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A B S T R A C T

Synchronization of neural activity as measured with functional connectivity (FC) is increasingly used to study
the neural basis of brain disease and to develop new treatment targets. However, solid evidence for a causal role
of FC in disease and therapy is lacking. Here, we manipulated FC of the ipsilesional primary motor cortex in ten
chronic human stroke patients through brain-computer interface technology with visual neurofeedback. We
conducted a double-blind controlled crossover study to test whether manipulation of FC through neurofeedback
had a behavioral effect on motor performance. Patients succeeded in increasing FC in the motor cortex. This led
to improvement in motor function that was significantly greater than during neurofeedback training of a control
brain area and proportional to the degree of FC enhancement. This result provides evidence that FC has a causal
role in neurological function and that it can be effectively targeted with therapy.

1. Introduction

Interregional neural communication is thought to be accompanied
by a synchronization of oscillations between different brain regions
(Fries, 2005; Varela et al., 2001). This interregional synchronization
can be quantified with the concept of functional connectivity (FC), which
is a measure of statistical dependency between activities in different
brain areas. The human brain maintains an organized pattern of in-
terregional synchronization even during periods without externally
given task (Damoiseaux et al., 2006; Greicius et al., 2003; Vincent et al.,
2007) and FC can be observed from recordings of neural oscillations at
several frequency bands (Deriche, 2016; Guggisberg et al., 2015).

Analyses of FC are convenient and now abundantly used to probe
for novel disease biomarkers (Fox and Greicius, 2010), treatment tar-
gets (Zhang et al., 2016), or predictors of outcome (Nicolo et al., 2015;
Westlake et al., 2012). However, in contrast to the frequent usage of
this approach, it is currently justified only by correlations in observa-
tional imaging studies. The strength of FC during a task-free state cor-
relates with behavioral performance in a variety of cognitive and motor
functions in healthy humans (Guggisberg et al., 2015; Hampson et al.,
2006; Hipp et al., 2011; Schlee et al., 2012). Furthermore, several brain
pathologies and neurological deficits are associated with disruptions of
FC among networks (Baldassarre et al., 2016; Carter et al., 2010;

Dubovik et al., 2012; Fellrath et al., 2016; He et al., 2007). There are
also studies suggesting a functional significance of FC in learning.
Motor, perceptual, and phonological learning as well as memory tasks
specifically modulate FC during (Sun et al., 2007) and after the tasks
(Albert et al., 2009; Sami et al., 2014; Tambini et al., 2010; Veroude
et al., 2010).These FC changes correlate with the degree of learning
(Lewis et al., 2009; Tambini et al., 2010).

However, FC networks during resting state are only weakly corre-
lated to networks during tasks (Davis et al., 2017; Rehme et al., 2013).
Furthermore, correlations between neural and behavioral traits do not
necessarily imply a causal relationship. More decisive evidence con-
cerning causality would therefore be needed before we can apply FC
techniques to clinical questions. One way to achieve this is by manip-
ulating specific FC patterns while assessing the effect on behavioral
measures (Poldrack and Farah, 2015).

Here, we propose to use the method of neurofeedback to induce FC
enhancements in motor networks in human stroke patients and test the
resulting impact on clinical deficits. Neurofeedback enables the mon-
itoring of brain activity and the generation of a real-time output about
specific changes in activity patterns. The recorded subject can thus
learn to voluntarily modulate his own brain function. The crucial ad-
vantage of this approach is that it enables us to selectively manipulate a
specific pattern of neural activity, including FC (Bassett and Khambhati,
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2017; Liew et al., 2016; Mottaz et al., 2015; Ramot et al., 2017; Sacchet
et al., 2012). Recent pioneering studies have shown that FC enhance-
ment with neurofeedback can produce subjective emotional changes
(Koush et al., 2017) and improve bimanual finger tapping (Kajal et al.,
2017) of healthy subjects. Here we report the first double-blind con-
trolled clinical trial in a stroke patient population in order to further
demonstrate a causal link between network communication and brain
disease.

We previously observed that the magnitude of alpha-band FC is
correlated with behavioral performance in stroke patients. The more
the ipsilesional primary motor cortex remained coherent with the rest
of the brain, as reflected by a higher weighted node degree, the better
patients were able to move their arms and the less severe was their
hemiparesis (Dubovik et al., 2012). We therefore trained chronic stroke
patients to enhance the weighted node degree of structurally preserved
areas in their ipsilesional primary motor cortex and measured the effect
on motor performance. In a control condition, patients performed
neurofeedback training of the weighted node degree at a brain area that
is implicated in higher level function and that did not correlate with
motor performance in chronic stroke patients, using a double-blind
cross-over design. Our hypothesis was that training weighted node
degree of the primary motor cortex would be associated with a better
motor function improvement than training the control region and that
the improvement would be proportional to the degree of success in
coherence training.

2. Materials and methods

2.1. Participants

Thirteen stroke patients gave written informed consent and the
Ethics Committee of the Canton of Geneva approved the study.
Inclusion criteria were the presence of ischemic or hemorrhagic stroke
in chronic stage (at least 9 months after onset) and unilateral deficits in
upper limb motor function with significant impact on daily activities.
Exclusion criteria were the inability to participate in long treatment
sessions, inability to concentrate for prolonged periods, metallic objects
in the brain, presence of implants or neural stimulators, persistent de-
lirium or disturbed vigilance, moderate or severe language compre-
hension deficits, new stroke lesions during treatment, and medical
complications. Demographic and clinical characteristics of patients are
shown in Table 1. Two patients had to be excluded because of medical
complications unrelated to the study procedures and one patient
withdrew from the study. Among the ten patients who completed the
study, five were females and all participants were right-handed. Their

mean age was 57.1 years old (range 40–71 years). They had been di-
agnosed with unilateral, territorial, ischemic (six patients) or hemor-
rhagic stroke (four patients) in the territories of the middle cerebral
artery. Five patients had a purely subcortical lesion while the other five
had a mixed cortical-subcortical lesion. Patients were between eleven
months and five years post-stroke (mean 2.6 years) and had moderate
to severe upper limb motor impairment (mean Fugl-Meyer score 26/66
points, range 15–54) (Table 1).

The study was registered with ClinicalTrials.gov, identifier
NCT02223910.

2.2. Structural MRI and lesion mapping

The MRI protocol contained a high-resolution T1-weighted, 3-D
spoiled gradient-recalled echo in a steady state sequence covering the
whole skull (192 coronal slices, 1.1 mm thickness, TR=2500ms,
TE= 3ms, flip angle= 8°), T2-weighted three-dimensional fast spin-
echo and diffusion weighed imaging sequences with 30 diffusion en-
coding directions (slice resolution of 2mm) performed on a 3 T Siemens
Siemens Trio TIM scanner (Siemens Medical Solutions, Erlangen,
Germany). Damaged regions were delineated directly as volume of in-
terest (VOI) on the axial diffusion-weighted MRI scans, resliced and
aligned to T1 using SPM8 (www.fil.ion.ucl.ac.uk/spm). Lesion maps
were normalized to MNI (http://www.bic.mni.mcgill.ca) space using
SPM8. A lesion mask was used to reduce the contribution of damaged
tissue during normalization (Brett et al., 2001). Degree of internal
capsule damage was estimated using the JHU White Matter atlas and
normalized lesion masks by dividing voxels in common between both
masks by the size of the internal capsule mask.

2.3. Neurofeedback

2.3.1. Target areas
Patients learned to enhance an FC pattern that correlates with

performance in stroke patients (Dubovik et al., 2012). In the active
treatment period, they aimed at training the weighted node degree, i.e.,
the sum of FC between the ipsilesional hand motor cortex area and the
rest of the brain. The region was defined with radius of 20mm centered
on the hand knob. Areas with structural damage were excluded. For the
control period, the weighted node degree of the contralesional ros-
trolateral prefrontal cortex around MNI coordinates x= 30, y= 45,
z= 25 (Brodmann area 10) was used for feedback. The usage of a
control area with real feedback gave us a more stringent control of
unspecific effects than random pseudo-feedback that is typically used in
neurofeedback trials. Patients had the possibility of developing actual

Table 1
Patient characteristics.

Patient Age Gender Handedness Side of
motor deficit

Stroke aetiology Stroke
Type

Lesion Type Lesion
Volume

Time since stroke
(months)

NIH stroke scale at
admission

Baseline Fugl-
Meyer score (UE)

P1 57 F R L Primary CNS
vasculitis

I Mixed 75 61 11 23

P2 52 F R R Cryptogenic I Subcortical 80 53 27 17
P4 40 M R R Arterial

hypertension
H Mixed 23 27 21 22

P5 65 M R L Arterial
hypertension

H Subcortical 52 14 17 17

P6 65 F R R Cryptogenic H Mixed 46 53 9 46
P8 55 M R L Arterial

hypertension
H Subcortical 75 14 15 15

P10 52 F R R Cryptogenic H Mixed 52 17 13 18
P11 62 M R L Arterio-arterial

embolism
I Subcortical 51 11 17 19

P12 71 M R R Arterio-arterial
embolism

I Subcortical 8 37 8 54

P13 52 F R L Cryptogenic I Mixed 304 15 14 29

Abbreviations: F= female, M=male, R= right, L= left, I = ischemic, H=hemorrhagic.
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control over their brain activity in both conditions. This allowed us to
test for spatial specificity of the intervention. While the prefrontal
cortex may have a role in motor function and learning (Rehme et al.,
2013; Sharma et al., 2009), it is implicated in high-level functions
spanning many domains (Ramnani and Owen, 2004). We hypothesized
that the training of the global FC of this region would have a limited
impact on motor recovery, supported by the absence of correlation
between its weighted node degree and motor performance (Dubovik
et al., 2012).

2.3.2. Task
Patients received visual feedback on their current alpha-band

(8–12 Hz) node degree in the target area on a computer screen in front
of them. Feedback was composed of a vertical scale made of 12 white
horizontal bars, over a black background, representing from bottom to
top, low to high alpha-band node degree values. Every 300ms, the bar
with the value closest to the currently calculated node degree value was
highlighted in blue. The highest bar reached during the current trial
was constantly highlighted in green and updated when necessary.
During 45 s, subjects tried to raise the bars as high as possible. If the
current value reached the top of the scale, the trial continued normally
until the end of the 45 s with no specific visual reward other than the
top bar highlighted in green. No particular strategy was proposed
(Mottaz et al., 2015). We told patients not to physically move their
upper limbs and keep the eyes opened. To avoid frustration, the scale of
the feedback was adapted for each participant between and within
sessions, such that his or her FC values were within reach of the top bar,
as estimated visually. The scale was most of the time set between −2.5
and+2.5 standard deviations of FC z-score.

2.3.3. Study design
Patients were alternatively assigned to start with either the motor

cortex FC training or the control region FC training. Each arm of
training was composed of eight sessions, two per week, distributed over
one month. To avoid a carry-over effect, a wash-out period of one
month without neurofeedback between control and motor training was
established. Each neurofeedback session was preceded by a 30min
active upper limb motor training with a trained physical therapist, who
was blinded for the type of training period (motor or control), in order
to potentiate the effect of the neurofeedback. A neurofeedback session
began with an EEG recording of 10min in a resting-state condition with
eyes closed. Neurofeedback training itself lasted 50min and consisted
of 50 neurofeedback trials of 45 s each with longer pauses every five
minutes.

2.3.4. Data acquisition
EEG data were acquired with a 128-channel BioSemi ActiveTwo

EEG-system (BioSemi B.V., Amsterdam, Netherlands) at a sampling rate
of 512 Hz. Electrodes containing electrode or muscle artefacts or
abundant noise were selected through visual inspection at the begin-
ning of each session and every five minutes during pauses and rejected
from further analysis. During neurofeedback, the incoming data stream
was continuously written into a FieldTrip buffer (Oostenveld et al.,
2011) and simultaneously recorded for offline analysis. The last 500ms
data segment was read every 300ms in MATLAB (R2011a, The Math-
Works inc., Natick, USA) using the FieldTrip toolbox (http://www.
fieldtriptoolbox.org). The data segment was bandpass filtered between
1 and 20 Hz with a 4th-order butterworth filter. Data windows with
mean channel variance exceeding 90% of what was observed during
first resting-state of session were discarded to remove segments with
artefacts.

In contrast to classical neurofeedback studies for motor function,
patients in the present trial did not train to enhance activation of the
motor cortex, but to increase a resting-state correlate of motor perfor-
mance. Motor imagery does not lead to an increase of alpha-band co-
herence between motor cortex and the rest of the brain (Mottaz et al.,

2015). In order to further exclude EMG confounders, we used two ap-
proaches. First, we systematically questioned patients on their strategy
used. Second, muscle activity of the hemiparetic forearm was mon-
itored with electromyography in the first two patients. Active elec-
trodes were placed on the belly of the abductor pollicis and of the ex-
tensor carpi radialis.

2.3.5. Source signal reconstruction
Realistic head geometry was used for the forward problem estima-

tion with the Boundary Element Method (BEM) based on the segmented
grey matter of individual T1 MRI. Electrode positions were recorded
and digitized with a Polhemus Fastrak system (Colchester, USA) and co-
registered to the individual MRI. The BEM model was created with the
open source Matlab toolbox NUTMEG (http://www.nitrc.org/plugins/
mwiki/index.php/nutmeg:MainPage) (Dalal et al., 2011) using the
Helsinki BEM library (http://peili.hut.fi/BEM/) (Stenroos et al., 2007).
Solution points were defined using a 10mm grid spacing (~1000 so-
lution points). The signal was then projected to the grey-matter voxels
with a minimum variance beamformer method, an adaptive spatial
filter optimized on data covariance. Computation of the spatial filter w
used the column-normalized lead-potential L as well as the channel
covariance R obtained from the first resting-state recording of each
session in 7 patients and from the immediately preceding feedback
block of the current session in 3 patients:

=
−

−
r r

r r
w R L

L R L
( ) ( )

( ) ( )
,

1

T 1

where r represents each solution point. Dipole orientations were fixed
so that they yielded maximum output signal-to-noise ratio at each so-
lution point (Sekihara et al., 2004).

2.3.6. Real-time functional connectivity
Functional connectivity was quantified using the absolute ima-

ginary part of coherency (IC) (Nolte et al., 2004), a spectral measure of
FC that ignores zero-phase-lag coherence. The advantage of IC over
other measures of FC is that it is not subject to biases arising from
volume conduction or spatial leakage of the inverse solution (Sekihara
et al., 2011). Although the spatial resolution of EEG souce imaging is
imperfect, the usage of IC with inverse solutions and realistic head
models provides sufficient spatial resolution for demonstrating training
effects in ipsilesional motor areas compared to control areas in other
lobes.

IC was calculated by tapering 500ms epochs with a Hann window
and performing a discrete Fourier transform with 512 frequency bins at
all electrodes. The complex Fourier coefficients F at all electrodes were
projected into source space with the adaptive spatial filter:

=G f F f( ) W ( )T

where T indicates the matrix transpose. Complex coherency was com-
puted from the Fourier transformed source time series G from each
voxel to all other voxels resulting in a full all-to-all voxel complex
connectivity matrix C:

=
∗

f
f f

diag f f diag f f
C( )

G( ) G( )
(|G( )| |G( )|) (|G( )| |G( )|)T T T

where * denotes the complex conjugate and diag(M) the vector formed
by the diagonal entries of the matrix M. Complex coherency at the
alpha band was obtained by summing the cross- and auto-spectra across
the corresponding frequency bins between 8 and 12 Hz. IC was finally
obtained after variance-stabilizing Fisher's Z transform:

=f
C f
C f

h C fIC( ) Im
( )

| ( )|
arctan (| ( )|)

where Im is the imaginary component and arctanh the inverse hy-
perbolic tangent.

To obtain a more stable feedback, current alpha-band IC was
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averaged over the last 12 overlapping segments (last 3.8 s) using a
sliding window.

The weighted node degree was then computed. Nodes were defined
as individual voxels d edges between all pairs of voxels were weighted
by IC values. Node degree, corresponding to the number of edges in-
cident to a node, was extended to the sum of weight and referred as
weighted node degree (Newman, 2004). The weighted node degree k of
each voxel i was calculated as the sum of its IC with all other voxels j:

∑=k ICi
i

ij

It can be seen as an index of the overall importance of an area in the
brain network (Stam and van Straaten, 2012). To minimize the poten-
tial confound of changes in signal-to-noise ratio influencing IC magni-
tude, we normalized weighted node degrees by calculating z-scores
(Dubovik et al., 2012). This was achieved by subtracting the mean
weighted node degree of all voxels from the values at target voxels and
dividing by the standard deviation over all voxels. The mean normal-
ized weighted node degree of voxels in the target region was then used
for visual feedback. Mean computation time was<250ms. Feedback
was updated every 300ms.

2.4. Clinical assessment

The effect of neurofeedback training on motor performance was
assessed by a trained physical therapist who was blinded for the type of
training period (motor or control). Evaluations were obtained before
the first training session, after the last training session, and one month
after the end of each training period. For one patient, no long-term
follow-up evaluation of motor performance could be obtained for the
second treatment period due to patient refusal.

A single primary outcome measure was prespecified at
ClinicalTrials.gov, identifier NCT02223910: the upper limb Fugl-Meyer
motor assessment with a maximal score of 66 points (Fugl-Meyer et al.,
1975; Gladstone et al., 2002). Secondary measures included the Nine
Hole Peg test (Kellor et al., 1971) as well as the Box and Block test for
dexterity assessment (Lin et al., 2010; Mathiowetz et al., 1985). Upper
extremity muscle strength was evaluated with the Medical Research
Council muscle scale (Compston, 2010) and grip strength was evaluated
with a Jamar dynamometer (Schmidt and Toews, 1970). The impact on
daily living tasks was evaluated with the Motor Activity Log–14 score
(Uswatte et al., 2005). The 10 Meter Walk (Perera et al., 2006) and the
Time Up and Go test (Flansbjer et al., 2005) were used to measure the
more global impact on functional mobility and lower extremity motor
performance. The European Stroke Scale was used for a global clinical
assessment (Hantson et al., 1994). Spasticity was evaluated with the
modified Ashworth scale (Bohannon and Smith, 1987).

2.5. Statistical analyses

All analyses were made using MATLAB (R2011a, The MathWorks
inc., Natick, USA). Normality was determined with Shapiro-Wilk or
Shapiro-Francia tests depending on the shape of the data.

2.5.1. Clinical effect
Statistical assessments were made with parametric Student t-test

and non-parametric Wilcoxon signed ranked test for data showing
normal and non-normal distribution respectively.

2.5.2. Offline functional connectivity
We assessed the neural effect of neurofeedback training by in-

vestigating the change in alpha-band (8–12 Hz) weighted node degree
over time. The signal recorded during the neurofeedback sessions was
divided into five blocks each representing ten minutes of neurofeedback
training. A value of alpha-band weighted node degree was calculated
for each block. The change in alpha weighted node degree during the

neurofeedback session was estimated at each voxel by computing the
linear regression (least-square minimization) coefficient, or slope, using
the five node degree values, modeling the relationship between time
and alpha weighted node degree. The regression coefficient represented
the estimated change during 10min of neurofeedback. For each block,
the calculation of the alpha weighted node degree was identical to the
method used during the neurofeedback, described in Section 2.3.6 ex-
cept the following differences: the data were splitted into 1000ms data
segments, bad electrodes were excluded through automatic detection
based on amplitude correlation with neighbours and mean variance and
through visual inspection, segments with artefacts were excluded
through visual inspection and automatic detection based on deviation
from channel mean, global variance and amplitude difference between
minimal and maximal values. The adaptive spatial filter was computed
using data covariance from the neurofeedback data themselves. The
mean weighted node degree slope across voxels in the defined target
area of all patients was subjected to parametric Student t-test (given
normally distributed values) testing the null hypothesis of zero slope.

To visualize the spatial specificity of these changes, we additionally
obtained voxel-wise assessments of the average slope of the eight ses-
sions. Maps of average slopes were spatially normalized to canonical
MNI space and flipped along the midsagittal plane in subjects who
trained the right motor cortex. Statistical non-parametric mapping
(SnPM) assessed the statistical significance of the increase in FC at each
voxel via permutations with random reversions of the original data
(Singh et al., 2003). Since we were interested in visualizing the full
extent of FC increases to confirm spatial specificity, we did not correct
for testing multiple voxels in this analysis. This produced a whole brain
map of the voxels with a significant increase or decrease in FC during
the neurofeedback sessions.

To visualize the pattern of FC increase between the motor target
area and the other regions of the brain, a whole brain map was created
by computing the seed-based FC slope between each voxel and the
motor target voxels, statistically assessed with SnPM.

To test for changes in resting-state FC in the absence of feedback, we
also computed the linear regression (least-square minimization) slope
over the eight resting-state recordings obtained before each neuro-
feedback session, hence quantifying the evolution of the weighted node
degree in the alpha-band over the month of training. The alpha-band
weighted node degree of each resting–state recording was computed
from five minutes of artefact-free data and as described above.

2.5.3. Power
Power evolution in the alpha-band during neurofeedback session

was estimated analogously by computing the linear regression slope
over five blocks, each representing ten minutes of neurofeedback
training, using the same preprocessed data as for functional con-
nectivity analysis. Slopes of z-normalized power were tested voxel-wise
for significance with SnPM, and in the defined target area with para-
metric Student t-test (given normally distributed values).

2.5.4. Electromyography
We evaluated the muscle activity by calculating the root mean

square of the highpass filtered (> 10Hz) signal difference between
active and reference electrodes. Ten values were obtained during neu-
rofeedback and ten during pauses, each calculated over five minutes of
data. Statistical difference was assessed using non-parametric Wilcoxon
signed ranked test given non-normally distributed values.

2.5.5. Correlation with clinical data
Pearson's correlation was computed between the mean z-normalized

weighted node degree regression coefficient in the target voxels of each
individual and their FMA score change (given normally distributed
values).

Pearson's correlation was also tested for each voxel in the normal-
ized space, producing a whole brain correlation map.
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2.5.6. Responder analysis
To explore which patients benefited the most from the intervention,

we assessed the effect of patient's age, gender, stroke type, degree of
internal capsule damage, initial FMA score and time since stroke on
short and long-term FMA improvement. Bivariate analyses used
Pearson and Spearman correlations as well as Wilcoxon rank-sum tests
depending on data type and distributions. Multivariate linear regres-
sions were then performed using significant variables of the univariate
analyses.

3. Results

3.1. Clinical effects

In accordance with our main hypothesis, a significant improvement
(t9= 5.6, p < .01) in motor performance was observed in the primary
outcome measure, the FMA, between the clinical evaluation before and
after the month of ipsilesional motor cortex FC training (Fig. 1a). All
patients except one increased their score with a mean improvement of
5.3. During control training, there was also a significant clinical im-
provement (mean increase of 2.0 points, t9= 2.4, p= .04), but it was
significantly smaller than in the active condition (t9= 2.4, p= .04).

Fig. 1b illustrates that improvements were seen independently of
the treatment order. A mixed model ANOVA with treatment condition
as within factor and treatment order as between factor confirmed a
significant effect of treatment condition (F1,8= 5.6, p= .046) but did
not show any effect of order (p= .38) and no interaction between
treatment and order (p= .70).

To estimate the impact of the motor improvement elicited by our
neurofeedback on different aspects such as daily living, fine dexterity or
mobility, we analyzed the secondary clinical outcome measures. For all
of them except grip strength, the impact was stronger during motor
cortex training than control training, as presented in Table 2, but the
differences were not significant. Yet, two patients were able to perform
the Nine-Hole-Peg test and three the Box & Block test before treatment
(the remaining patients had too severe deficits) and saw greater in-
crease in their performance during the motor than the control training,
with a mean difference of 0.24 pegs/min and 5 blocks/min in the two
and three patients, respectively. The impact on daily functional tasks as
measured with the Motor Activity Log–14 score was significant at
p < .01 after motor cortex training, while not significant after the
control training (p= .13). During motor cortex training, a meaningful
mean improvement in the gait speed (> 0.06m/s) (Perera et al., 2006)
was observed, also visible in the Timed Up & Go test where two patients
improved their speed above the minimal detectable threshold (> 2.9 s)

(Flansbjer et al., 2005). During the control training, the mean gait speed
improvement was not meaningful (< 0.06m/s) and one patient even
decreased his speed (> 2.9 s) in the Timed Up & Go test. Levels of
spasticity as measured with the Modified Ashworth Score did not sig-
nificantly change during either training period (p > .38).

The significant difference between groups in the FMA score did not
persist in the long term with no statistical difference between groups at
one month (p= .90, Fig. 1a, but see 3.3 Responder Analysis below). In
secondary outcomes, differences stayed in favor of motor cortex for
most of them. A significant difference in the Time Up & Go test in favor
of motor cortex training (p= .03) was observed in the long term. In the
motor group, the significant impact on daily functional tasks as mea-
sured with the Motor Activity Log–14 score remained significant
(p= .047) while the improvement in the European Stroke scale became
significant (p= .03). Also, the mean difference in the Nine-Hole-Peg
test and the Box & Block test remained in favor of motor training
(difference of 1.5 pegs/min and 1.7 blocks/min respectively) and the
improvement in the gait speed was meaningful only in the motor group.

3.2. Neural effects

First, we reproduced the correlation on which our neurofeedback is
based for the patients of this trial. The alpha-band weighted node de-
gree of the ipsilesional motor cortex measured during the first resting
state session significantly correlated with the FMA score of the first
motor evaluation (r=0.76, p= .01).

During neurofeedback sessions, we observed a positive mean slope
of the trained alpha-band weighted node degree at the targeted ipsile-
sional motor region (t9= 2.0, p= .08) (Fig. 2a and 3). The increase was
significant at 10 Hz (t9= 2.9, p= .02) (Fig. 2b), hence suggesting that
patients learned to increase the weighted node degree in the motor
target area.

During control training, no change in the weighted node degree was
observed in the motor target area at any alpha frequency (t < 1.0,
p > .25). An increase in the contralesional prefrontal region was ob-
served that was not significant in the entire alpha-band (p= .69)
(Fig. 2c) but at 8 Hz (t9= 3.7, p < .01) in the targeted region (Fig. 2d).

The mean alpha-band FC change in the motor cortex of each patient
correlated with the increase in FMA score during the month training
(r= 0.76, p= .01) (Fig. 2f and 3), hence confirming our second hy-
pothesis. This correlation was specific to the trained region and not seen
in other brain areas on the whole-brain voxel-wise correlation map
(Fig. 2e).

During the month of control training, the increase in FMA score did
not correlate with the alpha-band weighted node degree slope in the

Fig. 1. Clinical effect of FC neurofeedback in the ten patients. a) Boxplot of Fugl-Meyer assessment score improvements obtained during the month of neurofeedback
training, as well as at one month follow-up. * indicates a significant difference between treatment conditions (p < .05, Student's t-test). b) Mean (± standard error)
evolution of the FMA score for both treatment orders. Continuous lines indicate training periods and dashed lines periods without training. † indicates one missing
value.
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control target area (r=−0.40, p= .26) or with the alpha-band FC
change between the control area and the ipsilesional motor area
(r=−0.15, p= .69).

Given the FC enhancement of the motor target area as indicated by
an increased weighted node degree, we explored which interactions
were most concerned by this enhancement. We found significantly in-
creased FC with ipsilateral fronto-temporal areas. However, in contrast
to the weighted node degree, the specific FC increases between the
motor target area and fronto-temporal areas did not correlate with
motor improvement (r=0.06, p= .86).

The alpha-band weighted node degree at the motor target region
also increased during the eight pre-session resting-state recordings over
the month of motor neurofeedback training, but only in patients
showing an FMA improvement> 5 (N=4, p= .02).

To verify that the effect of the neurofeedback was not due to a
modulation of power in the target region, we measured the change in
alpha-band power at the targeted motor region during active neuro-
feedback periods and found it not to be significant (p= .65). Power
changes did not significantly correlate with the slope of alpha-band
weighted node degree (r=−0.20, p= .58) or with the improvement in
the FMA score (r=−0.46, p= .18).

3.3. Responder analysis

With regards to long-term improvement, univariate analyses found
an effect of lesion side (W=28.5, p= .048) and time since stroke
(r=0.70, p= .04), but for none of the other variables (r < 0.32,
p > .40; W < 24, p > .33). In a multivariate analysis, only lesion side
(beta=−3.92, t=−2.28, p= .06) remained marginally significant
but not time (t=1.41, p= .21). The negative impact of right lesions on
retention is shown in Fig. 4.

No predictor was significant in a multivariate model of short-term
improvement (p > .26).

3.4. Movement confounders

None of the patients reported the use a motor imagery strategy for
the neurofeedback task. The electromyography of the abductor pollicis
and extensor carpi radialis confirmed that patients did not contract
their upper limb muscles during neurofeedback. The first patient pre-
sented a mean muscle contraction estimated with root mean square
amplitude of 4.1 μV during neurofeedback and 4.7 μV during pauses
(p= .38) and the second patient a mean contraction of 8.9 μV during
neurofeedback and 9.4 μV during pauses (p= .19).

4. Discussion

An increasing number of empirical and theoretical studies in-
vestigate brain function through a network perspective. We demon-
strated here by a direct and voluntary manipulation of FC through
neurofeedback that a targeted change in FC at a specific brain area and
frequency band has a proportional impact on behaviour, bringing evi-
dence on the causal influence of FC on brain function. Such demon-
strations are crucial to help elucidate the neural substrate of brain
disease and for providing a rationale for the usage of FC in the search
for biomarkers and treatment targets.

We already know that FC cannot be reduced to a mere reflection of
structural connectivity. While strong functional interactions exist be-
tween areas with strong structural connections (Hermundstad et al.,
2013; Tewarie et al., 2014; van den Heuvel et al., 2009), structural
connectivity cannot entirely predict FC (Honey et al., 2009). FC may
arise via indirect anatomical connections, which partially explains
missing correspondence. Dynamics of brain activity during resting-state
explain another part (Deco et al., 2011). FC exhibits indeed variability
across recording sessions but also within runs at faster time-scales
(Hutchison et al., 2013; Sadaghiani et al., 2015). This ongoing variationTa
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of activity has been proposed to represent fluctuations between segre-
gation and integration states at many spatio-temporal scales (Sporns,
2013). It is thought to reflect an internal model shaped by previous
experience and individual connectivity biases that impact behavior by
providing a necessary operational context (Harmelech and Malach,
2013; Raichle and Snyder, 2007). A further mechanisms by which FC
impacts behavior may be related to processing of previous experience
and consolidation of learning (Miall and Robertson, 2006). FC is indeed
modulated proportionally to learning immediately after a motor or
sensory task (Albert et al., 2009; Lewis et al., 2009). The FC pattern we
chose to train was based on an observed correlation with behavior
(Dubovik et al., 2012; Guggisberg et al., 2015). It can be interpreted as

an integration of a given cortical region into large-scale brain networks.
The alpha-band is indeed implicated in long range synchronization
(Doesburg et al., 2009; Hummel and Gerloff, 2005; Palva and Palva,
2007). This may have contributed to an enlargement of the motor
network with recruitment of additional areas.

FC enhancements of the motor target concerned preferentially in-
teractions with fronto-temporal areas of the same hemisphere.
However, the correlation analyses suggest that not specific interactions
with these areas, but an FC enhancement across the network were as-
sociated with better motor recovery. Hence, FC increases do not need to
concern interactions with specific brain regions, as long as the overall
interaction of the target area with the entire brain are enhanced. This

Fig. 2. Neural effect of the FC neurofeedback in the
ten patients. Regions showing a significant modula-
tion (red and blue colors) of the weighted node de-
gree in the alpha-band (a) and at 10 Hz (b) during
the neurofeedback sessions targeting the ipsilesional
motor cortex (marked in grey). Regions showing a
significant modulation (red and blue colors) of the
weighted node degree in the alpha-band (c) and at
8 Hz (d) during the neurofeedback sessions targeting
the contralesional prefrontal cortex (marked in
grey). e) Regions showing a correlation between
enhancements in alpha-band weighted node degree
at the ipsilesional motor cortex (grey area) and
change in the upper extremity FMA score. f)
Enhancements of alpha-band weighted node degree
at the targeted ipsilesional motor cortex were asso-
ciated with a proportional increase in the upper ex-
tremity FMA score.
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may be a particularity of alpha-band interactions. A previous study
observed that alpha-band networks differ from resting-state networks as
observed in functional resonance imaging. The former are implicated in
global integration across networks and the latter in communication
within specific networks and between hemispheres (Guggisberg et al.,
2015).

Long distance cortical coupling in the alpha-band has been related
to modulation of sensori-motor beta-band power (Vukelic et al., 2014;
Vukelic and Gharabaghi, 2015a, 2015b). Beta-band is known to med-
iate effective, frequency- and phase-specific cortico-spinal commu-
nication (Khademi et al., 2018) while neurofeedback of beta-band
power increases corticospinal connectivity (Belardinelli et al., 2017;
Kraus et al., 2016b) and motor behavior (Naros and Gharabaghi, 2015).
Our neurofeedback effect on alpha-band connectivity could have been
translated to actual motor improvement through cross-frequency in-
teractions improving beta-band modulation hereby increasing, ulti-
mately, cortico-spinal communication.

Despite the specific efficacy of FC training in the short term, it did

not lead to a long-term retention of the clinical improvement in all
patients. Although this is also the case for many other rehabilitation
treatments, it limits applications in practice. Long-term improvement
requires that patients reach a threshold of improvement which then
enables the integration of motor improvements into activities of daily
living (Han et al., 2008; Kleim and Jones, 2008). Enhancing the effect
of our neurofeedback training may thus lead to better long-term re-
tention. Increasing training intensity could be one strategy since dose of
motor rehabilitation intervention in chronic stroke patients enhances
gains in motor function (Byl et al., 2008; Hsieh et al., 2012). Adding
other modalities such as peripheral or brain stimulation (Kraus et al.,
2016a; Kraus et al., 2018) or pharmacological intervention such as
fluoxetine (Chollet et al., 2011; Mead et al., 2013) to induce plasticity
may also potentiate the approach. A key factor for retention in our
study was the side of the lesion. Patients with a lesion in the right
hemisphere demonstrated variable short-term improvement and sig-
nificantly lower long-term improvement compared to patients with a
left-sided lesion (Fig. 4). There is some evidence that right lesions, in
particular right parietal lesions are associated with worse outcome and
less recovery (Aszalos et al., 2002; Bentley et al., 2014; Rangaraju et al.,
2015; Yassi et al., 2015). Furthermore, right lesions often lead to vi-
suospatial neglect that is known to have a negative impact on re-
habilitation (Gerafi et al., 2017). None of our patients had severe ne-
glect, but mild residual neglect might have contributed to low
retention. Applying network neurofeedback therapy to patients with
left hemispheric lesions seems to lead to better long-term effects.

Our physical therapy sessions preceded the neurofeedback trainings
with the idea that FC training would help consolidate motor learning.
However, FC could also provide an optimal operational context for
motor learning, in which case it may have been more beneficial to
schedule physical therapy after neurofeedback. A more thorough un-
derstanding of the dynamics of FC and more particularly alpha-band
node degree in relation to motor learning could help decide how to best
combine motor exercises and FC training in the future. This along with
a better understanding of which patients benefit the most from the
therapy may then also lead to better retention.

Several technical difficulties to the intervention provided here need
to be considered. First, our study intended to directly target FC in order
to provide evidence that such strategies can be causally effective for
reducing neurological deficits. However, modulating FC of brain areas
is technically challenging and requires high-density EEG with long
setup times. Other approaches may enable an indirect enhancement of
FC while being easier to implement in clinical practice. For instance,
neurofeedback of circumscribed motor activations can modulate FC
(Vukelic and Gharabaghi, 2015a) but requires only few EEG electrodes
and enables shorter feedback delays. Non-invasive brain stimulation
induces changes in FC during and after stimulation (Krawinkel et al.,
2015; Meinzer et al., 2012; Pena-Gomez et al., 2012; Polania et al.,
2012; Rizk et al., 2013; Sale et al., 2015; Sehm et al., 2012; Volz et al.,
2016). Behavioral interventions also modify FC (Freyer et al., 2012;
Solca et al., 2016). Nevertheless, our approach enables a more selective
and specific modulation of FC, which may be important for certain
applications.

Second, the usage of resting-state data to compute the spatial filter
may have led to suboptimal real-time source activity calculation, the
optimization being based on data having potentially other sources of
noise. We tested this in three patients of the present trial by using the
immediately preceding neurofeedback block rather than the resting-
state recording to compute the spatial filter. The FMA gain (p= .69)
and the difference in FMA gain between conditions (p= .76) were not
greater in these three patients, hence suggesting that this was not a
major problem.

Third, IC was used as index of FC because of its computational
simplicity, which was of particular advantage in a real-time setting.
However, IC has the disadvantage that its magnitude depends not only
on the strength of coupling, but also on the phase lag. Neurofeedback

Fig. 3. FC evolution during neurofeedback sessions. Each line represents the
evolution in one patient of its FC during neurofeedback sessions, averaged over
the eight sessions. FC values are the alpha-band weighted node degree calcu-
lated over ten minutes of neurofeedback (z-normalized). The color scale in-
dicates the individual motor improvement as measured with the FMA score.

Fig. 4. FMA score improvement in patients with a right-sided (grey) and a left-
sided (black) lesion after the neurofeedback sessions targeting the ipsilesional
motor cortex (a) and at one-month follow-up (b). * Indicates a significant dif-
ference in long-term FMA improvement between patients with left-sided and
right-sided lesions (p < .05, Wilcoxon rank-sum test).
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training could hence have induced a systematic change in phase lags
between brain regions towards a lag of π/2 or -π/2. However, we did
not observe a significant decrease in the real component of coherency
(representing zero-lag coupling, p= .34). Moreover, if the induced
changes had concerned exclusively a shift in lag, we should have ob-
served a negative correlation between changes in real and imaginary
coherence. This was not the case in our data (r=0.14, p= .71). Yet,
future implementations of network neurofeedback could choose other
indices of FC to avoid this possibility.

Fourth, the real-time computation of FC introduces a feedback
delay, which could hinder learning. On the other hand, neurofeedback
with functional magnetic resonance imaging implicates even longer
physiological lags and has been proven feasible (Koush et al., 2017).

Finally, refined neurofeedback approaches include also adjusting
the difficulty level in a more systematic way, e.g. by taking into account
for the cognitive load and the learning experience of patients (Naros
and Gharabaghi, 2015; Naros et al., 2016).

Interestingly, we also observed an increase in weighted node degree
at the contralesional prefrontal control region, but it concerned mainly
frequencies around 8 Hz and not the whole alpha-band, while sig-
nificant increase in motor target area was more around 10 Hz. This may
be due to the well-known predominance of alpha rhythms at motor and
posterior brain areas, while prefrontal regions operate preferentially
through long-range synchronization in the theta band (Sarnthein et al.,
1998; Sauseng et al., 2010; von Stein and Sarnthein, 2000). Neuro-
feedback training may have led to an enhancement of low alpha fre-
quencies because they are closer to the intrinsic rhythms of this area.
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