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Abstract: The performance gap, defined as the difference between the measured and the calculated
performance of energy-efficient buildings, has long been identified as a major issue in the building
domain. The present study aims to better understand the performance gap in high-energy per-
formance buildings in Switzerland, in an ex-post evaluation. For an energy-efficient building, the
measured heating demand, collected through a four-year measurement campaign was compared to
the calculated one and the results showed that the latter underestimates the real heating demand by
a factor of two. As a way to reduce the performance gap, a probabilistic framework was proposed
so that the different uncertainties of the model could be considered. By comparing the mean of
the probabilistic heating demand to the measured one, it was shown that the performance gap was
between 20–30% for the examined period. Through a sensitivity analysis, the active air flow and the
shading factor were identified as the most influential parameters on the uncertainty of the heating
demand, meaning that their wrong adjustment, in reality, or in the simulations, would increase the
performance gap.

Keywords: performance gap; energy-efficient building; probabilistic heating demand; global sensi-
tivity analysis; on-site measurements

Highlights

• The energy performance gap of a new multi-family Minergie® building was identified
by comparing the measured and the calculated heating demand.

• The comparisons between the measured and the calculated heating demand showed
that the latter underestimates the real heating demand, by a factor of 2.

• Commonly used hypotheses in the Swiss building practice, considering the climate
conditions of the building, the indoor temperature and the electricity consumption, as
causes of the increased performance gap, were not justified for this case study.

• A probabilistic framework was then proposed, so as to include the different uncertainties
of the parameters of the heating demand, as an attempt to reduce the performance gap.

• A sensitivity analysis showed that the shading factor and the active heat flow were
identified as being the most influential on the uncertainty of the heating demand.
Correction measures were finally proposed, based on these results.

1. Introduction

The rising of the green building concept has been introduced as a solution to the
mitigation of the energy consumption in buildings. National building energy standards
or energy labels have been recommending different measures for the envelope and the
technical installations, in order to meet the requirements of a green building. However, it
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was realized soon that the monitored and thus the real performance of the building did not
correspond to the one calculated during the design phase of the building. This difference,
commonly known as the ‘performance gap’, has been already addressed by the scientific
community and different studies have been conducted, in order to define precisely the
performance gap, its magnitude, explain its causes, and propose solutions in order to deal
with it, as summarized thoroughly in [1–3].

The underlying causes of the gap vary from the uncertainty of the occupant behavior to
the uncertainties of the building energy modeling in general, such as model simplifications
of the building complex system [3]. The unpredictability of the user [2–10] constitutes one
of the most generally accepted reasons explaining the gap [1]. This uncertainty derives
from the fact that different parameters influence human behavior, such as psychological
or sociological [2], which cannot be quantified or incorporated into the building energy
modeling. Other reasons, explaining the performance gap can be the discrepancies between
the designed and the real construction, due to limited craftsmanship, as summarized
in [1–3], the inefficient regulation of the technical systems, [3,6], or the inaccuracies of the
measurement system, as mentioned by different studies and summarized in [1,3], etc.

Sun [11] argues that by reducing all the uncertainties, the performance gap could be
diminished, based on the definition of the uncertainty, as “being any deviation from the
unachievable ideal of completely deterministic knowledge of the relevant system”, given
by Walker et al. [12]. Hence, according to Björklung [13], if the data quality cannot be
increased, in order to reduce the uncertainty of the input parameters, another alternative
and straightforward way to deal with the uncertainty is by using a probabilistic approach.
This method allows the attribution of a range of values, described by a probability density
function for the uncertain parameters, rather than a single value. In this way, according to
the author, the credibility of the model increases, through a better ‘understanding of the
model and its behavior’. Thus, by increasing the credibility of the model, the predictability
of the building’s energy performance can be enhanced, as well, [11], leading to the limitation
of the performance gap.

Different studies have already been conducted, considering a probabilistic framework
for the uncertain building parameters, as a way to reduce the performance gap. Sun [11]
treated within a probabilistic framework a variety of parameters affecting the building
energy, i.e., climate, building, occupancy, technical systems. The author applied the
developed methodology in six building case studies and the results showed that the
mean of the probabilistic cooling consumption agreed better with the measurements
than the deterministic value. In addition, Cali et al. [14] proposed a systematic way of
considering the occupant’s behavior within a probabilistic framework, by using a database,
based on observed data, in order to improve the predictability of the energy model, as
a solution to reduce the performance gap. Probabilistic modeling of the occupant’s behavior
was also adopted in the study of Tagliabue et al. [15]. Moreover, Cecconi et al. [16]
proposed a method, in order to train an Artificial Neural Network (ANN), so as to predict
probabilistic occupants’ profiles.

At the Swiss level, several projects have been conducted, in order to compare the
design and the real energy performance, as for example [17–19]. The latter includes among
others, high energy performance buildings (i.e., Minergie® [20]), but do not provide the
reasons for the performance gap, in detail, or do not provide solutions for this type of
buildings. Cozza et al. [18] suggested that further studies should be performed for the
case of high-performing buildings, in order to better understand the way deep renovations
perform in terms of energy, in reality.

Hence, the current study aims at a detailed analysis of the performance gap in one
energy-efficient building in Switzerland, e.g., Minergie® certified building, in order to cover
the knowledge gap, concerning the causes and the minimization of the performance gap,
as well as the determination of relevant solutions both in ex-post evaluations, in this kind
of building. A stochastic approach was adopted, as a way to diminish the performance
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gap, while through a sensitivity analysis the causes of the gap could be identified that led
to recommendations for its correction.

2. Materials and Methods

As already documented in Shi et al. [2], there are several definitions regarding the
energy performance gap. In this study, the energy performance gap concerns only the
operational energy use for heating. It is defined as the difference between the calculated
and the monitored useful heating demand. The proposed methodology is presented in
Figure 1 and comprises the following steps: (1) the calculation of the normative heating
demand and the determination of the real heating demand through measurements, (2) the
initial identification of the performance gap, through the comparison of the normative and
the measured heating demand of the case study, (3) the development of the probabilistic
heating demand model as a way to reduce the performance gap of the heating demand,
as well as the global sensitivity analysis, as a way to determine the most influential
parameters on the heating demand uncertainty and propose a targeted investigation of
these parameters, and finally, (4) the correction of the performance gap, based on the
findings of the sensitivity analysis. Based on these results hints can be given, concerning
the reasons for the performance gap and the ways to deal with the performance gap.
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2.1. Building Case Study and Monitoring System, Real and Normative Heating Demand

The proposed methodology was applied to a new multi-family residential building
(energy reference area (ERA) = 2663 m2), of a green neighborhood in the city of Gland, in
Switzerland. Figure 2 presents the views and sketches of the building under investiga-
tion. The building was constructed in 2014 and was certified as Minergie-Eco®, meaning
a high energy-efficient and ecological performance, respectively. It is connected to the
district heating network (wood—80% and gas—20%) and equipped with a double-flow
mechanical ventilation system with heat recovery (manufacturer efficiency ~80%), while
no decentralized energy production system (solar thermal, photovoltaic, etc.) is installed.
A ventilated façade is used for the building envelope, which contains significant glazed
surfaces, (triple glazing, average thermal transmittance coefficient of 0.8 W/m2·K, g = 0.51).
More details of the characteristics of the case study can be found in [21].
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For the determination of the real heating demand, a monitoring system was installed
by eSmart Technologies SA [22] and included a set of smart meters, gathering data of (a) the
energy consumption of the apartments (i.e., consumed heating energy, electricity, internal
temperatures of two zones, during day and night, domestic hot water), (b) data of the
ventilation unit (i.e., electricity consumption, temperature, etc.), and (c) data taken of the
technical room for the whole building (i.e., air flow, electric consumption of the pump, etc.).
The measurement campaign was launched at the moment of the operation of the building
and data were collected for the years 2014 to 2017 for an hourly time step.

The heating demand was calculated based on a monthly quasi-steady-state approach,
according to the SIA 380/1 Swiss energy standard [23] that is also used by the Minergie®

standard. The SIA 380/1 heating demand model is currently broadly used by the majority
of practitioners in Switzerland. This model calculates the heating needs of the building,
through the transmission losses and the solar gains of the envelope, while the domestic
hot water (DHW) is not part of the heating demand calculation. The model simulation
was performed using the Lesosai software [24] and the different assumptions of the model
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parameters were based on the Minergie® standard, which are presented in Table 1 (“de-
terministic calculation”). Based on the measurements and the simulation of the heating
demand, the performance gap could be then identified.

Table 1. Normative value and range considered in both deterministic and stochastic assessment of the building heating demand.

Parameter

Deterministic
Assessment Probabilistic Assessment

Normative Value
According to the

Minergie® Standard
Range of the Parameter Comments on the

Sampling Type

Parameters
(normative values and

PDFs)

Shading factor 0% [0, 100] %

For each window of the
building (total: 43),
a random uniform

sampling is performed

Energy reference
area per person 40 m2/person [30, 50] m2/user Uniform

Internal heat
gains per person 70 W/person [50, 90] W/user Uniform

Occupant presence
per day 12 h/day [8, 16] h/day Uniform

Reduction factor for the
electricity heating needs 70% [70, 100] % Uniform

Active thermal
air flow rate 1 0.33 m3/(m2

ERA·h) [0.3, 0.7] m3/(m2
ERA·h) Uniform

Thermal capacity of
the envelope 0.50 MJ/(m2·K) [0.45, 0.555] MJ/(m2·K) Uniform

U-value of the
components of the
thermal envelope

According to the
normative assumptions

for the layers of
construction materials

±10% of the calculated
U-value in the normative

heating demand (Qh)

A U-value is sampled for
each building component
of the thermal envelope

(total: 68 for
each simulation)

ψ value of the
thermal bridges

According to the
normative assumptions
for the ψ value between

building components

±10% of the calculated ψ
value in the normative
heating demand (Qh)

A ψ value is sampled for
each thermal bridge (total:

7 for each simulation)

Mean air flow 2400 m3/h - -

Infiltration rate 0.15 m3/(h. m2
ERA) -

Efficiency of the
heat recovery 80% - -

Others parameters 1

(normative and measured
values)

Electricity consumption
(other domestic uses

excluding DHW)
100 MJ/(m2

ERA.an)
Average monthly real

electricity consumption
-

External temperature
Normative weather

station (Payerne,
Switzerland)

Local weather station
(Gland, Switzerland)

Solar irradiation
Normative weather

station (Payerne,
Switzerland)

Local weather station
(Gland, Switzerland)

Internal temperature

Monthly average
temperatures in each flat

of the building taken from
the smart meters

Average monthly real
internal temperature

1 No data were available for air flow of the ventilation unit, due to problems in the monitoring system.
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2.2. Minimization and Explanation of the Performance Gap through Uncertainty and
Sensitivity Analyses

The uncertainty analysis followed and the probabilistic model of the heating demand
was built, according to the thermal equations of the SIA380/1. The parameters of the model
were fixed either by using the available measurements from the measurement campaign,
either by determining a probability density function, in order to calculate the probabilistic
heating demand. This allowed testing numerous combinations of different scenarios of the
input parameters, using a small computational time.

Table 1 presents the model parameters and the defined probability density functions,
as well as the parameters, defined using the measurement data. Ideally, Gaussian distribu-
tions should have been used. However, to determine them with confidence, more input
data is needed to build such an empirical Gaussian which is not the case here. Uniform
distributions were selected for the PDFs, with ranges, based on the default values of the
SIA 380/1, or the pre-calculated deterministic values. For example, for the thermal trans-
mittances, i.e., U-values, or psi-values, a 10% variation around the deterministic value was
considered. Concerning the shading parameter, a variation between 0–100% was defined
for each of the windows, meaning 0% or 100% shaded windows, respectively. In addition,
the active air flow was varied between 0.3 and 0.7 m3/(h·m2

ERA), which correspond ap-
proximately to the calculated value of the Minergie® (i.e., with a double-flow ventilation
system) and the SIA 380/1 standard, respectively. In case measured data were available for
the input parameters, they were used as deterministic values in the probabilistic simulation,
e.g., the electricity consumption of other domestic uses. Finally, some of the input parame-
ters were considered in the probabilistic model indirectly, as for example the infiltration
rate and the efficiency of the heat recovery.

The total range of the probable values of the heating demand was calculated, using
Monte Carlo simulations. The generated matrix N ×M included the M parameters of the
model as columns, which corresponded to N building scenarios, the lines of the matrix.
Hence, 10,000 simulations were computed for each of the examined years (40,000 in total),
using the R programming language [25]. In this way, the probabilistic heating demand was
calculated and the mean value of the PDF was compared with the deterministic and the
measured heating demand.

The probabilistic assessment led to the global sensitivity analysis, which allowed
determining the parameters, whose uncertainty mostly influences the uncertainty of the
probabilistic heating demand. The global sensitivity analysis considers a simultaneous
variation of the inputs and additionally their possible interactions [26], contrary to one-
at-a-time sensitivity analysis. According to [26,27], the global sensitivity analysis is used
in order to rank variables, fix as constant the unimportant parameters, and limit the
model dimensionality. The adopted method is a variance-based GSA, which allows the
decomposition of the variance of the heating demand into different parts that can be
attributed to inputs, i.e., the parameters of the heating demand, [28]. Precisely, the Sobol
decomposition method was used, while the first order and the total effect Sobol Indices were
calculated. The former, Si, represents the main effect, i.e., the unique contribution of the
individual parameters, Equation (1), while the latter, STi , represents the joint contribution,
by taking into consideration possible interactions among the input parameters of the
heating demand, Equation (2).

Si =
Var[E(Y|Xi)]

Var[Y]
(1)

STi =
EX∼i

[
VarXi (Y|X∼i)

]
Var[Y]

= 1−
VarX∼i

[
EXi (Y|X∼i)

]
Var[Y]

(2)

3. Results
3.1. Identifying the Energy Performance Gap

The annual normative heating demand, Qh, according to the Minergie® standard,
is presented in Table 2. The results show that the normative simulation underestimates



Energies 2021, 14, 6178 7 of 15

the heating demand for all the examined years. For 2016 and 2017, the measured useful
energy was two times higher than the calculated energy. The relatively low-performance
gap presented for 2014, compared to the other years, can be explained by the fact that there
were unoccupied apartments during the first year of the operation of the building.

Table 2. Comparison of the normative heating demand according to the energy-efficient label Minergie® and the measured
heating demand for the first four years of operation (2014–2017).

2014 2015 2016 2017

Deterministic normative heating demand (Qh)
according to the Minergie® label [kWhuseful] 44,899 44,899 44,899 44,899

Measured heating demand (Qh) [kWhuseful] 71,273 88,477 94,509 95,999
Relative difference between the deterministic and the

measured heating demand [%] +59 +97 +111 +114

Figure 3 shows the monthly measured heating demand for the four examined years,
as well as the calculated heating demand. The former was calculated by aggregating
the measured data for a monthly time step. It can be noticed that the calculated heating
demand presents a shorter heating season than it actually happens in reality, where the
heating stops in July and starts again in September. One reason for this trend could be the
possible overestimation of the solar gains during spring and autumn (from April to June
and from September to October) in the SIA 380/1 heating demand model.
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3.2. Explaining the Performance Gap by Comparing the Model Assumptions and the Measured Data

In an attempt to explain the significant differences between reality and the simulation,
the normative values and the measured data were investigated in detail. The investigation
was first focused on the three parameters, considered by the practitioners as the reasons
for the increased performance gap, see Table 3. The comparison of the climate data
between the reference climate station (climate station in Payerne) and the station close to
the building (climate station in Gland), revealed that the latter showed a slightly warmer
climate than the reference climate station. As far as the internal temperature is concerned,
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the measured temperature during the winter months was 5–15% higher than the normative
value. Concerning electricity consumption, the mean measured value for all the years was
18% lower than the normative value. This result shows that the SIA 380/1 model tends
to slightly overestimate the internal gains, which could explain the results of the lower
calculated heating demand, as well as the shorter heating period, given by the model.

Table 3. Differences between the measurements and the normative values.

Measurements Normative Values (SIA 380/1)

External temperature Climate data of the station in
Gland, close to the building. Default climate data: station of Payerne

Internal temperature
Mean temperature of the apartments

(during the heating season):
21–23 ◦C

20 ◦C

Electricity consumption 23 kWh/m2
ERA

sd = 1.10 kWh/m2
ERA

27.8 kWh/m2
ERA

Energy signature 1.67 kW/K 1.55 kW/K

These three aforementioned parameters can be easily measured, during the assess-
ments of the energy performance certifications (e.g., CECB in Switzerland) and the general
procedure followed in practice that consists of replacing the normative values in the heating
demand steady-state simulation of these parameters with the measured data, as a way to
reduce the performance gap, in an ex-post evaluation. However, in the examined case
study, including the real data of these parameters in the simulation resulted in an approxi-
mately 100% higher performance gap (see Table 4), which reveals that there is a limited
understanding of the model and its parameters.

Table 4. Evolution of the energy performance gap when measured values replace the normative ones
in the building energy simulation (2014–2017).

Measured Parameters Integrated
in the Energy Simulation 2014 2015 2016 2017

Real climate data [%] +227 +239 +250 +213
Real climate data + measured indoor temperature [%] +158 +159 +136 +146

Real climate data + measured indoor
temperature + electricity consumption [%] +104 +116 +96 +112

The investigations concerning the mean air flow showed that the measures were 80%
lower than the corresponding Minergie® value. However, the thorough examination of
this result revealed that these measurements were not reliable, due to a problem in the
monitoring system, observed at the end of the measurement campaign. Moreover, the
heating system was configured at the end of 2014, while no control was performed until
2017, which could have led to a reduction in the system’s efficiency and thus increased
heating demand values. These facts reveal that the monitoring system, as well as possi-
ble wrong adjustments of the heating systems, can be additional sources, increasing the
performance gap.

In addition, using the available measurements, the energy signature of the building
could be obtained in order to compare the calculated to the measured thermal response of
the building. The heating slope of the regression model (R2 = 0.94) was small and 8% lower
than the theoretical one, see Table 3. This result revealed, first, the high energy performance
of the building and its low sensitivity on the variations of the external temperature and,
second, the high quality of the construction of the building.

3.3. Reducing the Performance Gap, Using a Probabilistic Approach

The different aforementioned sources of uncertainty (climate data, internal gains, air
flow, etc.) participate with different weights in the increase in the performance gap and can
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be taken into consideration in the heating demand model, through a probabilistic method.
Hence, by attributing to the parameters of the SIA380/1 heating demand model, the PDFs
of Table 1, the probabilistic model of the heating demand can be developed. The probability
density function of the heating demand (min = 50 MJ/m2

ERA, mean = 101 MJ/m2
ERA,

max = 170 MJ/m2
ERA) is presented with the measured heating demand of the four exam-

ined years, as well as the deterministic Minergie® heating demand, in Figure 4.
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Figure 4. Probability density function of the heating demand, deterministic heating demand (SIA
380/1 and Minergie®) and measured data period [2014–2017].

The results show that the uncertainty of the heating demand varies significantly,
due to the uncertainty of the model parameters, i.e., coefficient of variation cv = 18%.
The measured heating demand for all the examined years (except 2014, because of the
apartment vacancies at the beginning of the building’s operation) is positioned in the
higher part of the distribution (between the mean and the 3rd quartile). As far as the
Minergie® heating demand is concerned, it is positioned in the lower part of the PDF
(between the minimum value and the 1st quartile), while it is 40% lower than the mean of
the probabilistic heating demand. The probabilistic model succeeds in capturing the real
measurements, revealing that the hypotheses, concerning the limits of the distributions
of the parameters, are relevant. Comparing the measured heating demand with the mean
of the distribution, the performance gap is reduced significantly, i.e., between 20–30%, for
the years 2015 until 2017, see Table 5. These results reveal that the probabilistic method,
presents an efficient way to reduce the performance gap, both in an ex-ante and in ex-post
evaluation, by taking into account the different uncertainties of the model.
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Table 5. Energy performance gap between the measurements and the median value of the probabilis-
tic heating demand.

2014 2015 2016 2017

Energy performance gap between
measurements and the mean value of

the probabilistic Qh [%]
+5% +18% +26% +28%

The analysis continued by comparing the deterministic and probabilistic heating demand
to the measured data, on a monthly basis. Figure 5 presents these results for the four years
of the monitoring campaign. The results show that for all the months the measured heating
demand is positioned inside the PDF, with the majority of the times being inside 50% and
100% of the data. On the contrary, the deterministic normative heating demand can be found
most of the times outside the whiskers of the boxplot or between the minimum value and
the quartile Q1, which represents 25% of the data. Finally, the length of the heating period
of the probabilistic model corresponds better to reality than that of the deterministic heating
demand. Hence, the probabilistic model can more accurately predict the real heating demand,
on a monthly basis, compared to the deterministic heating demand.
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3.4. Explaining the Performance Gap, Using a Global Sensitivity Analysis

Following the uncertainty analysis, two global sensitivity analyses (GSA) were con-
ducted by varying all the model parameters simultaneously. The first GSA considered
all the stochastic parameters of Table 1, as well as the climate parameter, by considering
the four years of the real climate data stochastically. The results of the Sobol’ Indices are
presented in Figure 6 (left). It is shown that the three model parameters explaining most of
the variance of the heating demand are the climate, the active air flow, and the shading
factor. The climate conditions explain approximately 70% of the variance of the model,
which derives from the climate variability among the years, while no significant difference
between the first and the total Sobol’ Indices is observed. However, this parameter cannot
be refined or predicted easily by architects and engineers in an ex-ante evaluation since it
constitutes an exogenous parameter to the model, for which the designer has no control.
Thus, it was decided to consider the climate parameter deterministically.
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In this manner, a second series of sensitivity analyses followed by treating the climate
parameter deterministically. Hence, each of the four years of the real climate conditions
were attributed separately for the climate parameter. The results of this second analysis, for
the year 2016, are presented in Figure 5 (right) since no differences were noticed between
the different years. In this case, the three parameters explaining 83% of the variance of the
heating needs are the active air flow (60%), the shading (20%), and the internal temperature.
No interactions among the parameters are noticed since there is no significant difference
between the first and the total order index. It is interesting to note that 60% of the variance
of the heating demand is explained by the uncertainty of the active thermal flow, which is
a technical parameter not affected by the daily occupant behavior. The results of the heating
demand can vary significantly if these parameters are not known with confidence during
the building design. Thus, special attention should be given to the determination of the
active thermal flow and the shading factor when calculating the heating demand or when
setting their configuration in the real construction, since an eventual wrong adjustment
of these two parameters increases the performance gap for this case study. However, all
the other model parameters show a similar performance, meaning that their uncertainty is
not critical for the magnitude of the performance gap for this specific case study of a Swiss
energy-efficient residential building.
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4. Discussion

The initial investigations of the performance gap revealed that the usual assump-
tions, concerning its causes, as it is generally defined during the energy audits in practice,
i.e., climate data, internal temperature, and electricity consumption, do not explain the
performance gap for this case study, since it concerns an energy-efficient building. Thus,
through the second step of the research, which includes the probabilistic and global sen-
sitivity analysis, the performance gap could be successfully explained and reduced. The
probabilistic framework allowed the calculation of the probabilistic heating demand, by
considering probability density functions for the parameters of the SIA 380/1 model. By
comparing the measurements to the mean of the probabilistic heating demand, it was
shown that the performance gap was significantly smaller than that of the deterministic
heating demand. The results showed that the magnitude of the performance gap dimin-
ished by approximately 70% when the probabilistic framework was used.

The GSA showed that the two parameters explaining most of the variance of the
heating demand are the shading factor and the active air flow. This result gives hints about
the causes of the performance gap for the case of an energy-efficient building. It reveals the
parameters that need to be further refined in the calculations, or measured with caution
through a targeted on-site measurement campaign, since their influence on the variance
of the heating demand increases the magnitude of the performance gap, too. Thus, the
GSA can be a valuable method for the practitioners, both in the building planning process
(ex-ante assessment), or during the building operation (ex-post assessment), since it allows
a targeted control and re-evaluation of the parameters in question.

However, it should be noted that the application of the methodology used in this article
(cf. Figure 1) will not certainly lead to the same conclusions concerning the parameters that
mostly influence the variance for a different analyzed case study. For instance, an existing
building built in the 1960s with poor thermal insulation and low thermal mass is more
susceptible to external temperature variations. Similarly, if the probabilistic assessment is
conducted in the design stage, during which all the input parameters are unknown, the
results of the GSA will most probably not be the same, or even if the ranges of the variation
of the parameters are different than those chosen in this study. Hence, no generalization of
the results can be conducted. However, generalized hints of how to deal with the observed
performance gap for an energy-efficient building can be given in the following.

4.1. Further Reduction of the Performance Gap by Adjusting the Shading Factor

Based on the results of the sensitivity analysis, targeted control of the most influential
parameters followed. The normative values of the Minergie® calculations, concerning the
active air flow and the shading factor, should be re-evaluated so that they correspond better
to the most probable conditions of the building. In an ex-post evaluation, the representa-
tiveness of these normative values could be verified by a targeted measurement campaign.
For this case study, first, the active air flow was determined through a technical proce-
dure that allowed the retrieval of all the measurements of 2015. The measured active air
flow was found to be higher than the Minergie® normative value, i.e., 0.43 m3/(m2

ERA·h).
Concerning the uncertain parameter of the shading factor, since a second measurement
campaign was not possible for this building it could also be estimated numerically using
a probabilistic approach. A performance gap limited to ±5% between the measurements
and the SIA 380/1 probabilistic heating demand was defined, resulting in the determina-
tion of distributions for the shading factor for each month of the year. These distributions
gave only indicative values in order to approximate the real conditions of the building
by considering a ±5% performance gap. Hence, 100,000 probabilistic simulations were
conducted using the statistical software R for 2015. All the other model parameters were
kept as before (cf. Table 1). Figure 7 presents the boxplots for the shading factor for 2015
since real data for the active air flow were available only for this year.
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The results show that for the heating season, 50% of the simulations show a shading
factor between 50–60%. Concerning February, no results could be obtained for the shading
factor. The reason lies in the fact that the probabilistic heating demand cannot predict well
the deterministic heating demand when the real active air flow is used (i.e., a difference
of more than ±5%) for this month. The normative Minergie® value for the shading factor
is 0%, i.e., no shading at all, which means that according to the Minergie® requirements
and the SIA 380/1 standard, the solar gains are overestimated, leading to a reduction in
the heating demand. However, the reality is different, i.e., the windows are shaded and
the solar gains are not efficiently valorized, leading to an increase in the heating demand.
This behavior of the occupants to increase the shading of the windows and diminish the
solar gains was also shown by a measurement campaign conducted in a nearby building of
the same ecological district. Data were collected for a period between the 3 February 2016
and the 30 October 2017. The detailed analysis of the measurements [21] revealed that the
stores were not systematically open during the day, limiting the maximization of the solar
gains. Thus, in order to harmonize reality and simulations and reduce the performance
gap, the shading factor should be redefined in the Minergie® and SIA 380/1 simulations to
better reflect the real conditions.

4.2. Limitations of the Current Approach

The analysis of the shading factor in the previous section has several limitations due to
the lack of precise measurements for the building under study. Indeed, there is a potential
risk that the calculated stochastic value of the shading factor is in reality a bit different even
if the measurements of a nearby building in the ecological district confirm it. This also goes
back to the limits of the used heating demand model based on the SIA 380/1 steady-state
calculation which is not for instance a dynamic model accounting in an accurate way of the
transient effects such as the effects of the solar gains and shadings. Thus, further studies
applying a similar stochastic approach but on a dynamic heating demand model and with
more measurement data (including the shadings of the investigated building) would be
needed to better understand and reduce the performance gap in energy-efficient buildings.
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5. Conclusions

This research aimed to investigate the performance gap of the useful heating demand
of an energy-efficient building, in Switzerland. The following conclusions could be drawn:

(a) Among the reasons explaining the performance gap, we can find the overestima-
tion of the solar and internal gains in the heating demand calculations, errors of
the measurement system, wrong configurations of the technical system, the non-
representativeness of the normative values included in the simulations, regarding
the real conditions of the building or the uncertainty of the parameters controlled
by the occupants.

(b) The probabilistic analysis can be an efficient method for minimizing the performance
gap both in ex-post and ex-ante evaluations, while the sensitivity analysis proved to
be a straightforward method for the identification of the parameters that explained the
variance of the probabilistic heating demand. This step allows a targeted investigation
of these parameters, regarding their adjustment in the simulation or in the real
construction and gives hints about the causes of the performance gap as well as
solutions for its correction.

(c) The results of the sensitivity analysis cannot be generalized since only one residential
case study was analyzed. However, the analysis showed that increasing the percent-
age of the shading factor in the Minergie® simulations for this specific case study can
lead to the minimization of the gap between the measurements and the simulation.
Further studies are now needed that also includes the use of a more accurate building
heating demand model using a dynamic calculation and more measurement data in
sensitive parameters (e.g., shading factor).
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