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Abstract. The original Sugarscape agent-based model has been adopted
by the modelling community as a simple yet very insightful model. It
uses event-condition-action rules to simulate a society which ages over
time and consumes sugar to survive. The model is well known and has
been adopted in fields such as Economics, Computer Science and Biology
therefore its utility will be explored in this research. The research will
present an implementation of the original Sugarscape model (refined for
3D space) using Reinforcement Learning (a form of Machine Learning
which enables autonomous agents to learn by rewards and penalties).
A Reinforcement Learning algorithm such as Q-learning is implemented
in this research as there is a lack of work being done to integrate Q-
learning in conventional ABMs. Furthermore, Q-learning provides agents
with the means to evolve overtime and adapt to changes without explic-
itly defining the actions to take under individual circumstances. On the
other hand, agents that use event-condition-action rules do not adapt
to change, they instead react to changes by applying actions that have
been hard coded prior to model execution. The problem addressed is,
can agents make more realistic decisions by learning from their environ-
ment using reinforcement learning? This research will explore reactive
and adaptive behaviours to see if actions performed by agents within the
given environmental circumstances would be as expected if they were
humans. Furthermore, agents can anticipate future trends, for example;
learning the fastest route out of a burning building while anticipating
a fire alarm. This model will be implemented in Unity which is a video
game development engine. Unity has not been widely adopted by the
agent-based modelling community, yet does provide useful facilities for
the creation of models.

Keywords: Agent-Based Model · Reinforcement Learning · Decision
Making.

1 Background: Agents and Learning Algorithms

Learning algorithms such as Q-learning [12] have been around for many years.
Signs of the emergence of these algorithms can be traced back to early video
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games. Early ABMs applied condition-action-rules, then came BDI [9] and then
hybrid BDI frameworks such as [5], PECS (Physical conditions, Emotional state,
Cognitive capabilities and Social status) [11] and so on. It is clear that frame-
works for ABMs are constantly evolving. During this period, Machine Learning
algorithms are also being developed. Reinforcement Learning algorithms (a sub-
set of Machine Learning algorithms) are not domain specific, meaning they can
be adopted by any system that requires autonomous control of software that
makes decisions overtime (mainly good decisions). There is a gap in the re-
search being done to supply ABM frameworks with the ability to allow agents
to adapt to changes during model execution (which is usually what happens in
the real world, we constantly adapt to changes in our lives that we may never
have expected i.e. adapting to the death of a loved one). Moreover we evolve
overtime, we learn new skills and apply these skills that we never knew before.
Reinforcement Learning provides agents with these traits. This research aims
to apply a Reinforcement Learning algorithm to agents within a defined envi-
ronment (Sugarscape [2]) then, analyse these agents to see if they can adapt to
changes overtime and evolve.

1.1 Q-learning

Reinforcement Learning algorithms are used to provide agents in models with
policies to execute within a given circumstance. These algorithms can be applied
to any model that has a goal which needs to be fulfilled. For example; modelling
driver behaviour where agents (cars) need to navigate from point A to point B
without causing congestion. Large rewards will be given to cars that follow a
route and penalties will be incurred if cars collide. As we run the model over
many iterations, the agents start by making mistakes but each iteration they
learn something not to do and something that is acceptable.

Q-learning has been utilised in various domains and is an option for agent
based modelling researchers. [14] used Q-learning to calibrate an agent based
supply network model by using agents to find optimal values for parameters in
their operating policies. Moreover, the competitiveness of the electricity market
is modelled using agents that utilise Q-learning to learn from past actions and
deploy strategies against other competitors to ensure a fair distribution of elec-
tricity among suppliers [7]. [10] implemented the Q-Learning algorithm in order
to model the bidding strategy of suppliers (agents) in electricity auctions. The
authors examined the change in policy under various conditions of demand.

The Q-learning algorithm referred to throughout this research is from [13].
Q is initialised to a value provided by the programmer, and at each time step
t an agent selects the action at. It then observes a reward rt, and enters a new
state st+1 (this depends on a previous step st and the selected action a), finally
Q is updated.

Qnew(st, at)← (1− a) ·Q(st, at) + a · (rt + γ ·max
a

Q(st+1, a)) (1)

Where, a is the learning rate (0 < a ≤ 1), Q(st, at) is the old value, rt is the
reward at time step t, γ is the discount factor (0 ≤ γ ≤ 1) it values rewards
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received earlier, higher than those received later. Finally amax Q(st+1, a) is an
estimated optimal future value [13]. The learning rate a is defined as; how much
do you accept the new value compared to the value learned previously. The
difference between the new value and previously learned value is multiplied by
the learning rate a, let us call this S. Finally, S is added to the previous Q-value
which moves the agent in the direction of the latest update.

2 Methodology

2.1 Sugarscape

Sugarscape is an agent based model that simulates artificial societies. The idea
was originally developed in [3] and several implementations of the model have
been produced since [1, 4, 8]

The original sugarscape contains a heterogeneous population of autonomous
agents that compete for renewable resources which are unequally distributed
over a 2-dimensional environment [3]. Agents are autonomous, meaning there
is no central guidance that makes them behave in specific ways. They are also
heterogeneous, meaning each agent has unique traits and understanding of the
environment (i.e. initial location and wealth). The environment contains ran-
domly distributed sugar, some cells may contain no sugar and are classed as
empty cells.

2.2 Unity

Unity supports many software engineering packages such as OpenAI’s ml-agents
[6]. These packages provide a wide range of learning algorithms that can be
deployed in video games but can also be used in agent based models. Unity also
allows for the development of 3D environments with a physics engine. The model
will be presented using this platform.

3 Results

The application of the sugarscape model will be made up of several C# (pro-
gramming language) scripts. These are;

– SugarCollector - agent framework.
– SugarArea - a script that randomly distributes sugar in the environment.
– SugarLogic - a script that describes how often sugar is distributed and where

it is distributed.
– TFModelBrain - the Q-learning algorithm applied to each agent.

The TFModelBrain script is trained over 500 - 1000 iterations as this is the
limit of computing power provided but can be increased if a more powerful com-
puter is used. Once the training process is finished, the model can be executed
and the behaviour of each agent is traced.
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In Unity, to trace behaviour of individual agents, one can deploy ”gizmos”.
This facility contains various widgets that can be applied to agents and the
environment. The widgets used to trace behaviour in the model are;

– BoxCollider - sensor that detects how close an agent is to a physical object.
– Camera - used to allow agents to see.
– RayPerceptionSensor - a custom sensor that allows agents to compete with

one another by shooting lasers at each other to disable one another for a
given time period.

– AnimationTrack - used to track the movement of each agent during the
simulation.

The behaviours that are of interest in this domain are;

– Do sugar collectors evolve overtime to hide behind obstacles from the snatcher
(hostile agent)?

– How will the sugar collectors behave when the snatcher chases them?

To trace the behaviour on an individual level, first person cameras can be
used to see what agents are doing (refer to Figure 1).

Fig. 1. First person view from agents perspective

4 Discussion

The motivation for this work stems from the lack of research carried out to
address emergent human behaviours in agent based models. If the ABM com-
munity is to simulate human behaviour in models then it is necessary to test
those methods that have already been developed by researchers to see if they
really can be applied to much larger domains such as the simulation of people
in cities, planning problems that require complex decision-making and so on.
Sugarscape is a simple model, and it contains environmental features that can
be used to test behaviours of agents. This research should hopefully provide
agent-based modellers with new avenues to explore regarding intelligence repre-
sentation and how deep learning can be a viable option when simulating human
behaviours.
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Abstract. It is increasingly desirable to put together multiple models,
capturing various aspects, when developing complex agent-based simu-
lations. This paper presents a multi-level framework combining social,
cognitive and physical aspects of an agent split across different compo-
nents. The models individually encapsulate different levels of concern,
but collectively form a consistent view of the reasoning agent in the sim-
ulation. We present this framework in the context of a large-scale evac-
uation scenario involving more than 35,000 vehicles. Results show that
inclusion of the social level substantially affect evacuation outcomes.

Keywords: Social Network Diffusion · Mass Evacuations · BDI agents

1 Introduction

Combining models for a simulation application is increasingly useful as it allows
scrutiny from different perspectives, while saving time and effort in building
models from scratch (e.g., [23], [6]). In this work, building on [24] we propose a
tiered agent reasoning framework consisting of a social, cognitive and a physical
level. We are motivated by the observation that these aspects are often required
together but exist in separate specialised systems. The physical level is commonly
represented in agent-based platforms [1] that generally contain a ‘thin’ cognitive
layer where single-agent reasoning is limited to reactive rules. On the other hand,
mature cognitive reasoning systems exist today [3] but these are not typically
concerned with physical environments. Moreover, these deal mostly in single-
agent reasoning and lack learnings from social network diffusion research [13].

While creating monolithic systems that incorporate all concerns might be
possible at times, combining systems to present a consolidated and consistent
view of a reasoning agent split across several systems is often required. In [23] we
address the case where the reasoning agent is conceptually represented across
two separate but related agent-based models (ABMs). The approach was to
build an external controller to orchestrate the progression of the models, in-
specting/overwriting state variables, and rolling back steps as needed, in order
to maintain a meta-level world-view that was consistent across both component
simulations. Our BDI-ABM infrastructure [24] is useful where a new model is
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being built and it is desirable to combine specialised components–physical and
cognitive–to realise ABMs that support complex reasoning agents [3].

A multi-level view of agents is indeed useful in simulations, and social net-
working, particularly diffusion in social networks, is an important aspect that
has previously not been considered in this context. In this work we take the BDI-
ABM components described previously [24] and add a new social layer. Specif-
ically, we present a generic approach for incorporating network-based diffusion
processes [15, 18, 11], which capture the spread of various influences (e.g., infor-
mation, opinion, innovation), into simulations with complex reasoning agents.
We apply our framework to a large-scale flood evacuation scenario and show that
social influence can very significantly impact evacuation outcomes compared to
optimised evacuation plans that assume people do as they are told.

2 System Architecture

We support simulation of reasoning agents that are conceptually split across
the physical dimension represented in an ABM, the cognitive in a Belief-Desire-
Intention (BDI) system, and the social in a newly added social network model
(SNM). Here an ABM is a bottom-up system of interacting autonomous agents
in an environment for representing complex systems. A BDI program [9, 20] is
essentially a collection of plan rules of the form G : ψ ← P , which implies that
plan P is reasonable to achieve goal G when (context) condition ψ is believed by
the agent to be true, and is particularly useful for modelling human behaviour
in social simulations [16, 2, 3]. A SNM manages the social network structure
connecting the agents along with the network-dependant diffusion process.

Fig. 1. Conceptual overview of the multi-level agent framework.

The architecture (Figure 1) is implementation-agnostic, affording choice in
underlying models based on need. The modular architecture of the new SNM
component allows easy swapping of network and diffusion models (via a config-
uration file), facilitating re-usability across applications. Numerous well known
network (e.g., random, small-world) and diffusion (e.g., Independent Cascade,
Linear Threshold Model (LTM) [10], Competitive LTM, separated-threshold ver-
sion [4]) model implementations already exist in the system.
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Technically, the conceptual agent is identified in each subsystem by a common
identifier. The BDI-ABM machinery [24] allows BDI reasoning to instantiate
actions that are then carried out in the ABM system, while observations from
the ABM simulation generate percepts which are passed back to the BDI system
to inform further reasoning. We allow an influence received by an agent via a
diffusion process in the SNM to affect a specific belief in its BDI counterpart.
This can then either directly trigger a goal, which instantiates a whole new set
of plans and actions, or it can influence the achievement of existing goals, by
affecting which plans are chosen, and what actions are eventually taken by the
ABM counterpart. The opposite flow of a percept from the ABM triggering some
BDI deliberation that results in communication via the SNM is also possible,
though we do not demonstrate this in the scenario here.

The decision on how to split reasoning depends on functionality provided
by each system. For our scenario, it makes sense to use BDI for evacuation de-
cision making of an agent based on its circumstance, but leave path planning
to the ABM that maintains the road network model. We discuss such design
choices in [24, 25]. Interactions between agents can occur in each layer: directly
(via messages) or indirectly (via the environment) in the ABM; inter-agent com-
munication in the BDI system; or through the diffusion processes in the SNM.
Which mechanism to use again depends on what aspects of the complex system
are important to model. In our example, interactions occur at the physical level
(congestion on roads) and social level (spread of influence).

We maintain synchronisation between the three subsystems with respect to
simulation time and data. The ABM and SNM are time-stepped models that
may internally run at different atomic time steps, and the BDI system is event-
based and does not explicitly model time (end of the BDI reasoning cycle is
used to progress time [24]). At initialisation and subsequently at each temporal
synchronisation point, the physical, cognitive, and social data are shared across
the systems to maintain a consistent view of the conceptual agent. For instance,
physical aspects (managed by the ABM) are abstracted out as percepts (e.g.,
arrived at a location, road blocked) for the BDI system. The SNM system may
also require physical information, for example, geographical locations of agents
are sent to the SNM side (at initialisation) to generate proximity based social
networks (e.g., neighbourhoods).

3 A Flood Evacuation Case Study

Optimal evacuation schedules (e.g., [8, 19]) often assume that people will follow
their assigned plans diligently. However, empirical studies show that residents
rely on social networks amongst other things for evacuation decision making in
addition to official warnings [17, 7, 21]. To understand this better, we examine
how social influence affects outcomes of an optimised evacuation simulation.

We used optimised evacuation plans from Data614 for 38,343 agents in the
Hawkesbury region, NSW, Australia as the baseline, and compared these with

4 https://data61.csiro.au/
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simulations that incorporate social influence, across a range of configurations. In
the social scenario, an agent reasons and modifies its scheduled evacuation start
time based on level of influence from others, which causes it to either evacuate
early (low influence), on-time (moderate level of influence) or late (high influ-
ence). We experimented with two networks (a random network and a proximity-
based network), and three input factors (seed5 (5%-20%), activation threshold
(0.3-0.5), and degree6(2-10)). We ran 340 simulations (5 iterations * 17 config-
urations (combinations of seed, threshold, and degree values, selected using the
Latin Hypercube Sampling method [22]) * 2 networks * 2 effects (diffusion and
evacuation)). Before considering evacuation effects, we first analysed how the
chosen factors affect diffusion dynamics, to fully understand their influence on
the diffusion process. The social, cognitive, and physical aspects of our evacu-
ating agents were encoded in the LTM [10] for diffusion of social influence [14],
JACK platform [5] for cognitive reasoning, and Multi-Agent Transport Simula-
tion (MATSim) [12] for simulating road traffic, respectively. We find that:

– Social influence has a substantial impact on evacuation outcomes. In the worst
case ≈41% of the population is exposed to higher traffic congestion, resulting
in delays of up to three hours. Whereas in another run where high levels of
information diffusion were evident, the time to evacuate the whole population
improved by as much as 2hrs from a baseline of 10hrs.

– Precise effects on evacuation behaviour vary a great deal based on specific charac-
teristics of the social network as well as the diffusion process. Network structure
can have substantial impact, for instance, a neighbourhood network may lead to
8821 more evacuated agents compared to a random network. Threshold level is
the most influential factor, followed by seed and network degree, when it comes
to the sensitivity of the spread of influence on the diffusion process parameters.
For example, in two contrasting configurations for threshold but with similar val-
ues for other inputs, the number of evacuated agents changed from 8131 (21%)
to 38,343 (100%).

4 Conclusion

We propose a multi-level agent reasoning framework for social simulations that
extends the cognitive-physical integration provided by the BDI-ABM layers [24]
with a new social networking layer encapsulated in a social network model. This
allows different kinds of social networks along with well understood informa-
tion/influence diffusion mechanisms to be included in simulations with complex
agents. In the context of a flood evacuation scenario, we show that the social
level with its network-dependant diffusion processes is an important aspect that
can have a substantial impact on simulation outcomes. The SNM-BDI-ABM
framework presented here provides a good basis for further research combining
social networking, cognitive reasoning, and agent-based simulation.

5 Set of agents that have initially adopted the influence to start the diffusion process.
6 The degree refers to the number of links an agent has in its social network.
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Abstract. Planning new transport infrastructure that is integrated in the wider 

urban environment is key to promote use of public transport and other greener 

modes, while also ensuring high quality of public space around transport nodes 

and links. This work presents a multi-level approach to provide decision-support 

using a simulation model of a city neighbourhood combined with a more detailed 

model of a small scale area around a new development site. By linking these two 

models scenarios can be explored which take into account urban planning and 

the effect of long-term changes in a city on a detailed design for one particular 

location. A model in Repast Simphony covers the land-use and transport 

infrastructure in a district, while a NetLogo model simulates pedestrian 

movement. This is applied to a case study in Beijing, China, with preliminary 

results showing the potential of this approach to introduce this style of modelling 

to architects and urban planners. 

Keywords: transport system, pedestrian modelling, agent-based model, TOD 

1 Introduction 

Although car-oriented development has stimulated urban expansion, it has generated a 

large number of negative spaces affiliated with transport infrastructures and resulted in 

fragmentation of the urban fabric. Similarly, rail infrastructure can lead to poor quality 

urban space if it does not take into account the wider area. Integrated Land Use and 

Transportation planning, infrastructural urbanism, and Transit-Oriented Development 

(TOD) have gained worldwide attention. Initially promoted by urban planners as a basic 

principle of New Urbanism, the TOD strategy aims at encouraging individuals to use 

public transit in preference to private vehicles and complementing public transport with 

non-motorised travel for shorter distances [7]. Recently, urban researchers and 

practitioners have realised the need to consider a wide range of spatial scales, multiple 

transport modes and people-oriented public spaces design in developing successful 

TOD [4]. Moreover, urban and transportation planning, urban design, and architecture 

design are co-dependent processes, meaning that the decision of high-level planning 



could have direct impact on lower-level urban and building designs (and vice versa). 

Therefore, employing a holistic approach that arises from a negotiated, multi-scale, and 

proactive style of design is of great importance. 

Simulation tools can support this decision-making process by assessing various 

planning and policy alternatives against a range of performance indicators. Urban 

models, in particular agent-based models, are powerful in testing different 

configurations of an urban system to support decision-making [5]. Agent-based 

modelling can reflect the behaviour of the people in the environment linked to land use 

and availability of transport infrastructure [6]. Simulating navigation of humans among 

other users in different environments is key to assure safety and comfort in a cost-

effective and efficient manner before real-world implementation. For instance, studies 

on simulating emergency passenger train designs and conditions play a crucial role in 

identifying challenges in evacuation scenarios, offering possible solutions, and 

ultimately saving lives of passengers [13]. With the introduction of innovative urban 

design such as shared spaces, beside replicating collision-free navigation among other 

users, the importance of understanding socio-psychological interactions between road 

users for predicting road users trajectories, estimating flow and density relationships 

has been highlighted,  achieving solutions for the optimal design of a new area before 

implementation [14]. In [10] such pedestrian models are compared with data from 

controlled experiments. Instead of building massive and highly detailed agent-based 

models of urban systems, Perez et al. [15] suggested “developing modular architectures 

that can host complementary modelling paradigms in different and fit-for-purpose 

modules”.  

Despite a growing body of literature on modelling the interactions between transport, 

urban spaces, and humans, there is limited research on multi-level simulation for TOD. 

This paper aims to integrate the high-level land-use and transportation modelling with 

micro-level pedestrian modelling in areas around public transport hubs. There are two 

ways of model integration (also known as model coupling), i.e., schema integration and 

process integration [1]. In this work, the latter approach will be used: the output of one 

model is an input for another. In earlier work we analysed the impact of transportation 

and public space designs on local air quality and micro-climate condition [2, 3], and 

others have demonstrated similar approaches (e.g., [9]). This paper introduces a 

pedestrian simulation model which receives input from an agent-based model of the 

wider city, applied to a case study in Beijing. 

2 Methodology 

The multi-level approach uses two models, as follows: 

1. Macro-level: Simulate private car and public transport travellers’ behaviour in 

transportation network – land use systems at an urban district scale, by adapting a 

Smart-City Model implemented in Repast Simphony.  

2. Micro-level: Simulate the movement of pedestrians around a public transport 

node. Agent-based modelling is performed in NetLogo by adapting the 

pedestrian_floor-2exits-usepath model [11, 12]. 

The output of subway station areas’ occupancy over time from the macro-level will 

be used to generate pedestrian agents within and around transit hubs in a micro-scale 



simulation, as it reflects the number of people entering and leaving this location as an 

effect of its position and function within the wider urban environment. The output of 

the micro-level model then provides insights in the throughput and dwelling time of the 

transport system. 

2.1 Macro-level modelling 

In the macro-level model, firstly, the status quo of the road network, subway system, 

and land use is represented at a self-defined sampling segment in QGIS. Linking to the 

GIS data, the Smart-City model then generates a heterogeneous synthetic population 

based on the socio-demographic data from the 6th population census of Beijing and the 

public transport statistics in 2018 Beijing transport annual report. Afterwards, the 

agents travel for a workday, following their activity patterns, selecting destinations, and 

determining the time spent on different types of land uses. These lead to the output of 

individuals’ arrival and departure times in public transit stations. 

2.2 Micro-level modelling 

The micro-level model selected here is a simple model of pedestrian movement 

compared to the more detailed models reviewed above. One reason for choosing such 

a model is for education purposes, as it allows users with little modelling experience to 

understand the code and even adapt it to their needs. In the 2019 and 2020 ABM 

summer school held at HZAU in Wuhan, China, the authors explored different ways of 

teaching agent-based modelling to beginners, finding that using and extending an 

existing model is a powerful tool for instilling simulation techniques to students. 

Moreover, this model is a good demonstration of linking CAD representation, as often 

used by urban planners and architects, with an agent-based simulation. 

3 Case study and results 

Beijing Subway FANGSHAN Line is located in the south-west Beijing. At present, this 

Line is being extended to the north and Sihuanlu station is a new subway hub. Being 

surrounded by residential buildings, a hospital, a school, and commercial centres, 

station areas planning should consider the distribution of land uses and non-motorised 

transport network, in line with the design of public spaces. Along these lines, we chose 

an area within a radius of 2.5km from the subway hub for macro-level modelling (see 

Figure 1, left). Afterwards, we zoom in to an area within a radius of 500m from the 

subway station, as depicted in Figure 1 (right). Figure 2 shows a snapshot of the micro-

scale pedestrian modelling in the station area in NetLogo. 

Having simulated the baseline scenario, different urban design alternatives are tested 

and assessed to compare different accessibility and walkability of the road networks, 

kinds of designs of the public spaces, and multiple land use redistributions. 

 



4 Concluding remarks 

The case study results show how model integration can give valuable insights in the 

impact of design choices on TOD, in a way that is accessible to not only computer 

scientists, but especially to architects and urban planners who typically do not have 

experience with such agent-based models. Preliminary model results demonstrate that 

relevant output can be generated for a range of scenarios, including changes in the 

design and the function of the TOD within the district. These scenarios will be presented 

and discussed in more detail at the ABMUS2021 workshop and in the full paper, with 

a particular emphasis on the link between the multiple simulation levels. Next steps in 

our research are to combine this with the air quality and thermal comfort results of other 

micro-simulation models [2] to study the impact and exposure of pedestrians, which 

might again influence their behaviour at the macro-scale and could support further 

revision of sustainable master plans and the design of transit networks. 

  

Fig. 1. Case study: the micro-level site (left) and the macro-level site (right). The yellow dot 

indicates the station, the red dash is the subway line, & red tracts are commercial land uses. 

 
Fig. 2. A snapshot of the building-human system modelling in NetLogo, adapted from [11]. 
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Abstract. Solar production is becoming a growing source of new energy worldwide. More 
and more consumers and companies are interested in investing in photovoltaic (PV) panels and 
battery storage for different reasons: ecologic interest in green and renewable energy, economic 
interest in energy trading. This paper presents simulation results between neighbor customers 
(agent nodes in a Microgrid) trading their solar photovoltaic production overhead. The simula- 
tion is run with AnyLogic. Different scenarios with different types of nodes have been imple- 
mented such as: agents using storage (battery) versus agent without storage, agents with differ- 
ent trading motivations (green agents versus greedy agents. Also, each scenario is played at 
different seasons of the year taking into account the different sunshine levels. A “lightweight” 
blockchain has been implemented and added to the simulation tool to handle the transactions of 
surplus energy among customers in each Microgrid: 100 nodes split in 16 Microgrids according 
to the neighborhood are running so far. Different statistics have been collected and averaged per 
year such as the average energy savings per year and the average customer benefits per 
year. The simulation is currently tuned with real consumption and production data produced by 
the SIG (Services Industriels de Genève) in order to incorporate it to the existing SIG smart 
meters and discover the price interval at which trading customers can achieve benefits while 
maintaining the SIG infrastructure cost-effective. 

 
Keywords: Agent-based Simulation, Microgrid, and Blockchain 

 

1 INTRODUCTION 
 

Solar production is becoming a growing source of new energy worldwide. More and more 

consumers and companies are interested in investing in photovoltaic (PV) panels and battery 

storage for different reasons: ecologic interest in green and renewable energy, economic inter- 

est in energy trading. This paper presents simulation results between neighbor customers (agent 

nodes in a Microgrid) trading their solar photovoltaic production overhead. The simulation is 

run with AnyLogic1. In order to support the inter-agent electricity trading a SIGChain2 (light- 

weight blockchain) has been implemented. The remaining of the paper is organized as follows: 

next chapter describes recent related works, chapter 3 details the different agent types. Chapter 

4 explains the simulation context and the different scenarios. Chapter 5 provides the SIGChain 

implementation. The conclusion is provided in the last section. 

 
2 RECENT RELATED WORKS 

 
This section summarizes the use of blockchain technology in recent energy market. In 2014, [2] 
first uses blockchain technology in energy markets. The authors propose a virtual currency 
(Nrgcoin) for trading renewable energy in smart grids. However, the system is not fully distrib- 
uted since the market model keeps depending on the central network operator. A recent paper 

 

1 AnyLogic is an agent-based simulation tool at: https://www.anylogic.com/. 
2 SIG is the main company providing the public services at Geneva (Switzerland) such as: gas, 

electricity, and water. at: https://ww2.sig-ge.ch/en/home-en. 
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[1] proposes the concept of a blockchain-based microgrid energy market without central energy 
management. The Brooklyn microgrid is used as a case study and the authors show that three of 
the seven identified requirements are fully satisfied. In [3] and [4] the authors focus on main- 
taining the privacy aspects when performing energy trading in a local environment with anon- 
ymous participants. An issue with classical blockchain mining paradigms [5] is their greedy 
aspect in terms of power consumption, which is particularly undesired in a microgrid environ- 
ment. Therefore, research works to implement lightweight mining paradigm in a local grid are 
desired. We use the point of view of implementing such a paradigm for our project with the 
SIG Company. Our work is inspired by the lightweight blockchain model proposed by [6][7]. 

 

3 AGENT DESCRIPTION 
 

Entities used in AnyLogic simulation tool are called agents. There are of two types: Producer 
Agents (PAs) and the Power Plant Agent (PPA). 

 
3.1 Power Plant Agent (PPA) 

There is just one PPA. It has two parameters that are collected for statistics purpose: a) the 
number of received transactions that have been carried out, b) the total bought energy amount 
expressed in kilowatts per hour. This amount is re-initialized every day in the simulation. 

 
3.2 Producer Agents 

PAs play both roles of purchasers and buyers. They produce electricity for their own use ac- 
cording to their consumption. The overhead is either stored in a local battery or directly sent to 
the network. When sent to the network, the corresponding amount (expressed in kilowatts per 
hour) is saved by the PA. At the time the user needs to buy electricity from the power station, 
this amount is deducted by the PPA and provided for free to the user PA. Only the network 
usage fee will be charged to the user according to the SIG photovoltaic network usage policy. 

 

4 SIMULATION 
 

4.1 Initial Conditions 

At the beginning of the simulation, the PAs are randomly dispatched. Then, they are gathered 
in 16 identical sectors called districts. PAs of the same district are considered as neighbors. 
Only neighbors of the same district (neighborhood) can execute power transactions between 
each other. In the current simulation, different agents and parameters can be configured which 
are: 

 finalProducers: The table, which contains all the producers. It defines desired agent 
number as well as their initial parameters. 

 powerPlant: The SIG power network. 

 
4.2 State Machine Explanation 

 When the simulation starts, all the agents are in “statechart” state. This state will de- 
fine each agent neighborhood from the beginning. 

 Then the agent moves to the “production” state. This state will attribute each agent its 
electricity balance. 
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 Third, the state machine will move the agent in the “NoBattery” (agent does not have 
a battery) or “HaveBattery” (agent owns a battery) state. 

 These two states have a reflexive (self) transition, which is used when the agent elec- 
tricity balance is positive. An agent without battery will send its overproduction to 
the network. Otherwise, the agent saves its surplus directly in its battery. When the 
battery is full, the surplus is sent to the network. As long as an agent is in a negative 
balance it needs to buy electricity and it stays in the “Buying” state. 

 

Figure 1: PA state machine during the simulation 
 

When the simulation is started, the interface in Figure 2 is displayed. All running agents are on 
the left side with different colors corresponding to different neighborhood (community of self-
consumers) that agents belong to. On the right, appear the several useful statistics. 

 The two pie charts correspond current SIG tariff distribution and battery distribution. 
 Below the pie charts, 1) the two savings blue chart: one is the average savings made 

by agents when by buying electricity to their neighbors. The other, is the average sav- 
ings made when re-buying produced electricity previously sold to the SIG. This cor- 
responds to the same purchase price exempt from the network usage tax. For example, 
with a purchase price of 24 cents: 24 - 10 (network usage tax) = 14 cents of savings. 

 In the right, the graph containing bars is the production and consumption in one of 
the self-consumer communities (district in the figure). 

 The bottom graph is the purchase of electricity from the SIG, which is simply the 
electricity that the community did not produce and asked the SIG for. The chart on 
the right is the profits made by selling electricity to its neighbors. 
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Figure 2: Simulating 16 Microgrids with AnyLogic 

 
4.3 Different scenarios 

For the moment, there are two different scenarios in the simulation. 
 Scenario 1: First of all, the user who absolutely wants to buy his electricity at the 

cheapest price possible. This type of buyer will analyze its neighbors to see if there is 
not a way to have electricity cheaper than its current SIG agreement. 

 Scenario 2: In the second scenario, a user absolutely wants to buy green electricity 
regardless of the price. He is willing to pay more to get neighbors’ photovoltaic elec- 
tricity. He also distinguishes the type of electricity in his neighborhood; for example, 
he refuses to buy electricity from a neighbor at the blue tariff. 

 

5 LIGHTWEIGHT BLOCKCHAIN 
 

The blockchain (called SIGChain) that is used in the simulation appears as a standard block- 
chain where blocks containing electrical power transactions are linked between each other. 
Each neighborhood constitutes a consortium where the mining node is randomly designated 
every hour in order to mine the next block. The blockchain has been implemented in java. 

 
5.1 Block description 

Blocks are the crucial part of the blockchain. They contain all the transactions and ensure that 
the blockchain is secured and has not been forged (blockchain integrity). The “Block” class 
implements the blocks with the following parameters (Figure 3): 

 Index or: Block number in the blockchain 
 PreviousHas: Previous block hash 
 Timestamp: Mining date (when the block has been mined) 
 merkleRoot: Root value of the transaction Merkle tree 
 transactionsID: Table with transaction identifiers of the current block 
 Data: Optional field used to store information. Notably used to announce the first 
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block. 
 idMiner: Identifier of the block miner 
 Hash: Block hash 
 Nonce: This value is incremented until the bloc hash fits to the blockchain difficulty 

 

Figure 3: A SIGchain example 
 

5.2 Building the blocks 
The block class owns two constructors: 

 constructor 1: is used for the first block only. It assigns the values corresponding to 
index, timestamp, previousHash, and data. 

 constructor 2: is used for the other blocks. It assigns more values: index, timestamp, 
previousHash, and idMiner. Besides, it computes the Merkle. 

 
5.3 Root Tree 
The root tree calculation function works as follows: 
(1) Verification that there are transactions to work on. In this case, their respective identifiers 
are saved in a temporary list for future calculation. 
(2) Verification that the number of transactions is even. Otherwise, the last transaction is dupli- 
cated. 
(3) Transactions are paired in a loop to compute their common (intermediary) hash. This opera- 
tion creates the upper nodes of the tree. They will not be kept in the root tree process. 
(4) If there is more than one intermediary node created, the function returns to step 2 with these 
nodes. Otherwise, the function goes to step 5. 
(5) There is one last node, the function keeps it as of the tree root. 

 
When the block has been successfully created, its hash has not yet been determined. The agent 
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creating the block must then call the "mineBlock" function. This function computes the hash by 
incrementing the nonce so that the created hash respects the nonce difficulty linked to the 
nonce. This difficulty is the number of zeros that the hash must contain at its beginning. For 
example, if the difficulty is 4 zeros, the hash must start with 0000. All blocks must 
then be stored in the blockchain. 

 
5.2 SIGChain Operation 

The blockchain is created from the start of the simulation. It has two properties: 
 Difficulty: The difficulty of the blockchain corresponding to the number of zeros at 

the beginning of the hash. 
 Blocks: The blocks that make up the blockchain. 

 
Operation: 
The Blockchain class constructor deals with assigning the value of the difficulty as a parameter 
and initializing the block list. The first created block of the list is mined and added. 
For this purpose, the Blockchain class calls the "newBlock" method that creates a new block. It 
is available with two different settings options. After a block has been created, the agent that 
created it must add it to the blockchain. For this purpose, the "addBlock" method of the Block- 
chain class is called. The method uses the "mineBlock” method of the class Block to correctly 
mine the block. Once it has been mined, the block is added to the chain. 

 
Validity verification methods are available: 
The "IsBlockchainValid" method checks the first blockchain block and the 24 next created 
blocks created. This method calls the "isValidNewBlock" method that checks the links between 
the blocks and the new block hash value. 

 
To summarize, a randomly selected agent adds a block in the blockchain by following the logic 
below: 
(1) Check the blockchain validity with "isBlockchainValid" method. 
(2) Add this block to the blockchain with "addBlock" method. 

 
 
 

6 CONCLUSION AND FUTUREWORK 
 

In these scenarios, only the first is economically viable. In the second scenario the user is losing 
a significant amount of money because he finds himself paying more than SIG prices. The next 
step of this work is to include the real data and up to date production and consumption data 
from the SIG Company and integrate our SIGChain to the SIG smart meters. 
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Abstract. We describe the data integration and modeling framework in
an ongoing project, which is creating an agent-based simulation of Hurri-
cane Harvey. The goal of the project is to create a dynamic vulnerability
index by augmenting the CDC Social Vulnerability Index, which would
provide a better estimate of vulnerability and risk during disasters by
taking human behaviors and mobility into account.

Keywords: Disaster modeling · Hurricane Harvey · Vulnerability.

Introduction

Vulnerability is broadly defined as the extent to which persons or things are
likely to be affected by a hazard. The vulnerability of a human population group
(in relation to other groups) is known as social vulnerability and is thought to be
influenced by many factors, including demographics, neighborhood characteris-
tics, the networks in which people are embedded, underlying health conditions,
and more. In 2011, the US Centers for Disease Control and Prevention (CDC)
introduced the Social Vulnerability Index (SVI) [4] to provide a measure of social
vulnerability derived from census variables. The CDC SVI is increasingly being
used in preparing for disasters and in planning relief and rescue efforts.

Health risk during a disaster is a spatiotemporally-dependent phenomenon
in general that can be impacted by vulnerability [3]. People’s risk varies as they
move through areas of varying levels of hazards over the course of a day or week
and social vulnerability may influence both the expected exposure to hazards
as well as the outcome after exposure to a hazard. For example, exposure to
extreme heat generally occurs in the middle of the day when temperatures are
highest and when people may not be at home. Similarly, exposure to hazards
like flash flooding are exacerbated when spending time in low-lying areas during
periods of intense rainfall.

Estimating the spatiotemporal variability of risk, incorporating both social
vulnerability and hazard exposure has always been limited by the lack of high
resolution environmental and human mobility data. Lately, investigators have
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started turning to machine learning [10] and simulation-based methods [5, 9]. We
consider the latter to be especially promising because they use multiple sources
of data, integrated together to provide a model of human mobility patterns and
consequent exposures to hazards. This offers the opportunity not just to estimate
exposures, but also to evaluate the influence of vulnerability and ultimately
potential interventions for mitigating risk.

In our current work, we are creating a detailed agent-based simulation model
of Hurricane Harvey, in order to augment the CDC SVI and create a dynamic
vulnerability index that takes into account human behaviors during disasters as
well. In the following we briefly discuss some of the multi-scale data integration
and modeling challenges in this ongoing work.

Hurricane Harvey

Hurricane Harvey was a Category 4 hurricane that was one of the most catas-
trophic and costliest hurricanes on record. It made landfall in August 2017,
causing approximately $125 billion in damages and affecting 13 million people
from Louisiana, Mississippi, Tennessee and Kentucky. With the hurricane mak-
ing landfall three times in six days, the Houston area was flooded and thousands
were forced to evacuate the area. In four days, areas around Texas received more
than 40 inches of rain which caused flooding that peaked at 5 feet. With the dam-
age inflicted by Hurricane Harvey, houses were left without power or were ruined
beyond repair, forcing 30,000 residents of Texas to move into shelters [7].

Beyond the harm to infrastructure and housing, there were reports of damage
to the mental and physical well-being of people affected by the storm. Sixteen
percent of Texas Gulf Coast residents reported a worsening health condition or
a new health condition. With an introduction to bacteria, dust and mold growth
from damaged homes, there was an increase in respiratory problems. As well,
following the hurricane there was an uptick in skin, eye, and ear infections after
sewage-tainted water flooded the streets and waterways. Besides the damage to
wastewater treatment plants, damage to industrial equipment exposed residents
of the Houston-area to chemicals from pesticides, detergents and other common
products contributing to conditions like nausea and eye irritation [2].

Multiscale Data Integration

Relevant data have been collected by many organizations and agencies, in mul-
tiple forms. Table 1 lists several of the data sets we have identified and are
integrating into our agent-based simulation. These include data about environ-
mental conditions (rainfall, flooding), damage to homes and infrastructure, data
about the affected population, and about hazards such as Toxic Release Inven-
tory (TRI) facilities.

To do data integration, we use two frames: a person frame and a location
frame. Some data are naturally associated with people, such as demographics,
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activity patterns, health status, and behavior during the disaster. These are
largely integrated from survey-type data, to construct a synthetic population [6].

Spatial data sets are at multiple resolutions and in multiple reference sys-
tems. The standard US Census hierarchy of regions is state – county – tract –
blockgroup – census block [11]. In this reference system, smaller regions nest per-
fectly within the next larger level, e.g., blocks align perfectly with blockgroups,
which align perfectly with census tracts, and so on. However, other reference ge-
ographies, such as neighborhoods, zip code regions, and grids can be of varying
sizes and can overlap arbitrarily with the census regions.

Table 1. Data sets.

Data Description Resolution

Harvey Registry Survey on impact from
Harvey

Neighborhoods

Damage Assessment Damage levels from
inundation height

Latitude/Longitude

Hourly Rainfall Hourly precipitation totals Gridded region

Social Vulnerability Index Quantification of
vulnerabilities of regions

Tracts

Transportation
Infrastructure

Condition of roads and
bridges

Pathways of roads

TRI Facilities Locations of toxic release
inventory facilities

Latitude/Longitude

Inundation Raster Presence of flooding Latitude/Longitude

City of Houston Harvey
Damage Assessment

Harvey affected property
counts

Block group

Power Outages in
CenterPoint Energy Service
Area

Percentage of customers
without power

Zip code

Individual Assistance Open
Disaster Statistics

Data on registrations and
Individuals and Households
Program

County

American Community
Survey

Demographic data Block group

Spatial Hazard Events and
Losses Database for US

Losses from Harvey County

Harris County Flood Gauge
Readings

Hourly rainfall and channel
elevation readings from
flood gauges

Latitude/Longitude
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To integrate these, we take intersections of shapes of regions and are de-
veloping methods to assign variables from regions to resulting subregions. For
example, hourly rainfall is available in a gridded reference frame through NL-
DAS [12]. To integrate this with the City of Houston Harvey damage assessment,
which is given for each blockgroup, we take an intersection between blockgroup
shapes and the NLDAS grid and assign damage estimates to each subregion of
a blockgroup based on the rainfall in that subregion. A similar method has to
be employed for integrating all the data sets with unaligned geographies.

This results in a data set with relatively small regions. To find the conditions
at a given (latitude, longitude) location, we need to query this data set. To avoid
having to do a large number of shape membership queries, we are developing an
indexing scheme from grids to the smaller geographies that lie within them. A
query point is first mapped to the grid cell that contains it, and from there to
the regions that intersect with that grid cell. The goal of the data integration
is to create a single data set that can be queried efficiently for all the variables
at a given (latitude, longitude) location for modeling exposure to hazards, as
described next.

Multiscale Modeling

Our agent-based simulations are not valid at the individual level, because syn-
thetic individuals do not have a one-to-one mapping with the real inhabitants
of the region. Synthetic populations are statistically accurate at the blockgroup
level [1]. CDC SVI is constructed at the census tract level. During a hurri-
cane or other disaster, people may engage in various behaviors, such as evacua-
tion, sheltering-in-place, shopping for supplies, picking up family members, and
more [8]. These result in complex spatiotemporal trajectories, crossing multiple
tracts and blockgroups, with varying exposure to hazards.

Thus the overall agent-based simulation involves integrating data at multi-
ple scales, as described in the previous section, modeling individual movements
through these regions, and integrating exposures back to the census tract level.
The effects of exposure eventually show up in syndromic surveillance data sets,
when people report symptoms such as infections, rashes, nausea, eye irritation,
etc. [2]. We plan to use these data sets to validate our model.

Conclusion

An improved understanding of the spatiotemporal variability of population vul-
nerability will lead to better preparedness and planning for future disasters. Risk
is contingent upon local circumstances, such as the specific nature of the disas-
ter, the topography, the built environment, and population demographics, and
spatiotemporal patterns of vulnerability will vary across regions and types of
disaster. Our goal is to demonstrate that with the right tools for data collection,
analysis, and simulation in place, we can rapidly generate models and possibly
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forecasts of vulnerability in advance of the next major hurricane to help mitigate
its effects.
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Abstract. To support urban planners in assessing and comparing var-
ious alternative scenarios, this paper provides a novel methodological
framework for phygital agent-based simulation, i.e. simulations with which
the user can interact through the usage of a physical 3D model and vi-
sualize in augmented reality (digital).
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Urban planning practices have changed deeply over the last 50 years requir-
ing now to consider the whole complexity of the urban area before planning
a new development [5]. Indeed, planning the construction of a new building is
not limited to ensuring the possible access to the building for people, vehicles,
electricity, water... The city needs to be considered as a complex system and
many other factors (material or immaterial, qualitative or quantitative...) and
feedback loops need to be taken into account and understood. In addition, evolu-
tion of the individual behaviors (e.g. in terms of mobility mode) and institution
regulation (e.g. the Local Urban Plan (PLU)) are key factors that can influence
the impact of an urban planning. Finally making all these aspects more easily
exploitable by different stakeholders is crucial.

Agent-based modeling and simulation has become a tool of choice to simulate
such complex socio-environmental systems [6]: it is suitable to take into account
very diverse dynamics from various fields and their feedback loops. Thanks to
its expressivity, an agent-based model can become a very powerful virtual lab-
oratory to experiment and understand the effects of alternative urban plans. A
key challenge is now to make such tools available and usable by any user to help
understanding and thus improve the acceptability of urban plans, but also by
planners to provide insights and support their decision. This requires innovative
approaches in terms of visualization of simulation and interaction with them.
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Much recent effort has focused on extending the limited input/output inter-
action capabilities of desktop computers through the use of interactive tabletops,
augmented reality [2] or tangible interaction [1]. In our context, we explore an
original interaction mode that we called ”phygital interaction”: it depicts the
use of a physical 3D model, representing the physical location to which a data
set is related. The use of 3D physical referent 1) provides support for tangible
interaction, which ensures a better memorization through proprioception, and
2) allows for a more situated data analysis, which provides a physical anchor
for data facilitating large data sets exploration and understanding [4]. Render-
ing of the data is then performed using a Head-Worn Display (HWD), such as
the Hololens, which provides a large immersive display area to augment the 3D
physical model.

Along with the physical 3D model, there is a need for a digital 3D model
which will hold all the simulation information. This model would be superim-
posed on the physical 3D model to enhance the user’s understanding of the
impact of urban planning on ecology or traffic through the visualization of pol-
lution clouds or pedestrians movement. Furthermore, urban planners use 3D
representations to design new infrastructures. These models often consist in a
static description of the different parts of the buildings, using classical file for-
mats like CityGML or IFC. Such a single visualisation, even with high level of
details needs to be integrated into a huge area to have a more precise vision of
the project. In our approach, we propose to visualize not only the 3D model of
the project but the environment that is directly impacted. The next step is then
the animation of all the movable elements like pedestrians, cars, buses.

The objective of this work is to provide a methodological framework for
phygital agent-based simulation, i.e. simulations with which the user can
interact through the usage of a physical 3D model and visualize in augmented
reality (digital). Through different scenarios, we aim to test the impact of the
urban project on road traffic and more. In the following, we introduce the three
main components of the framework (Simulation, Interaction and 3D animation)
and the way they interact.

Simulation component. The Simulation component is in charge of computing
evolutions of the system and providing information about the current simula-
tion state to the Interaction and 3D animation components. Four simulation use
cases have been identified to provide an optimal phygital simulation experience:
(i) step-by-step simulation allowing to visualise and interact at runtime with the
simulation, (ii) visualisation of recorded simulations, in this case interactions
will be limited to query the 3D model to display information (no modification
is possible), (iii) comparison between 2 (or N) alternative simulations, and (iv)
interaction with the simulation at its initial state, to modify deeply the environ-
ment (e.g. create a new building). Visualisation and interactions with simulations
in real-time (cases (i) and (iii)) require fast (and thus reactive) simulations. In
these cases, the model or some of its dynamics will be simplified to preserve this
execution time constraint. The designed model should thus be modular enough
to adapt these constraints. The GAMA platform [6], an agent-based modeling
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and simulation platform providing powerful tools to develop spatial models, has
been selected to implement the models and run the simulations. GAMA provides
a multi-simulation feature, allowing to run several synchronized simulations. It
has already been used in several projects coupling simulation and tangible in-
terface, in particular to study urban planning and the impact of new mobility
[3].

Phygital interaction component. Two major interaction forms has been
identified: exploring the simulation results and tuning the intrinsic simulation
parameters. To explore the simulation dataset, users’ inputs on the physical 3D
model trigger the visualization of the data charts associated with the physical
referent (building, street, red light). The chart is displayed above the model using
the HWD and can be configured using different physical features (point, edge,
surfaces) of the physical referent, e.g. a touch on the edges of a building allow
to configure the axes of the 3D chart. The adjustment of the intrinsic simulation
parameters corresponds to a modification of the physical environment’s topology,
or a digital modification of a parameter of the simulation engine. For example, a
physical floor can be added to the desired building, using a 3D printed pluggable
floor, to analyze the impact of higher population density on traffic. Another
example is when the speed of a red light requires adjustments to streamline the
traffic. To do so, the user may select the red light using a touch on the physical
3D model, then slide on its pole to change the light switching speed.

3D animation component. The main role of this component is to run pre-
computed simulations in 3D realistic environments. Visualization is the last step
of validation for urban planners. Each element of the scene (building, road, tree,
street furniture) is rebuilt from open source data (OpenStreetMap, IGN) pro-
viding information about coordinates, height, name, function... We here focus
on the buildings which is the most complicated part. To generate realistic build-
ings, we need accurate data. The first step is preprocessing to recompute the
coordinates to make right angles and parallel sides. Then the set of GPS coor-
dinates defines a polygon (footprint) that is extruded regarding the number of
floors. The second step is for missing data, we use default values, hierarchically
organized by areas, to provide two main characteristics: texture and roof. Then
the roof is added and the textures are applied for each wall. Similar algorithms
are used for each type of object (road, vegetation...). Finally, we can add 3D
models proposed by urban planners.

Overview of the interactions between the three components. The 3D an-
imation component is in charge of reading the input OSM data and to augment
them with additional metadata (e.g. obligations and constraints from the PLU).
This augmented file is then used for visualisation, to initialize the Simulation
environment or, once transformed into an augmented STL file for the Inter-
action component. The Simulation initialisation is completed by demographic,
synthetic data. During its run, the Simulation will transmit to the two other
components updates of the simulation states (e.g. location, state...), to allow
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Fig. 1. Workflow of our phygital simulation approach. (Interaction will use Hololens
by Microsoft, image credit: https://www.visartech.com/blog/)

them to visualise the simulation. When an interaction occurs, either the envi-
ronment is modified (e.g. add a new building), in which case the 3D animation
will regenerate a new 3D model for the 2 other components, or the parame-
ters of the simulation or agents’ states are updated and only transmitted to the
Simulation.

Coupling agent-based simulations with a tangible interface has demonstrated
its benefits in terms of communication, but the improvement of the interactions
is mandatory to let it become part of the urban planner toolbox. The project
goal is thus to apply this approach to support Toulouse Metropole in its planning
of a new ward.

Acknowledgements. This work was supported by the French Government in
the framework of the Major Investment Plan (PIA3 - Territoire d’Innovation)
and by Toulouse Metropole.

References

1. Duc, P.M., Chapuis, K., Drogoul, A., Gaudou, B., Grignard, A., Marilleau, N., Tri,
N.H.: HoanKiemAir: simulating impacts of urban management practices on traffic
and air pollution using a tangible agent-based model. In: RIVF. IEEE (2020)
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Abstract. This paper introduces a simulation framework to model and
study mobility changes. Novelty comes from the possibility to combine
different agent-based models into the GAMA platform, and to interact
with the simulation through pre-designed scenarios and a serious game.
The objective is to explore the impact of different urban policies on future
mobility.
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1 Introduction

Transport infrastructures play a large role in defining a smart, sustainable and re-
silient city. Innovative urban policies might either facilitate mobility and increase
citizen well-being, or create negative side effects [7]. Urban planning therefore
requires the city to assess the impact of these disruptive innovations based on
”what if?” prospective studies [9]. However, cities are complex socio-technical
systems: dynamics of transportation are nonlinear, and even wise choices might
lead to negative side effects (e.g. the improvements in road layout might de-
crease the number of accidents, but increase car use and therefore pollution).
Unfortunately, even if urban planning models and methodologies are available
for traditional modalities (car, bus, etc.), no tool, nor methodology, exists today
to assess the potential impact of these disruptive innovations, and how they can
be progressively integrated into planning infrastructures.

The SwITCh project aims at providing a simulation tool for a participa-
tive reflection on the evolution of urban mobility in the next 30 years (horizon
2050). The ambition of the project is not to produce a simulator that can predict
what will happen from now until 2050, nor to solve all the problems, but rather
to help stakeholders (urban planner, citizen, etc) to enrich their reflection and
build a shared project to improve transport infrastructures. The tool is based
on an agent-based model (ABM) of citizens’ mobility that simulates different
evolution scenarios and tests different strategies to face them. The tool will be
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experimented and calibrated in the real context of two French cities, Bordeaux
and Dijon. In this paper, we introduce the project architecture in order to il-
lustrate three scientific challenges: (I) modeling individual mobility choices, (II)
multi-level modeling of the city, and (III) design and exploration of different
scenarios of mobility evolution.

2 Project Architecture

SwITCh uses ABM as a unifying framework to couple different models and take
into account multiple temporal and spatial scales, in order to build a holis-
tic model. The ABM contains different models to simulate individual mobility
behaviour (daily activities, transportation choice, etc), transport infrastructures
(streets, train tracks, etc) including different types of vehicles (private cars, taxis,
bicycles, etc.), and city dynamics (pollution, etc). Those different models are dy-
namically combined through a dedicated middleware. SwITCh includes: a city
model based on real geographic data obtained from publicly available Open-
streetmap data; and a realistic representation of the city inhabitants based on a
synthetic population, generated from public data records by the Mobisim gen-
erator4. The ABM is implemented with the GAMA platform [8]. Interactivity
with the simulation is performed through either the exploration of different sce-
narios translated into the model by defining values of contextual parameters, or
a serious game that allows users to change the configuration at runtime. The
framework will include a scenario generator allowing users to easily implement
new scenarios based on elementary bricks.

3 Modelling individuals choices of mobility

SwITCh aims to create a tool to explore and discover scenarios for smart and
sustainable cities. So far we have developed a first model of citizens’ decisions re-
garding their mode of transport for their daily home-work commute. This choice
is influenced by a variety of factors, both internal (profile of the user, level of
fitness, etc) and external (denivellation of the journey, weather, availability of
public transport, etc). Based on these factors, we have designed a first multi-
criteria decision model. Concretely, each agent (representing one resident of our
town) has different priorities (or values) for 6 different evaluation criteria: com-
fort, price, ecology, simplicity, safety and time. Each transport modality also
receives a mark on each of these criteria (for instance cycling has the best mark
w.r.t. ecology, but a lower mark for comfort depending on the level of fitness
of the user). Finally, the agent combines the marks weighed by their priority to
choose their preferred transport mode (according to their own attributes and
priorities). Different agents with different attributes or with different priorities
will make different choices, even in the same situation.

4 http://thema.univ-fcomte.fr/mobisim/
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This choice is further moderated by a logarithmic routine coefficient. There-
fore, when an agent is very used to a given transport mode, it will not reconsider
it every time, even though the context might have changed (for instance keen
cyclists will not be stopped by rain, and keen drivers will bear with increased
petrol price and daily traffic jams) [2]. Our first results with this simulator [5]
show that better cycling infrastructures result in an increased number of cy-
clists; and that a simple petrol price rise is not enough to discourage car users.
Future work will further focus on the role of routine in the inertia often noted
in mobility habits.

4 Multi-scale coupling of agent-based models

In the frame of the SwITCh project, various models will be implemented within
the GAMA platform to model individual behaviors (activities, choices of trans-
portation, etc.), transportation infrastructures (public transports, cars, etc.),
and city dynamics (pollution, etc.). Each model has its own set of parameters,
dynamics, and hypotheses. The approach chosen in the project is to build models
dedicated to exploring different scenarios by combining different models. This
model combination can be performed either at runtime, because of the user’s
actions, or before the simulation, through descriptive scenarios.

Multi-level model coupling is a technique used to combine the advantage of
complementary representations of the same system (implemented in different
models). There are different ways of coupling models: integrated (model as a
new model from the combination of two, or more, models), weak (the model
as a set of interconnected independent models), and strong (model as a set of
parallel models sharing data during the simulation), these techniques have some
advantages and drawbacks (in terms of modularity and easiness of maintenance)
and not all models can be coupled [6, 3, 1]. The coupling could be static or
dynamic, i.e. the composition plan could (or not) change during the simulation
[4].

The novelty of the SwITCh project is to develop a model composition frame-
work providing a dynamic model coupling service to help the development of
coupled models, to increase the expressiveness of such models, and to help to
choose the good coupling way. The goal is to: (1) enable the exchange of models
at runtime (for example in the serious game) depending on user needs, (2) switch
between models, for example, to zoom in/zoom out, and to improve scalability
by finding a balance between simulation accuracy and computation time, and
(3) reuse existing models in the composition.

5 Modelling scenarios

SwiTCh aims at building a decision support tool that allows a group of users to
test different choices related to infrastructures under different scenarios, and to
assess them with respect to relevant indicators. This set of indicators (and the
model to assess them) was built from the combination of a literature analysis
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and a set of interviews with various stakeholders. Each indicator can be com-
puted from a set of the ABM variables by rules (equation, algorithm, expert
rule...) allowing to evaluate them. It is thus possible for a territory to evaluate
its level of performance via these indicators, for each scenario. Scenarios are sets
of events, assembled together like bricks, describing a potential evolution of the
city/environment (e.g. authorization of the autonomous car, world pandemic, in-
crease in petrol price). The bricks can be assembled according to dedicated rules
to create scenarios. Each scenario will be decomposed as a set of “snapshots”
representative of the main situation that can be simulated by the ABM. This
will make it possible to simulate (ABM) and evaluate (indicators) different evo-
lutionary trajectories. Two important challenges are to make the model capable
of simulating these future situations (model flexibility) and to make the results
understandable by all participants in the context of a participatory simulation.
This is essential to make it an effective tool for collaborative thinking.

Acknowledgements. This work is part of the SwITCh (Simulating the transi-
tion of transport Infrastructures Toward smart and sustainable Cities) research
project funded by the French Research Agency.
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1 Introduction

In Ume̊a, the university and academic hospital are located next to each other in an
area that is relatively separated from the rest of town by a few large roads. The
hospital is the largest in Sweden and is still expanding. Due to this expansion, the
green spaces around the hospital are disappearing. Although there are plenty of
green spaces connected to the university, these are hardly used by people at the
hospital, even though they are neighboring the hospital as well. The challenge is to
create (cost) effective interventions that push more people to naturally start making
use of these available green areas.

Ume̊a’s municipality is interested in using agent-based simulation to experiment
with different interventions before putting anything in practice. Our goal is to cre-
ate a model that allows them to try out different policies for the area and observe
their effects. Thanks to the availability of detailed traffic data for the area, we can
design a basic simulation in which the agents’ patterns of movement around the city
fairly accurately mirror some of the real life patterns measured by the municipality.
These transport patterns are only a part of the whole pattern of life and need to be
complemented with behavior at work, study, hospital visit, etc. Since the purpose
of the simulation is to test various behavior modifying strategies, the agents also
require motivations (such as intentions, goals and values) for their behavior such
that these motivations will generate both the traffic behavior as well as intuitively
realistic other behaviors. Almost no data is available for the non-transport behavior.
Therefore, the design of the agents needs to include an underlying decision architec-
ture that can then be customized to accommodate different assumptions about their
motivations and cause them to respond differently to different proposed behavior
modification strategies.

To properly account for these needs, the decision architecture of the agents will
require explicit representations of cognitive and social concepts. First, goals. If we
want to change the behavior of some agent, we must also know what that agent is
trying to achieve. Were this not the case, it would be impossible to see the effect of
an intervention on an agent, since the simulation cannot construct an alternative
plan for the agent. Second, once goals and plans are in place, agents need a way to
prioritize them. For this we use values [11], which determine what humans consider
important. If after an intervention an agent needs to make a choice between different
plans, then it can use its values to decide between these plans. Values have been
implement in a number of simulations, for example in [2] and [4].
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Since we want to influence behavior, it is also necessary to build an explicit rep-
resentation for the routine behaviors that agents can have. For our purposes, two
types of routine behavior are particularly important: habits and social practices.
Habits are individual repeated behaviors, which can change given the right influ-
ence [6, 14]. Humans are also social creatures, so the simulation will also have to
incorporate social practices [12]. Both habits and social practices have been used in
simulations for behavior change before [1, 5, 7, 8]. We are interested in these par-
ticular kinds of behavior because they govern the routines of life and are resistant
to change. Unlike planned behaviors, these behaviors are mainly automatic and are
not likely to change based on new information or new available actions. In order
to change these behaviors different interventions are needed. On the other hand,
if they could be replaced with more desirable alternatives, the changes will impact
everyday life and are more likely to last, both desirable outcomes of the project.

A close cooperation with the municipality is required in order to design scenarios
for testing. This brings us to the other main challenge: the municipality wants to
experiment with multiple (as yet undefined) types of interventions, which means we
cannot deliver a single simulation. Our approach is to build a sandbox-type platform
in which policy makers can design their own simulations around the interventions
they are interested in, observe the results, and adjust their approach on the fly. This,
in turn, emphasizes the need for agents capable of complex reasoning because they
would need to be able to cope with an unknown variety and type of interventions.

2 Starting situation

The university employs about 4000 people, and is attended by more than 30.000
students. The hospital employs over 5000 people and serves more than 10.000 pa-
tients a year [10]. All this activity takes place within an area of about one square
kilometer. The existence of several little used green spaces in the midst of this area
is reason to investigate whether they can be shared between university and hospital
users to promote overall well-being.

The Ume̊a municipality keeps very detailed traffic statistics [13] broken down
by means of transportation (cars, bikes, buses, by foot), purpose of travel (work,
leisure, errands etc.), time and start of travel, weekday, seasons, and demographics.
In addition, this data is mapped over the geo- and urban area, which is important
for a spatially accurate simulation, which, in turn, lets us account for how traffic
participants get around and decide where to go and which paths to take. Note that
seasonal data is important, because between November and April most ground is
covered by snow and cannot be used in the same way as in summer.

Data concerning the habits, social practices and short term goals of the people
in the area is not as readily available. Some of this information is easy to find for
some of the categories (lunch times, students’ free time), but it is more difficult for
patients and their families, not in the least because they are a very heterogeneous
group in terms of familiarity with the area, reason for being at the hospital (and
therefore state of mind and priorities), ability and means to get around etc. Any
assumptions made about this kind of data will have to be carefully documented in
order for the simulation results to be interpreted correctly.
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3 Conceptual model

We want to support the Ume̊a municipality with this model. The purpose of the
model is to serve as a sandbox model that contains a suitable level of complexity, but
is easily adaptable. This means providing a platform on which the municipality can
test different solutions and ideas they have. Based on the results, the municipality
can then derive indicators on how to implement the desired behavior change.

The sandbox will be able to represent and run simulations for the following
intervention types.

Knowledge modifiers Signs or posters in the hallways and outside of the build-
ings could be used to indicate available green spaces at the university. This can
help especially with newcomers or with people passing by. Furthermore, this
can also help to incorporate another group of people into the behavior change
process, namely visitors of patients. Additionally, flyers can be provided at the
information desk to inform people about the green spaces. The hotel on the
opposite side of the hospital can also be utilized to promote available green
spaces. Flyers or other sorts of advertisements could be placed there. As a re-
sult, visitors could stay near the hospital and help promoting new green spaces
through usage and word of mouth instead of going to the city center.
In addition, more noticeable techniques could also be utilized. Info stands can
be placed in front of the hospital or at other places to actively inform people
about available green spaces and where to find them. With this, specific areas
could be promoted more actively than others. The advantage of this type of
interventions is that they cost little money and effort. However, due to their
nature, they will probably have little impact on normal practices, only affecting
first time and infrequent users of the area.

Physical environment modifiers A more invasive type of intervention consists
of physical barriers and restrictions. These force people into certain areas and
prevent them from going to other areas. Although, such installments can be
the most successful because reaction to them is not optional anymore, several
things have to be kept in mind. The first thing is that certain solutions are only
acceptable during certain seasons. So, for example relocating parking space close
to hospital and university to the fringes of the campus is more acceptable during
the summer season than during winter time, unless patients and people with
mobility issues can still easily get close to their destination building. Thus it is
very important to keep in mind that physical changes should not hinder people
in reaching their destinations in time and safely. For example, hospital staff
who need to attend an emergency should not be hindered too strongly by lack
of parking space. Therefore, the appropriate use of all physical spaces should
be modeled carefully in order to get better insights in changes of these physical
spaces. The advantage of these types of interventions is that they may also
change social practices and habits. However, unexpected behavior may result
from trying to keep to practices and habits by replanning and using unwanted
alternative actions. E.g. parking in forbidden zones, shifting work hours, etc.

Policies and regulations The authorities of the hospital, university and munic-
ipality can enforce new policies that require certain behavior of the users of
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the campus area. E.g. working hours can be regulated to impact the amount
of peak traffic, parking licenses can be given to certain types of employees etc.
Policies and regulations have a similar effect as physical interventions if seen
as constraints on behavior. However, they also have motivating and knowledge
components that promote a certain type of values and thus reward people behav-
ing according to the desired values. This might create a more general behavior
change over the long term. However, regulations can also be violated and, if not
uphold effectively, will have no visible effect at all.

The sandbox should have an interface that, in addition to allowing the design and
insertion of the above discussed desired interventions into the simulations, effectively
communicates key concepts to the users. For instance, that behavior change takes
time and works differently for people following long term habits and practices and
people that have no set ways yet. Thus we should be able to show not just how
much success a certain intervention has, but also which types of agents successfully
respond to the intervention. E.g. a temporary parking restriction might form new
practices for infrequent and new users of the area, while having little impact on
the regular users. Visualizing these differences is an important issue, as it influences
the decision of whether to stick to a longer-term intervention or to try another
intervention based on the results. Or maybe try a different combination specifically
targeted at these groups.

The above requirements are the starting point of the model for our simulation.
Given the types of interventions supported and the type of interface provided the
municipality can use the developed simulation to test different ideas and solutions.
Based on the results an informed decision can be made and tested in practice with
lesser costs and with more chance of success. However, in case anything is missing
or none of the provided solutions are satisfying for the municipality, feedback can
be provided, and the simulation can be adapted accordingly.

3.1 Entities

Given the requirements discussed in the previous section we need to distinguish
different groups of individuals in the simulation. First, there is the staff that works
at the hospital, such as the doctors and nurses. They come into the hospital every
day, and are likely to have set behavioral patterns. The second and third groups are
the university staff and students, which go to the university every day as well (or
at least regularly) - thus also likely to have set behavioral patterns. This group of
students makes more use of the green space between university and hospital and it
would be interesting to investigate which differences in knowledge and behavioral
patterns account for this. Is this mainly due to the freedom in time students have?
Or do other features play a role?

Other groups of individuals are the patients and their families, both long term
and short term. These groups are particularly interesting since they do not spend
as much time around the hospital and might not know the area well, which means
that they do not have any set patterns in the area. They also have a large variety
of reasons for visiting the hospital, which can determine their willingness or ability
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to make use of the surrounding green areas, and thus how receptive they are to
possible interventions.

The last group in the simulation are traffic participants. All previously men-
tioned groups are traffic participants at times because they move around the city to
get to work, classes or the hospital, but they are not the only ones to pass through
the area. This additional, unrelated traffic, can act as barrier when it passes over
roads between the hospital and green areas and thus make other agents less likely
to cross from one to the other.

3.2 Time and Geographic Scales

We consider three different timescales in our simulation: days, weeks and seasons.
During one day, the agents commute to and from work or school, go to appointments
or run errands, have lunch, and find ways to occupy their free time. During one
week, agents have different duties and free time on workdays and weekends, and
thus different behaviors too.

Seasons have dramatically different weather in Ume̊a, with very cold, snowy,
dark winters and warm, light summers. Spring and autumn are a mixed bag, with
the notable feature that temperature fluctuates, which causes roads to become very
icy, and walking outside becomes hazardous. Weather is definitely a deciding factor
in deciding to go outside at all, never mind spending time in a park.

The geographical scale covers the university and hospital area in detail. Build-
ings, roads, cycling paths, walking paths, parking lots, bus stops, and parks are all
represented to scale thanks to the available geo-data. Outside this area, the only
features we represent are the main traffic arteries because we are only interested in
the details of people’s movements once they get to the university or the hospital.
Inside the buildings we only need crude area descriptions, such as lecture rooms,
hospital wards, examination rooms, etc. Mainly these distinction will be used to de-
termine where people enter and leave the buildings and how mobile they are within
the buildings.

A map of the hospital and university areas is shown in Figure 1. All details
outside the areas of interest faded out, with the exception of roads and paths leading
in and out of the area.

3.3 Cognitive and social aspects

The cognitive and social aspects that are relevant in our case are goals, knowledge,
social practices, habits, norms and values.

Goals are states which the agents are trying to achieve through their behavior.
Thus, in this simulation, they are the principle drivers of behavior. We can have
goals with sub-goals, such as getting to an examination room is a sub-goal for a
goal of hospital visit for a patient.

Social practices and habits are partial plans that are used as defaults in the
larger plans for achieving goals. These partial plans are interesting because they
are resistant to change and thus special circumstances need to be created in order
to overcome this resistance. Also, the longer they have been in place, the harder to
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Hospital

University

Fig. 1. A map of the university and hospital areas. The hospital area and the campus are
fully detailed, with the rest of the map faded out, except for roads and pathways.

change they become. This means that habits and social practices, once established,
are followed automatically and preferred over all alternative plans, even when other
plans become more beneficial in some way.

We consider habits to be harder to change than social practices because habits
are more personal, and thus less likely to respond to social pressure. This part of
the model is based on [7].

Norms are used in the implementation to model regulations of the different
institutions that make use of the campus. However, they also can encompass norms
such as: a patient should be in time for her appointment with a doctor and students
should be in time for a class. It is clear that people keep their appointments with a
doctor more strict than students are in time for class. This illustrates that norms
can be violated, although they always have some influence on behavior. The existing
norms might also interfere with new policies that are created for the simulation and
therefore are important to model. This aspect is modeled based on [9].

Knowledge defines how many alternative behavior options an agent is aware of
and also determines the expected effects of certain behavior. The more knowledge
an agent has, the more plans it can build in order to achieve its goals and the better
it knows all the effects of these plans. For instance, an agent that wants to pleasantly
spend an hour of free time and is aware of the existence and location of the green
areas in the vicinity can plan to visit one of them, whereas an agent who lacks this
knowledge, may choose to read a book or watch TV inside. It is important to note
that knowledge by itself does not determine or change either plans or goals, it just
increases options to choose from.

Finally, values are the overarching concept that ties every other cognitive and
social aspect together and establishes preferences between alternatives when neither
of the other aspects can be used to definitively choose. Values also determine which
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kind of changes an agent will be more likely to make since the goals, habits and
social practices an agents has in the first place are all dependent on its values. See
e.g. [4] for ways to model this aspect.

3.4 Expected results

Regarding the simulation outcomes, we expect results to depend on the invasiveness
of the intervention. Therefore, the general expectations can be divided as follows.

For the least invasive, like putting up posters or providing information material
at information desks or at the reception of the hotel, a slow starting rate should
be expected. Most of the people will recognize the information and read it but also
forget it soon afterwards if they are not really interested in it. However, it can be
possible that the rate strongly increases after some time when enough people use
the new green spaces and so make these areas more prominent to others. Habits, as
referred to as solo social practices earlier, can then become general social practices.

The expectations of more invasive intervention techniques should be different,
however. When placing info stands, it is more likely that the usage of new green
spaces can happen faster because people are informed more directly, benefits can be
promoted more heavily, and questions can be resolved. Thus, the knowledge about
available green spaces can be strongly increased and people can be motivated more
actively to change their habits.

The fastest change can be expected when implementing physical interventions
by e.g. relocating parking places or opening or closing entrances to buildings since
this forces people to react. They key aspect here is that reaction is not optional, like
in the cases before, but rather necessary because previous options are not available
anymore. However, it is not certain that the desired behavior change is going to
happen. It can be possible that previously neglected options are becoming more
attractive now and, thus, it is not certain that new options are considered but
rather older options which have been available before but have been deemed less
valuable than the chosen option which is now not available anymore. Nonetheless,
a change of habits and social practices is enforced which also affects the knowledge
aspect. If people want to reach their goal to go outside, they are forced to increase
their knowledge about available places. Another thing which has to be kept in mind
here is that it is not possible to install too many barriers because the daily business
has to continue as usual and as smoothly as possible.

The impact of implementing new wellness policies strongly depends on their
enforcement. The more strictly they are enforced, and the harder violations are
punished, the more likely it is that new social practices get adopted and behavior
change is going to happen.

4 Discussion

The data collected from the municipality gives us a base to describe the daily
behavior of the users of the hospital and university space. It also gives a basis for
distinguishing a number of important types of people that have different reasons
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to make use of the area. This information is important as it serves as the starting
point for experimenting with interventions to change behavior.

We start with an assumption that people have an inherent resistance to behavior
change. I.e. if they have a practice or habit, they would like to stick to it even though
it might not be the optimal behavior (anymore). This implies that people do not
change their practices on the basis of new information, and that information-based
interventions are more likely to work on people that are new to the area and have
not yet had time to develop habits or social practices.

Another important consequence of the resistance to change is that people tend
to stick to their (sub)goals as long as possible. If their usual behavior is no longer
possible or made difficult, they will try to create an alternative plan for the same
goal. Only when their goal is no longer attainable, will they create alternative goals
based on their values and opportunities. Thus, this will give a good prediction on
how people react to changes in the environment.

The cognitive model required to model this behavior change is quite complex,
but will give a detailed insight in changes of behavior. However, simulations that
have agents with these rich models are not easily scalable. We estimate that we
can run simulations with maybe a few hundred of these agents in real time. In
order to scale up the simulation we have to simplify the agents in a useful way. Our
proposal is to do this not by having one simulation that can have both scales at
the same time, but rather use two different simulations. The first simulation uses
the rich cognitive models and studies the individual behavioral changes based on
the interventions. We analyze the behavioral changes in detail and classify them
based on the characteristic of the models. E.g. individuals that are working as staff
at the university and are concerned about the environment will usually respond to
incentives to bike to work. This response will depend on the importance of their
environmental value and how strong their habit is.

There will be a distribution of these values over the category of university staff
that can then be used as a probabilistic measure on how this category of individu-
als will respond to an intervention. Thus we replace detailed deliberations based on
complete models with probabilistic rules for categories. These much simpler rules
can be used for the agents in a new simulation with a far larger scale to investigate
the effects on a realistic scale model.

5 Future research

Future research will focus on developing the parts of the sandbox that interface
with the policy makers (or even the general public) in order to create a digital
alternative to the ComMod approach to participatory modelling [3]. Interface and
user experience design is not trivial in the case of a software that aims to both be
easy to use and easily communicate complex concepts and dynamics to people who
are generally unfamiliar with the theory behind agent models, complex systems,
or social and cognitive architectures. Parceling out information in useful amounts
at useful moments or clearly guiding the user through possible courses of action
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will almost certainly require experimentation through multiple iterations. However,
the advantages offered by such a sandbox in facilitating the collaboration between
policy makers and model developers are worth the effort it would take to make it a
reality.
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1 Introduction

Cities are facing increasing water stress due to climate change and population growth. Although urban water use
efficiency was improved, total water use continuously increases especially in the rapidly urbanized areas. Ensuring
water availability and security has become an urgent concern to most cities in face of climate change. Centralized
water systems dominate the urban water services in major cities and are important in ensuring sufficient water
supply, sanitation, and drainage services to urban communities. However, such systems are considered inadequate
to address future water challenges and the aspiration of ecologically sustainable development considering their
high energy dependence and infrastructure aging problems. Upgrading the urban centralized water infrastructure
is critical for a city to achieve the transition towards more sustainable and resilient water and sanitation
services. However, considering the socio-technical lock-in effects and the strong path dependency of legacy
water infrastructures, the upgrading and extension are costly and complicated.

Considering the challenges faced by centralized water systems, decentralized water technologies are recently
emerging as potential alternatives to strengthen the reliability of urban water supply. By recovering and utilizing
diverse local water sources to supplement urban water demands, these technologies can mitigate the pressure
of water scarcity. Social preferences and choices of decentralized water technologies are critical to the level of
mitigation. The demand-side investigation is important for water utilities and the government to make an in-
vestment and better plan the deployment. While past studies evaluated the critical socio-economic and technical
factors that explain the household preference [1–3], there is a limited understanding of the spatial adoption and
diffusion pattern of decentralized water technologies in a city and its impact on the water system. By answering
this research question, our study can help the city develop an actionable plan to promote decentralized water
technologies.

2 Methodology

We developed an integrated framework to explore the adoption and diffusion pattern of rainwater harvesting
(RWH) and greywater recycling (GWR) systems in the city of Boston, and the impact on the water system
that supplies water to the whole Metropolitan Boston (MB) region. In the framework, we first built a spatial
agent-based model (ABM) to simulate the adoption of home-based decentralized water technologies by single-
family households in the city. We used a system dynamics model (SDM) to evaluate the impact of decentralized
water supply on reservoir water availability, hydropower generation, and carbon emission for water supply and
wastewater treatments. The percentage of carbon reduction was used as the environmental benefit to update
household adoption decisions of RWH and GWR in the spatial ABM. By exchanging “potable water supply”
and “carbon reduction” between the ABM and the SDM (Fig.1), a hybrid model was thus established.

We validated our model integration by comparing the simulated places where early adoptions emerge with
the validated installations (Fig.2), and the simulated reservoir elevations with historical records in the reference
year (Fig.3). Several water drops (i.e., Feb. and Nov.) in Wachusett Reservoir were caused by precautionary
measures that the SDM did not capture [4]. Nevertheless, the results are basically in line with the reported
data in both simulations, and thus can validate the effectiveness of using our integrated model in predicting
the spatial adoption and diffusion pattern of RWH and GWR, and evaluating the impacts of two decentralized
water technologies on the centralized water system.
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Fig. 1. Integration between the ABM and the SDM.

Fig. 2. Validation of early adoption predictions.
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Fig. 3. Validation of monthly reservoir elevations in the reference year.

3 Results and Discussions

In the results, we first examined the sensitivity of RWH and GWR adoptions to market promotion, neighbor’s
influence, economic performance, and environmental benefits. Our ABM results revealed a much higher adop-
tion and faster diffusion of RWH than GWR. The diffusion of both technologies starts from north downtown
to southern suburban in the city. Spatial heterogeneity emerges in adopting two technologies with some com-
munities having much higher adoptions of RWH versus some other communities that have more adoptions of
GWR than the average. Our SDM results show that water availability increases in reservoirs with the adoption
of RWH and GWR. However, hydropower generation from the water supply becomes less as water transfer
between reservoirs decreases. More water is released from reservoirs to downstream rivers for safety purposes.
Utilization of the increased water availability should be explored to produce more hydropower. Moreover, we
did not find a significant reduction in carbon emission of water systems due to the high carbon intensity of
GWR as compared to the centralized system. Reducing the impact of GWR energy consumption is critical to
the benefits of large-scale implementations of decentralized water technologies.

4 Relevance for the ABMUS Workshop Themes (Multi-level Modelling)

Our paper is fully in line with the ABMUS overarching theme of multi-level modelling of urban system. The
relevance is highlighted in the following aspects:

(1) ABM simulates both the spatial adoption pattern and the temporal diffusion pattern of decentralized
water technologies in a city-wide level.

(2) SDM quantifies the impact of adoption on water system by assuming the MB region has the same level
of water saving as single-family households in the city of Boston, which is acceptable because 53% of housing
units in MB served by the centralized water system are single-family houses [5].

(3) By integrating the ABM and the SDM, the hybrid-modelling framework can provide systematic solu-
tions for planning and evaluating the decentralized water technologies at the nexus of human-infrastructure-
environment across spatial and temporal scales.
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1 Introduction

Are some urban environments more resistant than others to cope with a pan-
demic such as the one caused by COVID-19? This question is at the heart of
many debates because this pandemic reminds us how vulnerable urban popula-
tions can be. It invites us to explore how policies could take advantage of the
knowledge of local epidemic dynamics in given morpho-functional contexts to
become more place-specific.

The problem is that although an impressive amount of data is now available
regarding the impact of the pandemic in different geographical contexts, it is
almost impossible to determine the relative importance of the spatial context in
comparison to, for instance, social, cultural, epidemiological or political factors.
A possible approach to disentangle those determinants is to use realistic simu-
lation models in which the impact of different morpho-functional organizations
on the effectiveness of public health policies would be evaluated.

Many models have been produced in recent months to respond to the emer-
gency. While many of these models do not allow space to be taken into account,
others, and in particular agent-based models [1], allow it and thus enable realistic
morpho-functional organizations to be considered. This is the path followed by
the COMOKIT7 (COVID-19 Modelling Kit) framework [3]: COMOKIT com-
bines sub-models of person-to-person and environmental transmission, a sub-

7 https://comokit.org
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model of individual epidemiological status evolution, an agenda-based one-hour
time step sub-model of human mobility, and a policy intervention sub-model.

We propose in this paper to use COMOKIT to study the impact of the
morpho-functional organization of a city on the containment policies that can
be put in place.

2 COMOKIT in a nutshell

COMOKIT has initially been developed to respond to the Vietnamese govern-
ment’s need for tools capable of assisting in decision-making on intervention pol-
icy choices (containment, mandatory mask wearing, etc.) at the scale of a small
town (about 10,000 inhabitants). However, it has been designed to be modu-
lar, extensible and able to be deployed in different case studies, with different
available input data.

The core entities of the model are the Individual agents: they represent in-
terconnected (relatives, friends, colleagues, etc.) individual inhabitants of the
commune with their individual characteristics (age, gender, employment status)
and their epidemiological status. They perform daily activities depending on
their personal agenda. This agenda is a generated set of Activity that can be
shared by several individuals (e.g. going to a restaurant with some friends), de-
pending on the age and family status of the Individual agent. Building agents are
the atomic spatial entities where the Individual agents can perform an Activity.
Two special Building kinds have been defined as they have an important role in
the simulation: outside, that represents everything outside the studied area, and
Hospital, where sick individual agents with critical symptoms can be contained
and healed.

A simulation step is set to represent 1 hour and starts by the agent to agent
transmission: contagious Individual agents infect other susceptible agents in the
same building based on a successful contact conditional probability. Then all
Individual agents update their epidemic status, e.g. going from susceptible to
infected. Next, they execute their daily activities depending on authority al-
lowances. Finally, the Authority agent checks its current Policy and apply it,
e.g. to test inhabitants.

3 COMOKIT Azur

To study the impact of the morpho-functional organization of cities on the spread
of COVID-19, we focus on the case study of the urban area of Nice (France)
which has been hit particularly hard by the pandemic and is considering the use
of place-specific policies. We thus applied the COMOKIT model on 3 subareas
with very different organization [2]:

– Nice city center : this is a compact pedestrian-friendly 19th century city, char-
acterized by high urban density in the form of adjoining apartment buildings,
finely meshed urban grid, many leisure facilities and small stores.In addition,
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this subarea is used by a large population living in other districts of Nice
who come here to do activities (work, shopping, leisure activities, etc.).

– Nice suburban residential area: this area lies outside of the city of Nice proper
and is characterized by low population density in single-family homes with
gardens, and an equally low level of services. Functional specialisation is the
hallmark of this area, which also includes some concentrations of car-based
commercial buildings. The overwhelming majority of residents work outside
of this subarea. Few outsiders come to the subarea to carry out activities.

– Nice modernist peripheral area: this subarea is in an intermediate situation:
this subarea is densively populated and mainly composed of collective hous-
ing, with a low level of service and a majority of inhabitants working outside
of the area.

These different morpho-functional organizations beg the question of the favored
patterns of encounter in the context of the COVID pandemic and of the possible
impact of local containment policies.

We initialized the model using French high-quality data sources: the INSEE
(French national institute of Statistics) and IGN (French National Institute of
Geography) in addition to OSM data. Simulations were executed from January
24 to October 20, 2020, taking into account the epidemiological context of this
period. On each area, we tested three scenarios: the absence of an intervention
policy (basic scenario), a realistic policy inspired by government action in France
and a hypothetical policy of closing urban areas. Each of the three scenarios
follows the temporal development of the measures taken in France during the
1st containment between March 17 and May 11, 2020.

50 replications for each area and each policy were carried out to take into
account the stochasticity of the model.

First results. Among other contrasting responses to the French lockdown sce-
nario the simulations carried out allow to highlight a cleavage: on the first hand,
suburb area has being relatively protected against the outbreak, while on the
other hand, the two other areas have been hit by a curve up after the release of
the intervention, even sharper for the intermediate area. This might be explained
by the relative openness of the last two areas, where a half and almost one third
of the population of agents come from outside of the studied area. It clearly
supports the observation that lockdown in itself is not able to stop the outbreak
if it is not followed by targeted interventions to fight again the re-introduction
of new cases.

Another aspect to analyse is the differences regarding the epidemic rebound:
it is sharp in the intermediate area, contained in the city center, and smooth
in the last. This may be explained by the structure of activities and functional
aspects of the urban area: in the city center there are a lot of small workplaces
and retails that lead to a relative low and consistent number of daylong contacts
and a large number of small contacts with interchanging agents; in the suburb
there is very few contacts related to activities such as shopping and working
but many prolonged contact with the same agents again and again, like relatives
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and friends; finally the intermediate area has a lot of large building that host
workplaces or mall, leading to a large number of prolonged daylong contact
between agent from within and outside the area. This contrasting responses
should be considered when deploying a unified intervention policy and might be
more effective if considered in conjunction with the specificity of the morpho-
functional aspects of urban areas.

4 Conclusion

In this proposal we briefly introduce the COMOKIT framework that makes it
possible to study the outcome of intervention policy over the course of a SARS-
CoV-2 outbreak at the scale of a city. We apply the model on the city of Nice in
the south of France and explore how different areas of the urban zone respond
to interventions. In particular we demonstrate how important is the openness to
outside areas to foresee lockdown style intervention efficiency and how provided
activities and facilities in an area can impact the course of the outbreak after
the release of the intervention.

While COMOKIT used in several context, we still plan to improve its ability
to represent the new challenges to support mitigation strategies to fight against
the pandemic. More precisely we want to make it possible to explore in depth
spatial aspect of NonPharmaceutical Interventions (NPI), for example we want
to add new feature in the framework to easily implement and test policies entailed
by proposition related to the ”NoCovid” strategy and the identification of Green
zones with territorial based planing of the interventions.
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