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Abstract—Alzheimer’s Disease (AD) is the most prevailing
form of dementia, killing more people than prostate and breast
cancers combined. Structural Magnetic Resonance Imaging
(sMRI) is widely used for the analysis of progressive brain
aggravation and its clinical utility in discriminating AD is well
established. Even if an effective cure does not exist yet, early
detection is fundamental for slowing down the worsening of
symptoms. Thus, the aim of the present work is to propose
an end-to-end 3D Convolutional Long Short-Term Memory
(ConvLSTM)-based framework for early diagnosis of AD from
full-resolution whole-brain sMRI scans. The proposed framework
was applied to 427 full-resolution whole-brain sMRI scans
belonging to both OASIS and ADNI databases in order to provide
a less dataset-specific approach. Results show that our framework
is performing well in discriminating AD from Cognitively Nor-
mal (CN) patients, reaching a classification accuracy of 86%,
sensitivity of 96%, f1-score of 88% and AUC of 93% on the test
data. The tests were performed on a scalable GPU cloud service
and are publicly available to guarantee reproducibility. Since
the proposed framework performs well without domain-specific
knowledge from AD as well as computationally-costly processes
such as segmentation, it can be applied to other mental disorders
using whole-brain sMRI scans as input data.

Index Terms—Alzheimer’s Disease, Deep Learning, Diagnosis,
End-to-End Approach, Scalable GPU Cloud, Structural Magnetic
Resonance Imaging, 3D Convolutional Long Short-Term Memory

I. INTRODUCTION

Over 50 million people worldwide suffer from dementia and
Alzheimer’s Disease (AD) is the most prevailing form [1],
[2], killing more people than prostate and breast cancers com-
bined [3]. AD is a neurological brain disorder that begins with
Mild Cognitive Impairment (MCI) and worsens progressively
until death, as it ends up destroying the brain area that controls
breathing and heart functions [4], [5].

Structural Magnetic Resonance Imaging (sMRI) is widely
used for the analysis of progressive cognitive aggravation [6],
as it offers a non-invasive and painless method of studying the
anatomy of the brain and its structural changes using radio
waves and a strong magnetic field [7], [8]. The clinical utility
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of sMRI in discriminating AD from other cognitive diseases
is well established [1], [9].

Even if an effective cure does not exist and a final diag-
nosis of AD is difficult, early detection is fundamental for
slowing down the worsening of symptoms [2], [4]. Through
early detection, the quality of life of AD patients can also
improve [6], [10]. For this reason, Machine Learning (ML) as
well as Deep Learning (DL)-based computer-aided systems
have been investigated to automatically diagnose AD [11].
Conventional ML methods require extensive pre-processing
to obtain handcrafted features in combination with different
types of classifiers such as Support Vector Machines (SVMs),
which may increase both the computational time and the
error rate [12]. Moreover, these technical choices may limit
the flexibility of learning methods that cannot freely identify
new features to improve the performance. DL-based methods
are often achieving very good results, being better suited
for generalizing even under subtle anatomical changes [9],
[13]. The main differences from conventional ML methods are
that DL may require minimal pre-processing and no feature
engineering, resulting in a less bias-prone and more end-to-end
process [9].

To the best of our knowledge, a study that leverages
exclusively on a bidirectional 3D Convolutional Long Short-
Term Memory (ConvLSTM) trained end-to-end on a scalable
GPU cloud service to investigate the presence of AD is no yet
existing. The aim of the present work is to propose an end-to-
end 3D ConvLSTM-based framework for early diagnosis of
AD from full-resolution whole-brain sMRI scans. The source
code of the implementation is available on GitHub 1.

II. RELATED WORK

The development of an algorithm able to automatically
classify the brain anatomical changes caused by AD is of great
interest to many research groups. Out of the large number
of DL architectures, approaches mainly rely on Convolutional
Neural Networks (CNNs) for detecting AD in MRI data [12]–
[14]. 2D CNNs are widely used on 2D brain MRI slices to
detect AD. Nevertheless, 2D CNNs take a single MRI slice
as input, failing to leverage context from adjacent slices as

1https://github.com/airtlab/ConvLSTM4AD.
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the brain anatomy remains unused. Voxel information from
adjacent slices can be very useful. For this reason, 3D CNNs
operate in the 3D space as they can examine groups of images
as a whole, having the power to catch the anatomical changes
of the brain [1]. Both 3D CNN and 3D ConvLSTM use 3D
convolution operations in their inner structure [1]. Since they
rely on different convolution mechanisms, the latter is able to
capture more discriminative features [1], [8].

Focusing exclusively on patient-level classification, meaning
that the scan is used at once and the classification is performed
at the patient level, Luo et al. [11] provided an automatic AD
detection system based on brain sMRI scans taken from the
ADNI 1 dataset of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. They trained a 3D CNN-based
model, gaining a good AD detection with a sensitivity of
100% and a specificity of 93%. Korolev et al. [15] compared
two approaches, performing their experiments on whole-brain
sMRI scans belonging to the ADNI database. In detecting
AD from cognitively healthy patients, the model they called
VoxCNN reached an accuracy of 79% and an Area Under the
receiver operating characteristic Curve (AUC) of 88%. Ullah
et al. [3] came up with a 3D CNN-based model to detect AD
and dementia from whole-brain sMRI scans selected from the
Open Access Series of Imaging Studies (OASIS) database.
They achieved an accuracy of 80.25%. Basaia et al. [9]
presented a 3D CNN-based model leveraged on a single cross-
sectional brain sMRI scan belonging to the ADNI database. In
AD versus healthy patients classification, their method reached
an accuracy of 99.2%, sensitivity of 98.9% and specificity
of 99.5%. More recently, Xia et al. [1] proposed a hybrid
framework for AD detection, where both 3D CNN and 3D
ConvLSTM were employed on whole-brain sMRI scans taken
from the ADNI 1 dataset. In detecting AD from cognitively
healthy patients, the best model achieved an accuracy of
94.19%, sensitivity of 93.75%, specificity of 94.57% and AUC
of 96%.

III. PROPOSED FRAMEWORK

Our framework (Fig. 1) is composed of necessary pre-
processing steps followed by training/classification. In par-
ticular, the minimal pre-processing does not affect the end-
to-end philosophy of our method, as better explained in
subsection III-B.

A. Data Collection

In our data collection process, we considered two datasets,
OASIS-3 and ADNI 1-Screening, belonging to the OASIS 2

and ADNI 3 databases.
From OASIS-3, we selected one raw axial T1-weighted

(T1w) sMRI scan for each patient, resulting in 275 (130
CN and 145 AD) scans, each having an original shape of

2https://www.oasis-brains.org/.
3http://adni.loni.usc.edu/. The investigators within ADNI provided data but

did not participate in analysis and writing of this paper. A complete listing
of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

176x256x256, 1-mm pixel size and 1-mm slice thickness. In
case of multiple scans per patient, we dwelt on the scan done
first in order to avoid an intra-patient bias. All selected sMRI
scans belong to anonymized patients from 42 to 97 years old
and were done with 3 Siemens scanners [16]. We stored them
as NIFTI files.

For ADNI 1, we focused on patients who had the first
screening scan (ADNI 1-Screening). We selected one raw axial
T1w sMRI scan for each patient, resulting in 152 (84 CN and
68 AD) scans, each having an original shape of 256x256x5, 1
or 1.2-mm pixel size and 5-mm slice thickness. All selected
sMRI scans belong to anonymized patients from 55 to 90 years
old and were done with 2 GE Medical Systems scanners. We
stored them as NIFTI files.

B. Data Preparation

Brain sMRI scans capture extraneous parts of the head,
which may interfere as noise. To overcome this problem, some
studies use the FMRIB Software Library (FSL) 4 for brain
MRI pre-processing [10].

First, we extracted the brain, which is one of the most
important pre-processing steps for eliminating non-brain tis-
sue, requiring no domain-specific knowledge [14]. To do so,
we removed all non-brain tissue from brain sMRI data using
the Brain Extraction Tool (BET) of the FSL by setting the
fractional intensity threshold to 0.3 in order to reduce the bias
without discarding brain voxels.

After brain extraction, we performed registration in order to
have consistent dimensions for both datasets. Registration is
fundamental to align multiple images for verifying their spatial
correlation in terms of anatomy [14]. By registering sMRI
images to a unique template, we expect similar structures to
be roughly in the same spatial location, allowing the network
to identify the most relevant features. As reported in subsec-
tion III-A, OASIS-3 and ADNI 1-Screening have different
original shapes. To overcome this dimensionality challenge
and make data homogeneous, we performed registration on
the OASIS-3 dataset taking as reference dimension one of the
ADNI 1-Screening series, as shown in Fig. 2.

After registration, we merged all brain sMRI scans belong-
ing to both datasets into a dimensionally-uniform dataset. The
merged dataset has a total number of 427 whole-brain sMRI
scans (214 CN and 213 AD patients), each having a post-
registration shape of 256x256x5.

We then resampled all sMRI data to 1-mm pixel size and
slice thickness, and performed input normalization. Both re-
sampling and input normalization lead to an easier comparison
in order to interpret data onto a common shape and size [14].

Eventually, we labelled these full-resolution whole-brain
sMRI data in AD and CN patients and randomly split them
into training, validation and test sets with a ratio of 6:2:2.

C. Model Architecture

In designing the architecture of the proposed neural net-
work, we found the best trade-off between speed, complexity

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL.

https://www.oasis-brains.org/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL


bidirectional

3D ConvLSTM

dropout flatten dense

dense

AD

CN…

OASIS-3

ADNI 1-Screening

brain extraction

brain extraction

registration MERGED DATASET
resampling &

input normalization

DATA PREPARATION

MODEL TRAINING/CLASSIFICATION

Figure 1: Representation of the proposed framework composed of necessary pre-processing steps followed by training/classification. In the
output layer of the neural network, AD and CN mean Alzheimer’s Disease and Cognitively Normal patients, respectively.
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Figure 2: Registration performed on one whole-brain sMRI scan of
the OASIS-3 dataset, taking a whole-brain sMRI scan of the ADNI
1-Screening dataset as reference.

and performance. In this regard, we designed a sequential
model with 6 layers.

The first layer is a bidirectional 3D ConvLSTM layer that
is the backbone of our model. It has 32 convolutional filters,
each having a size of 3. We chose a ConvLSTM as both spatial
and temporal features take part in the classification [8]. ConvL-
STM is a special Recurrent Neural Network (RNN) that uses
convolution filters, thus being not only able to model the long-
term interactions but also to explore the spatial information [1].
The relevant features are automatically extracted from whole-
brain sMRI data through convolution operations. During the
convolution, the network learns which filters activate when
seeing a specific type of feature at a spatial position in the
input. The LSTM architecture allows each sequence to be
treated in its entirety, remembering information selectively and
applying the information of the already processed frames in the
processing of subsequent ones. LSTM, indeed, comprises three
gates, as shown in Fig. 3: the input gate transmits new input
information into the cell; the forget gate selectively forgets
information; the output gate stores relevant information [1],
[8]. The cell itself decides when to allow the reading and
updating of the information via the three gates [14].

The second layer is a Dropout layer with a rate of 50%
to limit overfitting. Dropout is a widely-used regularization
technique that randomly eliminates a few units from the
network (in this case 50%) during training, thus reducing the
overall model complexity.

The third layer is a Flatten layer that flattens all the extracted
features into a mono-dimensional tensor.

The fourth layer is a Dense layer. A Rectified Linear Unit
(ReLU) activation function is used to help the model consider
non-linear effects and interactions, as it demonstrates faster
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Figure 3: The input, output and forget gates of a LSTM unit.

training as well as better results than sigmoid function [17].
The fifth layer is another Dropout layer with a rate of 50%

for further reducing the complexity of the model.
The sixth layer is another Dense layer with a Softmax

activation function that assigns probabilities to each class by
having as outputs real values between 0 and 1 (with sum 1).

D. Model Training

To train our model, we chose the parameter combination
that led to the best performance on the validation data.

Selecting the GPU hardware acceleration and high RAM
setups of the PRO version of Google Colab cloud service 5,
we used Keras to train our model end-to-end for 40 epochs
with a mini-batch size of 4 and a learning rate of 0.001 using
the Stochastic Gradient Descent (SGD) optimizer. During
training, the optimization based on a stochastic gradient is
fundamental to minimize the loss function while ensuring
better efficiency [17]. We set categorical cross entropy as loss
function. We used early stopping callback with a patience of
7 to further reduce overfitting, as it stops the training at the
point where the validation loss is minimal, which in our case
coincided with the 12th epoch.

We chose to save the model with the lowest validation loss
instead of the one with the highest validation accuracy, as the
validation loss captures exactly the divergence between the
predicted output and the ground truth [10]. Eventually, we
used it to calculate the performance on the test set.

IV. RESULTS

We performed a patient-level classification, in which AD
is detected from CN. The primary evaluation metric we
considered is classification accuracy on the test data. We
also considered specificity, sensitivity, f1-score and AUC, as
it is independent of the threshold chosen for classification.
The sensitivity, in particular, is extremely important in the
biomedical context as a misclassified pathology is the major
issue in medical diagnosis.

5https://colab.research.google.com/notebooks/intro.ipynb.

Table I summarizes the performance for AD vs. CN of the
proposed method and of the state-of-the-art methods cited in
section II in terms of accuracy, specificity, sensitivity, f1-score
and AUC. It also reports the total number of patients involved,
the database/s to which the data belong, the whole-brain sMRI
scan shape and the 3D architecture used.

V. DISCUSSION AND CONCLUSIONS

Since timely and accurate diagnosis of AD is crucial for
early treatment [2], [4], much research has been conducted to
find ways for automatically detecting the patterns of brain cell
degradation from MRI scans early in the process [12]–[14].

The aim of the present study is to propose an end-to-
end 3D ConvLSTM-based framework for early diagnosis of
AD from full-resolution whole-brain sMRI scans using a
scalable GPU cloud service to ensure its reproducibility. For
this aim, we built a framework composed of only necessary
pre-processing steps followed by training/classification, which
resulted in the development of an end-to-end process. Pre-
processing consists of brain extraction, registration, merging of
whole-brain sMRI data originating from OASIS-3 and ADNI
1-Screening in a dimensionally-uniform dataset, resampling
and input normalization. Classification comprises the end-to-
end training, validation and test of full-resolution whole-brain
sMRI scans, selecting the GPU hardware acceleration and
high RAM setups of the PRO version of Google Colab cloud
service and exploiting an architecture whose core layer is a
bidirectional 3D ConvLSTM. Results show that the proposed
methodology, that first exploits exclusively a 3D ConvLSTM-
based architecture to classify samples from both OASIS and
ADNI databases, is performing well in discriminating AD
from CN patients, as reported in Table I. It reaches an
accuracy of 86%, specificity of 74%, sensitivity of 96%, f1-
score of 88% and AUC of 93% on the test data. The latter
value, in particular, means that the classifier achieves a high
performance in separating the samples belonging to AD from
CN [14].

The strengths of the proposed method with respect to other
DL-based studies in AD detection are multiple. In our study,
the model was trained, validated and tested on data belonging
to two openly-accessible databases in order to provide a
less dataset-specific approach. We performed only minimal
pre-processing thanks to the ability of 3D ConvLSTM to
automatically select visual features, thus preserving the whole
brain anatomy. Since 3D ConvLSTM does not require an input
tensor of standard dimensions, we kept the full resolution of
whole-brain sMRI scans. We also trained our model com-
pletely end-to-end on a scalable GPU cloud service, allowing
an easy reproducibility of the entire framework. Moreover,
since the proposed framework performs well with no domain-
specific knowledge from AD as well as computationally-costly
processes such as segmentation, we believe it can be applied
to other mental disorders using whole-brain sMRI scans as
input data.

One possible limitation relies on the number of slices per
scan, which corresponds to 5. Among ADNI 1 subsets, we
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Table I: Performance in classifying AD vs. CN of the proposed method and of state-of-the-art methods doing a patient-level classification on
whole-brain sMRI data. Values of ACCuracy, SPEcificity, SENsitivity, F1-Score and AUC are given in percentage (%). Number of patients
(AD and CN) involved in the evaluation, database/s (OASIS or/and ADNI) to which the data belong, whole-brain sMRI scan shape and 3D
architecture used are also reported.

Method Patients Database Shape Architecture ACC SPE SEN F1-S AUC
Luo et al. [11] 81 ADNI (56,56,5) CNN - 93 100 - -

Korolev et al. [15] 111 ADNI (110,110,110) CNN 79 - - - 88
Ullah et al. [3] 416 OASIS - CNN 80.25 - - - -
Basaia et al. [9] 646 ADNI - CNN 99.2 99.5 98.9 - -

Xia et al. [1] 427 ADNI (119,119,143) CNN + ConvLSTM 94.19 94.57 93.75 - 96
Proposed 427 OASIS + ADNI (256,256,5) ConvLSTM 86 74 96 88 93

focused on ADNI 1-Screening as we liked to take the scan
related to the patient’s first visit (screening) because AD
detection in the first stages is even more challenging. ADNI
1-Screening, however, has 5 slices per scan. In order to make
data homogeneous, we needed 5 slices also for OASIS-3,
as explained in the registration step (subsection III-B). We
strongly believe that a higher number of slices per scan could
lead to even better results.

Our framework is still under development and as part of
future work we plan to make the classification results inter-
pretable by means of dedicated visualization techniques [18] in
order to understand which brain regions are more involved in
the decision-making process. We also plan to increase the car-
dinality of the samples by looking for other openly-accessible
repositories or applying data augmentation techniques, such as
horizontal flipping to exchange left and right sides of the brain,
as AD affects both hemispheres [1]. Furthermore, it would be
interesting to introduce metadata associated to each patient in
order to cross-check the results.

To conclude, in this study it was demonstrated that the
proposed end-to-end 3D ConvLSTM-based framework repre-
sents a promising and easily-reproducible method for early
diagnosis of AD from full-resolution whole-brain sMRI scans.
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