption
of host i, after setting in the new power mode during time slot
(t, t + 1). Ttimeslot stands for considered time interval. Finally, the
third term aims to involve the energy overheads of incoming
and outgoing migrations of host i (E i

migrations). As for each VM
migration both source and destination hosts are involved, we
consider overheads are equally split on the rewards of these hosts.

5.2 Migration Unit
To improve VMs placement, the migration unit migrates VMs
considering the selected power modes for the hosts taken from
power mode selection unit. Moreover, the migration unit migrates
some VMs from overloaded hosts in order to meet QoS require-
ments. A host is considered overloaded if its capacity is lower than
the aggregated requested MIPS of its VMs (i.e., Ci

max < Ci
Alloc).

Our proposed approach uses a static threshold technique to detect
overloaded hosts [30].

Power mode selection unit may change a host’s mode from
Active to Sleep/DSleep. In this case, VMs on this host have to
be migrated to other active hosts during the next time slot. The
main difference between the proposed approach and previously
presented dynamic consolidation algorithms is the underutilized
host selection method. MAGNETIC selects some hosts to migrate
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all of their VMs considering their selected power modes. More
specifically, a host is considered underutilized if its power mode
is changing from Active to Sleep/DSleep for the next time slot.

Thereafter, migration unit selects the destinations of VM
migrations. Destination host selection is an online bin packing
problem which can be solved using heuristics like Best Fit (BF),
First Fit (FF), and Best Fit Decreasing (BFD) algorithms. Due
to the low complexity and low computational overhead of BF,
we use a modified BF algorithm to select the destination hosts
of VM migrations for the next time slot. Although using more
complicated consolidation methods, including load balancing,
improves VMs placement on active hosts, it also increases the
number of VM migrations and may interfere with the learning
process of hosts’ power modes selection agents.

5.2.1 Migration Algorithm Description
Algorithm 2 reviews the explained operations, which can be sum-
marized in three main steps. First, overloaded hosts are detected
using a static threshold (Ut ) heuristic. Migration unit selects VMs
to be migrated from overloaded hosts considering their selected

Algorithm 2 VM Migration Unit Procedure

1: OverLoadedHosts← Detect overloaded hosts using Ut
2: for all OverLoadedHosts do
3: if host is active in next time slot then
4: while host is overloaded do
5: SelectedV m← VM with minimum C j

Req
6: Add SelectedV m to MigratingV Ms
7: end while
8: else
9: Add all V Ms from host to MigratingV Ms

10: end if
11: end for
12: Add all V Ms from hosts whose power mode is changing from

Active to Sleep/DSleep into MigratingV ms
13: Sort MigratingV ms in decreasing order
14: for all MigratingV ms do
15: for all hosts do
16: if host has no running or incomming VM then
17: SelectedHost ← host
18: end if
19: end for
20: if SelectedHost is NULL then
21: minCAvail ← 0
22: for all hosts do
23: if Ci

Avail after allocation of VM ≤ minCAvail then
24: SelectedHost ← host
25: minCAvail ← Ci

Avail
26: end if
27: end for
28: end if
29: end for
30: EmptyHosts← Detect hosts that have no running/incoming VM
31: for all EmptyHosts do
32: minCAvail ← 0
33: for all V Ms do
34: if VM is not in migration then
35: if Ci

Avail of VM’s host after deallocation ≤ minCAvail then
36: SelectedV M ← VM
37: minCAvail ← Ci

Avail
38: end if
39: end if
40: end for
41: end for
42: Set best frequency for all active hosts

power modes (Lines 1-11). If the selected power mode for an
overloaded host is Active, its VMs are chosen to be migrated to
reduce overutilization. On the contrary, if its selected power mode
is a sleep mode (this may happen during the exploration phase of
the training), all of its VMs are migrated. The point here is that,
as the energy and delay overheads of migrating all VMs of an
overloaded host is high, the reward of its associated agent is low
and the probability of selecting this action in the future decreases.
Second, the algorithm migrates all VMs from hosts whose power
modes are changing from Active to Sleep/DSleep (Lines 12-28).
Affected VMs are sorted in decreasing order (according to their
Ci

Req) to be migrated to active hosts. To select the destinations of
these migrations, the algorithm uses a modified BF method. To
this purpose, the algorithm first selects hosts that are transitioning
from Sleep/DSleep mode to Active mode and have no running
or incoming VMs, and then selects hosts based on their available
MIPS (Ci

Avail) by the BF method. The reason for this prioritization,
is to migrate at least one VM to each of the hosts whose power
modes are changing from Sleep/DSleep to Active, to provide a
correct reward for their agents.

Despite the previous policy, there may still be some hosts that
have just transitioned to Active mode and do not have any running
or incoming VMs. Therefore, in the third step of the algorithm,
migration unit migrates one VM to each of these hosts (lines 29-
38). VMs are selected to be migrated to these hosts based on the
available MIPS after being de-allocated from their current hosts.

After applying the selected power modes and VM migrations,
the frequency of host i at time slot t is adjusted based on the
allocated resources of its running VMs, Ci

Alloct , by:

fi(t) ≤
Ci

Alloct

Ci
max
· f i

max (19)

where Ci
max and f i

max represent the maximum computational ca-
pacity and maximum CPU frequency of host i, respectively.

The computational complexity of our algorithm is O(NActive ·
Mmig) where NActive and Mmig represent the number of migrating
VMs and number of active hosts of the data center, respectively.
This complexity is better than the popular complexity of most of
the algorithms in this area which is O(N.M), (N and M represent
the number of hosts and VMs of the data center, respectively).

6 EXPERIMENTAL SETUP AND RESULTS

This section compares our solution with SoA approaches in differ-
ent perspectives. Section 6.1 describes experimental setup of the
simulations. Section 6.2 represents the parameter tuning process
of the learning agents. The proposed and compared approaches are
evaluated in terms of energy consumption, average SLA violation,
and runtime in Section 6.3. Also, we investigate the overheads
and the scalability of these solutions in sections 6.2 and 6.3,
respectively. Finally, Section 6.7 evaluates the capability of our
proposed approach to detect performance degradation.

6.1 Experimental Setup

To evaluate the effectiveness of our solution, we use an enhanced
version of the CloudSim simulator [22]. We extend CloudSim to
support the power models and workloads introduced in Section 3
and implement our solution and the baseline for comparisons that
are explained next (Section 6.3). A computer with a Core i7, 3.6
GHz CPU and 32GB RAM has been used to run the simulations.



1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2919555, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, APRIL 2018 9

We consider a data center with 1600 hosts and a shared storage
infrastructure. The number of used hosts after dynamic consolida-
tion is much lower than 1600, however with this setup we can use
the same initial VM allocation for all considered benchmarks (with
different number of VMs). To make a fair comparison, we assess
energy savings with respect to other approaches in the SoA, and
not against the initial number of the used hosts. Table 2 describes
the characteristics of the simulated physical host, an AMD Magny
Cours (Opteron 6172) with 12 cores on a single chip.

Solutions have been evaluated using different real workload
traces provided as a part of the CoMon project [39]. In this project,
CPU utilization has been obtained every 5 minutes from more
than a thousand PlanetLab VMs hosted on more than 500 hosts.
Therefore, 5 minutes is the time interval selected to apply dynamic
consolidation, in our work. This time interval depends on the
nature of the applications running on the data center. We have se-
lected five days of traces collected during March and April 2011 of
the CoMon project to cover different number of VMs and resource
utilization patterns (which leads to different CPU utilization mean
and standard deviation). The characteristics of the workload traces
are shown in Table 3. As for all the PlanetLab traces the mean
CPU utilization is low, we have simulated VMs with different
number of cores to cover all the host’s utilization levels from zero
up to its capacity. The name of each workload trace represents
the day and month of collecting data. VM utilization traces have
been randomly mapped to the PARSEC benchmarks in order to
emulate various VM types that run applications of different nature
and therefore different in their CPU and memory requirements, as
well as on their power consumption.

We have considered three different power modes in this paper;
Active, Sleep and DSleep (see Section 3 and Fig. 1).

Equation 1 and the measurements of [33] are used to calculate
active host’s power consumption. For these measurements, each
application runs on an isolated VM in a virtualized testbed using
the VMware vSphere hypervisor. The power consumptions of
Sleep (PSleep) and DSleep (PDSleep) hosts are extracted as 25%
and 5% of Pmax, respectively [40]. Transition power and delay
overhead between the power modes, as shown in Table 4, are
obtained from the combination of two models presented in [40]
and [32] using a linear regression. Finally, for the migration energy
overhead, we derive the parameters a = 0.461 and b = 18.127,
linearly interpolating between our considered host power values
and the one in [35].

TABLE 2: Characteristics of the used host

Type Value
Number of Cores 12

Memory (GB) 16GB
Peak Power (W) 165W
Idle Power (W) 66W
MIPS per Core 2000

TABLE 3: Characteristics of workload traces

Characteristics 03/06 04/12 04/11 04/09 04/03 03/22

Number of VMs 898 1054 1233 1358 1463 1516

CPU Util. Mean (%) 11.44 11.54 11.56 11.12 12.39 9.26

CPU Util. St.dev (%) 16.83 15.15 15.07 15.09 16.55 12.78

TABLE 4: Characteristics of the used host

Ptrans (W) Ttrans (s)
DSleep to Active Pmax 200
Active to DSleep Pmax 55
Sleep to Active Pmax 10
Active to Sleep Pmax 85

Fig. 3: Energy consumption and average SLA violation for differ-
ent values of c1

6.2 Parameter Tuning for Q-Learning

As explained in Section 5.1, parameters γ , α , ε , c1 and c2 have to
be tuned based on the optimization objectives and the environment
characteristics. The discount factor γ and ε have been chosen
experimentally and have been set to 0.8 and 0.001, respectively.
For all the experiments in this section, we set the α parameter as
the inverse function of the number of visits (as in Equation (13)),
except for Section 6.7 where we set it to a constant to investigate
host performance degradation.

The parameters c1 and c2 in the reward function represent
scalar weights of our two conflicting objectives in the learning
process. Parameter c1 has been swept from -1 to 0 (which results
in sweeping c2 from 0 to 1), to analyze the impact of these weights
on the energy consumption and average SLA violations. As Fig. 3
shows, the energy consumption of the data center decreases by
increasing the weight of energy (the absolute value of c1) in the
reward function. Also, increasing the weight of allocated MIPS
and the penalty of violated requested MIPS (c2), improves QoS.

The shape of the curves for energy and SLA violation when
sweeping c1 is not symmetrical. This is because Fig. 3 represents
the energy consumption and average SLA violation of the whole
data center, while c1 and c2 are the coefficients used in the reward
function of each agent. Indeed, the effect of the used parameters
(E i

t , Ci
Reqt , and Ci

Alloct ) in the reward function on the energy
consumption and average SLA violation is not the same.

6.3 Compared SoA Approaches

In order to evaluate MAGNETIC, we have compared it with
several existing approaches, ranging from non-power aware so-
lutions to the SoA in the field, in terms of energy consumption,
SLA violation, runtime, Migration and PMT count overheads,
scalability, and the ability of performance degradation detection:

• Non-power aware solution (NPA): in this algorithm, VMs are
running on hosts based on the initial VM allocation algorithm
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and no dynamic consolidation approach is used to improve
VMs placement. The only energy saving technique is DVFS.

• PABFD [10]: The power-aware best fit decreasing algo-
rithm improves VMs placement by migrating VMs from
underutilized hosts. PABFD optimizes VMs placement every
5 minutes by recognizing over-utilized and underutilized
hosts. This algorithm detects over-utilized hosts using a static
threshold and selects a VM to migrate from it with minimum
CPU utilization and migrates VMs while its over-utilization
is resolved. To improve VMs placement of underutilized
hosts, PABFD looks for the host with the minimum CPU
utilization, migrates all its VMs, and switches it to Turned-
off power mode. For each migrating VM, PABFD selects a
destination host with the minimum power increase due to the
VM reallocation. Any underutilized active host which can
host the VM can be a candidate destination. In this approach,
a host is in Active mode if its CPU utilization is higher than
zero, otherwise it will be in Turned-off mode.

• IGGA [14]: The dynamic consolidation algorithm proposed
in [14] migrates VMs based on a genetic algorithm that tries
to minimize power consumption and migration overheads.
In this way, in each iteration, a VMs placement is chosen
based on a defined score and using an improved genetic
algorithm. The defined score is a linear function of power
and data transmission overheads of migrating to the new VMs
placement. Similar to PABFD, IGGA switches idle hosts to
Turned-off mode, regardless of host PMT overheads. The
main disadvantage of IGGA is its huge runtime.

• E-eco [15]: This approach manages VMs placement and
hosts’ power modes to decrease energy consumption and
improve performance. E-eco is aware of host PMT overheads,
and each host can be in Running (Active), Sleep, or Turned-
off mode at each time slot. E-eco keeps some hosts in Sleep
mode to turn them on quickly when needed. Different energy-
saving techniques (dynamic consolidation or DVFS) are eval-
uated for different VM’s sizes and placements and are used in
E-eco to improve the trade-off between energy consumption
and performance. E-eco uses several sub-routines to select
power modes, energy-saving technique, and CPU frequency
for each host. This algorithm is centralized and is not aware
of migration cost, leading to high number of migrations.

For a fair comparison, when implementing these algorithms,
we have considered DSleep instead of Turned-off (or Switch off ).

6.4 Energy, QoS, and Performance Evaluation
This section compares the above mentioned algorithms in terms
of energy consumption, average SLA violation and runtime using
different benchmarks. We have applied dynamic consolidation
for a 24-hour period of data center operation and reported the
mentioned parameters for the last 23 hours, to limit the impact
of initial VM allocation policy on the results. Normalized energy
consumption of the data center for different algorithms to the NPA,
running each of the 6 workload traces, are shown in Fig. 4. X-
axis of this graph represents workload traces in increasing order
in terms of the number of VMs. Fig. 4 shows that MAGNETIC
achieves minimum energy consumption for all traces (up to 15%
energy saving). The energy savings of our proposed approach
increase with the number of VMs, thus showing better scalability.
We discuss this important characteristic in detail in Section 6.6.

Then, Fig. 5 shows the average SLA violation of the data
center due to the different algorithms. Although MAGNETIC

10%7.5%8%6%6.5%
6%

MAGNETIC

Fig. 4: Normalized Energy consumption to NPA for 23 hours
operation of the modeled data center

Fig. 5: Average SLA violation for 23 hours operation of the
modeled data center

improves energy efficiency further than the compared algorithms,
it exhibits similar or even less SLA violation. For each workload
trace, the difference between MAGNETIC and the best algorithm
in terms of average SLA violation, is less than 1%. The trade-
off between energy and QoS in our algorithm is taken into
consideration by experimentally adjusting the c1 and c2 variables
of the reward function. Furthermore, selecting an appropriate
training data set that matches the data center application can
improve the results of the MAGNETIC for both the energy
consumption and the SLA. Hence, better results could be derived
in real implementations, with more effort on the learning part of
the algorithm. As NPA does not use migrations to improve VMs
placement, the number of migrations obtained by this algorithm
and consequently its SLA violation are zero. Hence, the results of
this algorithm are not shown in Fig. 5 and Fig. 6.

We have measured the runtime of different algorithms over a
23 hours data center operation, and depicted the average value
for a single run in Fig. 7. Although the required runtime for
our proposed approach is higher than NPA, PABFD, and E-eco,
for less than 1 seconds, this runtime is below 2 seconds for
all workloads, which is lower than the dynamic consolidation
intervals (dynamic consolidation is applied with 5 minutes time
intervals), representing an overload of less than 0.7%. The runtime
of IGGA is much higher than that of other algorithms, making it
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Fig. 6: Number of migrations in each time slot for a 23 hours
operation of the modeled data center. (a) Average number of
migrations per time slot (b) The percentage of average number
of migrations to total number of VMs per time slot

MAGNETIC

Fig. 7: Average runtime of each approach

an unfeasible approach, especially for large-scale data centers.

6.5 Migration and PMT count overheads analysis
Dynamic consolidation approaches utilize VM migrations and
host PMTs to improve VMs placement and resource efficiency.
These operations are associated with energy and delay overheads.
Even if the management algorithm considers these overheads in its
policy, algorithms with fewer migrations and PMTs are preferred
in practice. This is due to the potential underestimation and inac-
curacies when modeling overheads. In particular, it is the effect
of network bandwidth overhead, which is not generally accounted
for and could be considerable for large scale data centers. These
two factors increase the chance of approaches with fewer number
of migrations and PMTs to be used in real data centers. Therefore,
this section evaluates MAGNETIC and compared algorithms in
terms of number of migrations and number of PMTs.

Fig. 6 shows the average number of migrations in each time
slot, during a 23 hours of data center operation, utilizing the pro-
posed and compared approaches. MAGNETIC decreases the num-
ber of migrations by 45%-73%, 44%-73%, and 72%-86% when
compared to PABFD, E-eco, and IGGA, respectively. Although for
most of the dynamic consolidation algorithms higher migrations
result in better placement, our approach achieves higher energy
efficiency with much lower number of migrations.

Table 5 shows the number of PMTs caused by different
algorithms over 23 hours of data center operation for the workload
trace 03/06 with 898 VMs (the smallest workload trace). Our ap-

TABLE 5: Number of PMTs for different algorithms

Transitions NPA PABFD E-eco IGGA MAGNETIC
All 270 393 652 1382 127
Active to DSleep 270 203 195 698 32
Active to Sleep 0 0 0 0 19
Sleep to DSleep 0 0 67 0 15
Sleep to Active 0 0 147 0 13
DSleep to Active 0 190 35 684 39
DSleep to Sleep 0 0 208 0 9

proach decreases the number of PMTs 52%-90%, when compared
to other algorithms. This table also shows that our algorithm has
used all available power modes while PABFD and IGGA (that
always switch off idle hosts), only use Active and DSleep.

6.6 Scalability Evaluation
This section investigates the scalability of MAGNETIC when
compared to others. The largest real traces in terms of the
number of VMs in PlanetLab consist of 1463 VMs. Therefore,
to investigate scalability, we have combined the available traces to
produce larger ones, obtaining synthetic traces shown in Table 6.

As IGGA exhibits runtimes above the duration of the time slot
and is unfeasible for large scale scenarios, we do not repeat the re-
sults for this algorithm. Table 7 represents the energy consumption
and the average SLA violation of the data center using different
algorithms. MAGNETIC decreases the energy consumption by
around 58%, 10%, and 15% compared to NPA, PABFD, and E-
eco, respectively. While having the same amount of SLA violation
(less than 1% difference). Table 8 represents runtime and number
of migrations of different algorithms. As mentioned before, NPA
does not improve VMs placement. Hence, the number of its
migrations is zero and its runtime for large scale data centers is
as low as for small scale cases. The main achievement of the
proposed algorithm for large scale data centers is its very low
number of migrations while improving the energy efficiency. Our
proposed algorithm decreases the number of migrations by 83%,
84%, and 88% compared to both PABFD and E-eco for synthetic
trace1, trace2, and trace3, respectively.

As expected from the time complexity analysis of the pro-
posed, PABFD, and E-eco, their runtime goes slightly higher when
the number of VMs and hosts of the data center are increased.

6.7 Performance Degradation Detection
Providing labeled data resulting from server and VM monitoring
to assess the performance variation, originating from various
anomalies is not practical. Therefore, here we use a constant value
instead of Equation (13) for the parameter α , which causes power
mode selection agents to learn constantly as they act. In this
way, we can investigate the ability of MAGNETIC in detecting
performance degradation. This parameter has been tuned based on
the objectives and chosen to be 0.6 for this simulations.

TABLE 6: Synthetic workload traces

Number of VMs Number of hosts
Synthetic trace1 3877 4000
Synthetic trace2 5108 5200
Synthetic trace3 7522 7600
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TABLE 7: Energy consumption (kWh) and average SLA violation (%) of different algorithms for synthetic traces

NPA PABFD E-eco MAGNETIC
Energy

Consumption
SLA

Violation
Energy

Consumption
SLA

Violation
Energy

Consumption
SLA

Violation
Energy

Consumption
SLA

Violation

Synthetic trace1 3848.63 0 1805.21 12.07 1921.48 12.61 1640.23 12.78
Synthetic trace2 5272.23 0 2485.41 11.81 2651.06 12.73 2257.85 12.84
Synthetic trace3 7496.16 0 3507.20 12.10 3735.35 12.88 3190 12.5

TABLE 8: Runtime (seconds) and number of migrations (#) of different algorithms for synthetic traces

NPA PABFD E-eco MAGNETIC
RunTime Migrations RunTime Migrations RunTime Migrations RunTime Migrations

Synthetic trace1 0.15 0 4.03 98464 3.11 98428 8.71 16605
Synthetic trace2 0.2 0 6.25 134981 4.77 135031 18.75 20984
Synthetic trace3 0.39 0 12.15 192078 9.09 192223 25.2 21202

As a proof of concept, we have simulated a data center with
900 hosts for the 03/06 workload trace (see Section 6.1) in which 5
hosts suddenly experience a 50% performance degradation, that is
revealed in Ci

Alloc of the degraded hosts. The effect of the severity
of degradation is investigated latter in this section. As after initial
iterations around 50 hosts are in Active mode, around 10% of the
hosts are being degraded.

The results of the initial evaluation are shown in Fig. 8. In
this evaluation, the performance degradation has started after four
days of simulation. As shown in this figure, the selected power
mode for all degraded hosts is chosen to be DSleep, after several
iterations (Y-axis represents the percentage of the total number
of history entries of degraded hosts, in each power mode). The
number of iterations required to drain these hosts from VMs
depends on the saved Q values and VMs placement of other hosts.
Also, Fig. 9 represents number of running and migrating VMs
of the five degraded hosts during one week for several scenarios.
These scenarios are different concerning the severity of applied
degradation. Performance degradation has not been applied in Fig.
9 (a) and (b) and the results in these two sub-figures are different
in their α parameter (we present these two sub-figures to show
number of running and migrating VMs under normal operations).
As we can see from Fig. 9 (c) and (d), after applying performance
degradation (end of the fourth day), the number of migrating VMs
increases, which leads to decreasing number of running VMs on
degraded hosts. Also, as the severity of degradation increases,
MAGNETIC increases the number of migrating VMs to drive
degraded hosts into the DSleep power mode in fewer iterations.

To evaluate the effect of the severity of performance degra-
dation, we have simulated various levels of degradation (10%-
90%) for one active host and repeated the simulations for each
degradation level five times. Fig. 10 shows the average number of
needed iterations for the proposed method to switch a degraded
host into Sleep/DSleep mode, after observing the different levels
of degradation. As we can see from this figure, the proposed
method drives degraded hosts with a higher degree of degradation,
into Sleep/DSleep modes in fewer iterations. For example, the
proposed approach detects 50% and 90% of performance degra-
dation in 100 and 16 iterations respectively which corresponds to
about 8 and 1 hours respectively.

In summary, MAGNETIC is able to observe the faults that

Start of Degradation

Fig. 8: Power modes of degraded hosts during one week

have an effect on the host’s energy consumption or its allocated
MIPS. For example, as a host power failure causes the associated
agent to receive a reward composed of zero energy, zero allocated
MIPS, and some requested MIPS, the failure can be observed
by the agent while detecting network degradation needs further
heuristics or machine learning based algorithms.

Finally, the capability of our solution in detecting the faults
(which have an effect on the host’s energy consumption or its
allocated MIPS), in addition to the type and severity of the fault’s
effects depends on the learning parameters. In particular, the
capability of our system in detecting intermittent faults depends
on the period of the fault and on the parameters α and ε . The
higher the ε the higher the chance of activating a host which has
been driven in a sleep mode (because of the intermittent fault) in
the previous time slots.

7 CONCLUSION

In this paper, an approach has been proposed to improve energy
and resource efficiency of the data centers. To achieve this objec-
tive, a learning-based power mode selection unit and a migration
unit have been designed to manage physical hosts and VMs of the
data center simultaneously. The proposed MAGNETIC scheme
is a centralized-distributed approach which considers the over-
heads associated with PMT and VM migration in its policy. The
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Start of 50% 
Degradation

Start of 90% 
Degradation

α = 0.6

α = Equation(13)

α = 0.6

α = 0.6

Fig. 9: Number of running and migrating VMs of degraded hosts
during one week. (a) α = 0.6 and no performance degradation (b)
α = Equation(13) and no performance degradation (c) α = 0.6
and 50% of performance degradation (d) α = 0.6 and 90% of
performance degradation

Fig. 10: Average number of needed iterations for MAGNETIC to
switch a degraded host into Sleep/DSleep mode

proposed scheme has been evaluated using PlanetLab workload
traces in terms of energy consumption, average SLA violation,
and runtime. The results show that the proposed approach de-
creases energy consumption when compared to approaches in the
current SoA while its average SLA violation is almost the same.
Our obtained results also show that the proposed approach uses
minimum number of VM migrations and PMTs with respect to
other approaches. Moreover, the algorithm keeps its efficiency
for higher scale benchmarks and data centers, which proves its
scalability. In future work, we envision to apply our proposed
approach in heterogeneous or hybrid CPU/GPGPU data centers,
for parallel applications.
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