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Abstract. We propose a novel method for the prediction of patient
prognosis with Head and Neck cancer (H&N) from FDG-PET/CT im-
ages. In particular, we aim at automatically predicting Disease-Free Sur-
vival (DFS) for patients treated with radiotherapy or both radiotherapy
and chemotherapy. We design a multi-task deep UNet to learn both the
segmentation of the primary Gross Tumor Volume (GTVt) and the out-
come of the patient from PET and CT images. The motivation for this
approach lies in the complementarity of the two tasks and the shared
visual features relevant to both tasks. A multi-modal (PET and CT) 3D
UNet is trained with a combination of survival and Dice losses to jointly
learn the two tasks. The model is evaluated on the HECKTOR 2020
dataset consisting of 239 H&N patients with PET, CT, GTVt contours
and DFS data (five centers). The results are compared with a standard
Cox PET/CT radiomics model. The proposed multi-task CNN reaches a
C-index of 0.723, outperforming both the deep radiomics model without
segmentation (C-index of 0.650) and the standard radiomics model (C-
index of 0.695). Besides the improved performance in outcome prediction,
the main advantage of the proposed multi-task approach is that it can
predict patient prognosis without a manual delineation of the GTVt, a
tedious and time-consuming process that hinders the validation of large-
scale radiomics studies. The code will be shared for reproducibility on
our GitHub repository.

Keywords: Head and Neck Cancer - radiomics - automatic segmenta-
tion - deep learning
1 Introduction

Radiomics is the quantitative analysis of radiological images to obtain prognostic
patient information [1]. The standard approach for radiomics involves the extrac-
tion of hand-crafted visual features from radiology images followed by prognostic
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modeling. This standard approach generally requires manual annotations of Vol-
umes Of Interest (VOIs), i.e. tumor region, to spatially localize the extraction
of features.

In the past seven years, deep Convolutional Neural Networks (CNNs) (mostly
variants of the UNet model [2]) have reached excellent results in medical image
segmentation, including tumor segmentation [3, 4]. The prediction of patient out-
come (e.g. survival) using CNNs, however, has received less attention or success.
For this task, the number of observations is smaller than for segmentation tasks,
in which each pixel/voxel is an observation, when compared to patient-wise ob-
servations for radiomics. The level of abstraction required to predict the patient
outcome is also higher than in a segmentation task. For survival tasks, moreover,
the loss requires comparing several pairs of observations to estimate concordance,
thereby requiring many observations as compared to other classical losses (e.g.
cross-entropy and Dice). Survival losses are therefore not particularly suited for
deep CNNs training with mini-batches. As a consequence, training a (3D) deep
CNN from scratch or based on a pretrained network with a few hundred patients
for the prediction of a complex outcome with censored data is generally not as ef-
ficient and successful as extracting hand-crafted radiomics features and training
a simple survival model, e.g. the Cox Proportional Hazards (CPH) model.

Early works on Artificial Neural Networks (ANNs) for survival problems
were proposed to learn nonlinear relationships between prognostic features (not
imaging features as used in radiomics) and the risk for a given outcome [5].
More recently, deep ANNs [6, 7] were shown to successfully model complex rela-
tionships between the radiomics features and their risk of failure. An extensive
review is proposed in [8].

Radiomics studies that make use of CNNs have often focused on using au-
tomatic segmentations or deep features, obtained from a trained CNN; in a
standard radiomics pipeline, e.g. in the context of brain tumor [9]. In lung
cancer, CNNs trained to perform tumor segmentation in FluoroDeoxyGlucose-
Positron Emission Tomography (FDG-PET) and Computed Tomography (CT)
were shown to identify a rich set of survival-related features with remarkable
prognostic value [10]. CNNs have also been trained end-to-end for classification
radiomics tasks, e.g. in Head and Neck cancer (H&N) [11]; see [12] for a review
on deep learning-based radiomics. A few recent works proposed the use of CNNs
trained with a Cox loss for survival tasks. Zheng et al. [13] proposed to train a
CNN with a Cox loss for the prediction of patient survival in the context of pan-
creatic ductal adenocarcinoma. A survival CNN was used in [14] to predict the
outcome of patients with brain cancer from histopathology images and genomic
biomarkers, as well as in [15] for a survival analysis of rectal cancer based on
PET/CT images.

Multi-task learning is a well-studied sub-field, notably in robotics and au-
tonomous driving [16,17]. It was shown that learning related tasks in parallel
while using a shared representation can improve the individual learning effi-
ciency and prediction accuracy, as features learned for each task can help the
learning of other tasks [16]. In medical imaging, multi-task training was recently
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used for several tasks and modalities. A multi-task method was proposed in [18]
for brain tumor segmentation in Magnetic Resonance Imaging (MRI), leveraging
fully annotated images (segmentation task) and weakly annotated images (classi-
fication of presence or absence of a tumor). Again for brain tumor segmentation,
Weninger et al. [19] combined three tasks that share the encoder, namely tu-
mor segmentation, image reconstruction (auto-encoder), and the classification of
presence/absence of enhancing tumor. Another multi-task deep learning model
was developed in [20] to jointly identify COVID-19 patients and segment the
lesions from chest CT images. In histopathology, multi-task was used to improve
tumor tissue classification by combining the prediction of auxiliary clinically rel-
evant features as well as a domain adversarial task [21]. We are, however, not
aware of previous works that make use of multi-task deep learning combining
segmentation and survival losses in a model that can be trained end-to-end,
neither multi-task learning applied to PET-CT radiomics nor to H&N cancer.

We base our work on the idea that deep features learned for tumor segmen-
tation may also be useful for the prediction of patient outcome. In particular,
neuron activations triggered by the segmentation task are expected to spatially
guide the network to extract prognostically relevant patterns in the tumor area.
In addition, training the model for tumor segmentation as an auxiliary task to
outcome prediction allows the network to better exploit the scarce and precious
radiomics training data where one observation is one patient. In this work, we
show the potential of our multi-task approach for the prediction of outcome for
patients with H&N cancer from PET/CT images. The main task is the predic-
tion of Disease-Free Survival (DFS), to which we combine the auxiliary task of
segmentation of the primary Gross Tumor Volume (GTVt).

To summarize, the contribution of this work is to propose a fully automatic
bi-modal 3D deep segmentation and prognostic model able to deal with sur-
vival data and to learn from relatively small datasets, thanks to the multi-task
paradigm.

2 Methods

In this section, we present the different methods developed in our work and the
dataset used for the experiments. The main contribution, i.e. multi-task deep
radiomics, is presented in Section 2.2. All models are bi-modal as they take CT
and PET images as input. An overview of the multi-task hybrid segmentation-
deep radiomics architecture is depicted in Fig. 1. The code to reproduce the
experiments will be shared on our GitHub repository®.

2.1 Segmentation

As a first model, we use a multi-modal 3D UNet for segmentation based on
the model developed in [22], winner of the HECKTOR 2020 challenge® [4]. The

® https://github.com/vandrearczyk
5 The main difference is the reduced number of filters to be able to use a larger batch-
size for the survival loss in Section 2.2.
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Fig. 1. 3D multi-modal (PET/CT) and multi-task architecture with a common down-
sampling branch (green), an up-sampling segmentation branch (blue) and a radiomics
branch (red). Residual convolutional layers are used in the down-sampling part.

architecture is presented in Fig. 1, including down-sampling (green) and up-
sampling (blue) parts. The probabilities of the softmax activated outputs are
thresholded at 0.5 to obtain a binary mask. More details on the implementation
can be found in [22]. The model is trained with a Dice loss, computed as
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where gy, € [0, 1] is the softmax output for a voxel k, y € {0,1} is the value of
this voxel in the 3D ground truth mask and the sum is computed over all voxels.

2.2 Multi-task Segmentation and Radiomics

The multi-task architecture is composed of the normal 3D segmentation with an
additional radiomics branch (red in Fig. 1) at the bottleneck of the network. This
radiomics branch is connected to multiple layers of the downsampling path using
skip connections to gather information at multiple scales and complexity. It is
composed of a global average pooling layer to aggregate the spatial information,
a densely connected layer (ReLU activated) with 128 neurons and a prediction
layer with a single neuron. Dropout with 0.5 probability is added before the
dense layers for regularization. For the segmentation task, we use the Dice loss
defined in Eq. (1). For the radiomics task, we use a Cox loss [7] computed as

1 R R
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where /Az(xl) is the estimated log-hazard for input z;. E;, T;, z; are the event
indicator (0 for censored data), the observed duration, and the baseline covariate
data in the i'" observation respectively. H(T;) is the hazard indicator for indi-
viduals that have not experienced the event of interest before time T;. The Cox
loss is motivated by clinical needs such as group stratification based on risk. It
alleviates the need to model the underlying hazard, a strength of the Cox model
in this scenario.

For learning the radiomics task only, we use the same network as the multi-
task one, without the up-sampling part of the UNet (i.e. only green and red parts
in Fig. 1). The model is trained with the Cox loss defined in Eq. (2). Note that
in this third method, the manually annotated contours are used neither during
training nor testing.

2.3 Training Scheme

All networks are trained with an Adam optimizer based on a cosine decay learn-
ing rate (initial 1072) and a batch size of 10, for 60 epochs. The three training
scenarios are obtained by modifying the pair of loss weights (wyqq, Wseq) in the
combined loss £ = wyqalcor + WsegLpice: (0,1) for the segmentation, (1, 1) for
the multi-task, and (1,0) for the radiomics. For each of the three settings, the
best model based on the combined loss obtained on the validation data is used
for testing. The training data is resampled to balance the proportion of censored
data for the Cox loss (82% of censored data on average before resampling and
50% after). Data augmentation is applied to the training data including random
shifts (maximum 30 voxels), mirroring (sagittal axis) and rotations (maximum
five degrees). The models are implemented in TensorFlow 2 and trained on a
Nvidia V-100 GPU (32GB). The average training time of the multi-task model
for one fold of the Cross-Validation (CV, see Section 2.6) is 148 min.

2.4 Standard Radiomics

We compare the deep algorithms with a state-of-the-art standard radiomics mod-
els based on hand-crafted features. We implemented the feature extraction and
survival model in Python 3.9 with the following libraries: SimpleITK (2.0.2),
PyRadiomics (3.0.1), scikit-learn (0.22.2) and scikit-survival (0.12.0). The com-
putation time of the feature extraction and training times for one fold on an
AMD Ryzen 7 3700X with 8 cores are 13 min and 3 seconds respectively.

Feature extraction We extract features inside the GTVt from the CT and PET
images using PyRadiomics [23]. A total of 274 features are extracted for each
patient, including 18 first-order and 112 texture features extracted per modal-
ity” as well as 14 additional shape-based features. Note that this approach, as

" 24 GLCM, 16 GLRLM, and 16 GLDZM features. A Fixed Bin Number (FBN) of 64
and a Fixed Bin Size (FBS) of 50 are used for CT. A FBN of 8 and a FBS of 1 are
used for PET.
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opposed to the deep learning counterparts presented above, requires test-time
ground truth annotations of the primary tumors as VOIs to extract the features.

Survival model We first select features based on the univariate C-index estimated
on the validation set (see Section 2.6 for the clarification of training, validation
and test splits). This selection is recommended e.g. in [24] and is similar to
an Fl-score univariate selection. More precisely, we use a shifted version (i.e.
|C-index—0.5|) to account for both concordant and anti-concordant features. The
resulting top 20 features are kept. Second, correlated features are removed when
higher than a given threshold value t € [0.6,0.65,0.70,0.75,0.80], optimized on
the validation set using grid-search, as recommended e.g. in [25]. The resulting
feature set is used by a CPH model [26] to predict the hazard score of the DFS
outcome. The best performing model on the validation data is kept and used to
predict hazards on the test set.

2.5 Evaluation

The radiomics results, i.e. predictions of DFS, are evaluated using the Concor-
dance index (C-index) ranging from zero to one [27]. A C-index of one cor-
responds to the best model prediction, while a value of 0.5 is equivalent to a
random prediction. The segmentation results are evaluated using the Dice Sim-
ilarity Coefficient (DSC) ranging from zero to one, with one reflecting a perfect
similarity between predicted and ground-truth contours. The DSCs are averaged
across multiples cases as specified in the results section.

2.6 Dataset and Experimental Setup

For the experiments, we use the HECKTOR 2020 data including 239 cases from
five centers [4]. This dataset was used for tumor segmentation and we propose
for the first time to use it for prediction of patient outcome. Each case includes a
CT and a PET image (inputs), a ground truth annotation of the GTVt and the
DFS patient outcome information, i.e. time to recurrence of the GTVt following
the treatment (outputs). The number of events is 43, i.e. 18% of non-censored
cases, whereas the remaining 82% cases did not encounter the event during the
follow-up. The average follow-up time is 1182 days.

The PET and CT images are resampled to 1 x 1 X 1 mm (2 x 2 X 2 mm
for the standard radiomics pipeline) using trilnear interpolation. The volumes
are cropped to 144 x 144 x 144 voxels (after augmentation described in Sec-
tion 2.3) using the bounding boxes of the HECKTOR 2020 challenge [28]. The
PET images are standardized individually to zero mean and unit variance. The
CT images are clipped to [-1024,1024] and mapped to [-1,1]. A 5-fold CV is used
for all experiments. For each fold, 20% of the dataset used for testing and the
remainder is split again randomly as 80% training, 20% validation.
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3 Results

Performance results for radiomics, i.e. comparison of models on the DFS pre-
diction task, and segmentation are reported in Tables 1 and 2, respectively. It
is worth noting that the radiomics results of the segmentation-only model and
the segmentation results of the radiomics-only model are only reported as san-
ity checks as they both achieve (expected) random performance on these tasks.
There is no precedent work on this dataset nor task.

Regarding the comparison with state of the art, standard radiomics methods
have been applied to other H&N datasets and other survival outcomes in e.g.
[29], vet direct comparison is not possible. We therefore compare against the
standard radiomics method described in Section 2.4.

Table 1. Performance comparison for the radiomics task. wrqaq and wsey are the ra-
diomics and segmentation loss weights, respectively. We report the C-index for each
fold of the CV as well as the average + standard-error of the C-index.

model (Wrqad, Wseg) fold-1 fold-2 fold-3 fold-4 fold-5| Mean

Deep radiomics (1,0) 0.703 0.599 0.578 0.687 0.684|0.650 +o.026
Deep multi-task (1,1) 0.713 0.702 0.803 0.615 0.783|0.723 +o0.033
Deep segmentation (0,1) 0.413 0.377 0.473 0.348 0.570|0.416 +o.024
Standard radiomics 0.827 0.710 0.627 0.687 0.624|0.695 +o.0s26

Table 2. Performance comparison for the segmentation task. wrqeq and wsey are the
radiomics and segmentation loss weights, respectively. We report the average Dice score
for each fold of the CV as well as the global average + standard-error for the Dice.

model (Wrad, Wseg) fold-1 fold-2 fold-3 fold-4 fold—5‘ Mean

Deep radiomics (1,0) 0.006 0.001 0.000 0.034 0.000 |0.008 +o.007
Deep multi-task (1,1) 0.700 0.589 0.361 0.595 0.677 |0.584 =+o.060
Deep segmentation (0,1) 0.713 0.681 0.696 0.639 0.685 |0.683 +o0.012

4 Discussion and Conclusions

The network design proposed in this work relies on the assumption that teaching
to segment the tumoral volume will benefit the prediction of patient prognosis.
The observed results seem to validate this hypothesis, as the most concordant
DFS prediction is achieved when combined with the segmentation task (see Ta-
ble 1) culminating to an average C-index of 0.723. The combination of Dice and
survival losses allowed to spatially guide neuron activations with the former, and
learn localized prognostically relevant patterns with the latter. As a reminder,
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only a large bounding box encompassing the spatially extended oropharyngeal
region (automatically determined as of [28]) is provided to the network. There-
fore, this approach does not require tumoral contours at test time, as opposed
to the standard radiomics approach. Remarkably, this fully automatic approach
outperformed the standard radiomics pipeline relying on manual contouring (C-
index of 0.695). This result opens avenues for very large scale clinical studies to
validate the prognostic models on patients for which we only have the outcomes
but no manual annotations of the tumors.

We believe that this work contributes to the state of the art by proposing
a fully automatic bi-modal 3D deep prognostic model able to deal with sur-
vival data and to learn from relatively small datasets. It can do so by optimally
leveraging training data via the use of the highly related and observation-rich
segmentation task.

A surprisingly high prognostic performance is achieved even without using
the Dice loss (only deep radiomics), which is highlighted by a C-index of 0.650,
7.3% lower than the top result. This demonstrates the efficacy of the survival
loss combined with an appropriate encoding architecture. Note that in this fully-
radiomics method, the GTVt contours are provided neither during training nor
testing.

The best-performing segmentation method achieved a Dice score of 0.683.
For this GTVt segmentation, the segmentation task did not benefit from the
radiomics task, where the Dice loss provided best results when used on its own
(see Table 2). This observation may be due to an optimization issue, the PFS
task adding noise to the gradients. Other loss weights could be used to favor
the segmentation task, yet the main task of interest in this work is the outcome
prediction and the segmentation is only used to boost the performance on the
latter. Note that the segmentation performance is far from the winner of the
HECKTOR 2020 challenge (average DSC of 0.759), in which the main and only
task was tumor segmentation, and the model was based on a complex ensemble
of UNets.

A limitation of the proposed work is the use of binary weights (wyqd, Wseg)
given to the two losses in the multi-task model (i.e. unweighted sum of losses). In
future work, we will explore other types of loss weighting such as geometric [30]
and epistemic uncertainty losses [31]. As another interesting future work, one
could also consider adding an auxiliary task of domain adversariability to the
training with a branch similar to the radiomics one and with a gradient reversal
to create domain invariant features and ensure good generalization to new scan-
ners and image acquisition protocols [32]. We also plan to study activation maps
to reveal the most prognostically relevant regions and patterns used by the deep
radiomics model.
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