
Poster: Mobile Gossip Learning for Trajectory
Prediction

Mina Aghaei Dinani,
Adrian Holzer

University of Neuchatel &
HES-SO Valais, Switzerland

name.surname@unine.ch

Hung Nguyen
The University of Adelaide,

Australia
hung.nguyen@adelaide.edu.au

Marco Ajmone Marsan
Politecnico di Torino, Italy and
Institute Imdea Networks, Spain

ajmone@polito.it

Gianluca Rizzo
HES-SO Valais, Switzerland,

gianluca.rizzo@hevs.ch

Abstract—Gossip Learning (GL) is a fully decentralized ma-
chine learning paradigm with the potential to enable highly
scalability and to preserve user privacy. The majority of existing
results however consider scenarios in which either each node
communicates with all other nodes, or in which the connectivity
graph is static, and they are therefore inapplicable in dynamic
setups such as in VANETs. This work is a first attempt at
designing and assessing GL schemes suited for scenarios with
moving nodes with the application of predicting the trajectory of
moving cars.

I. INTRODUCTION

Time series data has become ubiquitous, thanks to afford-
able edge devices and sensors. Much of this data is valuable for
decision making. An example of this is predicting the online
trajectory of moving nodes to manage traffic, or proactive
resource allocation in vehicular networks. To use this data for
forecasting, the conventional centralized approach has shown
deficiencies regarding extensive data communication and data
privacy issues. Federated learning (FL) allows learning from
decentralized data without the need to store it centrally. The
data remains where it was generated, which guarantees privacy
and reduces communication costs [1]. The majority of existing
FL approaches, however, consider scenarios in which either
each node communicates with all other nodes, or in which
the connectivity graph is static, and they are therefore not
applicable in dynamic setups such as in VANETs.
In this work, to tackle these problems, we use personalized
distributed FL (that is gossip learning) which is online, peer-to-
peer and provides asynchronous communications. Each node
in this network is a client for other existing nodes and use
its local dataset to improve their models. At the same time,
it acts as a coordinating server that merges received models
and personalized the model for itself. There can be as many
models as the number of clients. Our intended application is a
scenario in which a Mobile Network Operator (MNO) receives
regularly predictions of car trajectory in order to implement
proactive strategies for resource allocation, e.g. for Mobile
Edge Computing (MEC) services.
We present three practical algorithms, called DFed Avg, DFed
Pow and DFed Best for the serverless federated learning of
deep networks based on iterative model averaging, and an
empirical evaluation which considers time series datasets and
an LSTM model. The experiments demonstrate that these
approaches perform well on vehicles which spend a sufficiently

large amount of time (min 20 min) in the scenario even with
dynamic, unbalanced and non-IID data distributions.

II. SYSTEM MODEL

We consider a set of wireless nodes, moving on a finite re-
gion of the plane according to an arbitrary stationary mobility
model, and over a finite time window. The given region is parti-
tioned into cells, whose shape and size are typically determined
by the specific application scenario. Nodes know exactly their
position at any point in time, and they communicate among
them using a wireless technology (e.g. WiFi, DSLR, Cellular
D2D, among others). We say that two nodes are in contact
when they are able to exchange information directly. From
the beginning of the time window, each vehicle samples its
position in space at regular time intervals. The resulting time
series constitutes the local dataset of each vehicle.

III. GOSSIP LEARNING (GL) ALGORITHMS

At each time interval, each node has to predict its location
h time intervals ahead in time. To this end, each node trains a
2-stages LSTM model, an architecture which presents several
advantages (such as larger memory, multi-variant input/output,
among others) with respect to other RNN models. The output
of the model is a vector which associates to each cell a
probability value, corresponding to the probability for the node
to be in that cell in h time intervals in the future. Finally, a
one-hot encoder selects the most likely class as final output.
We focus on a collaborative approach, in which each node
minimizes a loss function and maximizes accuracy metric
for its own model over its local dataset, by leveraging the
availability of other node’s models to improve its own model.
In general the outcome is a different model for each node.
Specifically, the GL algorithms are structured as follows. The
time spent by each node in the scenario is divided into two
stages. In the initialization stage, a node entering the given
region collects data points and builds its local dataset, without
performing any prediction. At the end of this phase, the
node initializes the model by training it on local data. In
the exploitation stage, at regular intervals (rounds) every node
sends its model to nodes in its range. Similarly to traditional
server-based federated learning schemes, every node can have
two roles (possibly at the same time). A node is a client when
it receives a model from another node within its range (called



server), it trains it using its local dataset, and it sends back
the model updates to the server. The server node combines
the model updates into a meta-model, and it orchestrates the
steps of the learning process. Each node is thus a server for
his personal learning task, for which it is building its model,
while at the same time it is available as a client for the learning
tasks of all other nodes in the scenario.
Our main contribution is in the meta-model for GL. We
considered three approaches. In the DFed Avg approach, at
every round the coefficients of the meta-model are obtained
by a weighted sum over all clients. For each client, the weight
is the ratio between the number of the samples in its local
training set over the total samples of all clients in that round.
The DFed Pow scheme instead aims at weighting each contri-
bution according to a notion of similarity (in terms of roads
and regions of the city covered) among the dataset of the
server and of the client nodes. Specifically, the server node
uses its local validation set to evaluate the loss value lk of
each of the updates of the model received by client nodes. As a
loss function, we considered the well known categorical cross-
entropy [2]. In such loss function, in order to have each client
contribution proportional to the inverse of loss, we assigned to
model update from user k a weight given by 10−lk∑

k′ 10
−l

k′
where

the summation at the denominator is over all clients which
returned a model in the given round.
Finally, the DFed Best strategy, the server selects among the
model updates received the one with the lowest loss value
(computed as in DFed Pow), and it takes it as its meta-model.
This scheme originates from the observation that in DFed Pow
the meta-model does not always perform better than the single
model updates which compose it.

IV. NUMERICAL EVALUATION

In order to assess the performance of our GL schemes,
we performed a set of simulations over Omnet++ [3] and
Keras [4]. We considered the vehicular traces of the Luxem-
bourg SUMO dataset [5], and the time interval 6:30 AM to
7:30 AM over the whole city. In the given scenario, on average
about 300 vehicles are present at every time instant, and every
vehicle is in the range of about 60 other vehicles, of which
on average only half are in the exploitation phase and are thus
able to act as clients. We adopted the most recent 30% of data
collected by every car as validation set, a 5 s round duration
and a 10 s prediction time. The LSTM configuration which
yielded the best performance across our experiments consisted
in a 50 neurons LSTM with 24 input and 2 output steps, with
5 s interval among consecutive samples, a 10−3 learning rate.
Fig. 2 and Fig. 1 show accuracy and loss of our GL schemes,
averaged over the 30 cars in the scenario with longest sojourn
time.

The plots show that mean loss decreases steadily as the
GL scheme progresses for the three schemes considered, and
that accuracy increases steadily too. In particular, in the given
scenario the DfedAvg scheme, based on relative size of local
training set, seems to outperform the other two, based on loss
estimation. These results suggest that, despite nodes enter the
scenario with an empty dataset, a high level of accuracy can

10 20 30 40 50 60 70 80 90 100 110

Round

2

4

6

8

10

12

14

16

L
o

ss

Fig. 1: Mean loss over iterations for our GL algorithm, for the three
model merging schemes, in the Luxembourg scenario.

10 20 30 40 50 60 70 80 90 100 110

Round

0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy
Fig. 2: Mean accuracy over iterations for our GL algorithm, for the
three model merging schemes, in the Luxembourg scenario.

be achieved within a relatively small amount of rounds. Thus,
on vehicles which spend a sufficiently large amount of time in
the scenario, GL schemes can collectively train high quality
models over relatively short timespans.

V. FUTURE WORK

These preliminary results suggest that the performance of
nodes with too small/poor dataset, or short sojourn times might
be improved by having nodes with better models spread them
opportunistically, and let other nodes use such received models
as starting point in the GL algorithm. We thus plan of ex-
panding this approach with model exchanging among vehicles,
which promises to enable vehicles with short sojourn times
and small datasets to contribute significantly to the scheme.
Moreover, we plan of performing a thorough assessment of
our algorithms on a variety of other vehicular scenarios, and
to characterize their convergence properties.

REFERENCES

[1] H. B. e. a. McMahan, “Communication-efficient learning of deep net-
works from decentralized data,” arXiv: 1602.05629, Feb 2016.

[2] D. R. Cox, “The regression analysis of binary sequences,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp.
215–232, 1958.

[3] A. Varga, OMNeT++. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 35–59.

[4] F. Chollet, Deep Learning with Python and Keras: The practical manual
from the developer of the Keras library. MITP-Verlags GmbH & Co.,
2018.

[5] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario,” in IEEE VNC, Dec 2015, pp. 1–8.


	Introduction
	System model
	Gossip Learning (GL) algorithms
	Numerical Evaluation
	Future work
	References

