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Abstract 

Modern distribution systems are characterized by increasing penetration of photovoltaic generation systems. Due to 

the uncertain nature of the solar primary source, photovoltaic power forecasting models must be developed in any 

energy management system for smart distribution networks. Although point forecasts can suit many scopes, 

probabilistic forecasts add further flexibility to any energy management system, and they are recommended to enable 

a wider range of decision making and optimization strategies. Real-time probabilistic photovoltaic power forecasting 

is performed in this paper by using an approach based on Bayesian bootstrap. Particularly, the Bayesian bootstrap is 

applied to three probabilistic forecasting models (i.e., linear quantile regression, gradient boosting regression tree and 

quantile regression neural network) to provide sample bootstrap distributions of the predictive quantiles of 

photovoltaic power. The heterogeneous nature of the selected models allows evaluating the performance of the 

Bayesian bootstrap within different forecasting frameworks. Several benchmarks and error indices and scores are used 

to assess the performance of Bayesian bootstrap in probabilistic photovoltaic power forecasting. Tests carried out on 

an actual photovoltaic power dataset for probabilistic forecasting demonstrates the effectiveness of the proposed 

approach.    

Keywords: Bayesian bootstrap; photovoltaic power forecasting; probabilistic forecasting; renewable energy.   

1. Introduction

Management of smart grids requires strategies based on accurate forecasting of loads and energy resources. Increase of

production by renewable generation systems makes forecasting of available energy a complex challenge due to the randomness 

of the primary energy source (typically, solar and wind). Uncertainties are even more critical in real-time operation which 

requires more accurate forecasting to avoid insecure, inefficient or even unfeasible operation. Errors in real-time forecasting, 

in fact, would lead to incorrect operation of the grid as for instance by the undesired intervention of frequency control resources 

to compensate load/generation imbalances. In addition, the rapid dynamic of modern network operating conditions makes real-

time optimal operation a mandatory issue. Fortunately, short time frames can benefit from more accurate information provided 

by local sensor devices, which are able to update the prediction with current values of the variables being forecasted. This is 
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particularly suitable when dealing with statistical learning models which can be trained by updated data based on current 

conditions of the quantity of interest.  

Most of the real-time forecasting approaches are based on point forecast methods which give single quantities as a result of 

the forecast. These methods, however, have reduced utility in power system operation and management as, for instance, they 

have minimal usefulness in solving risk-based tasks such as market bidding (Van der Meer et al., 2018, Bessa et al., 2017). The 

intrinsic randomness of the energy source, in addition to the uncertainties associated with intra-day and real-time market 

operations, makes probabilistic approaches more suitable. Probabilistic approaches produce forecasts in the form of quantiles, 

intervals or density functions, which provide more comprehensive information compared to point forecasts (Van der Meer et 

al., 2018). Nevertheless, the technical literature has started dealing with probabilistic approaches only in the last years.  

The methods typically used in the probabilistic framework are statistical models or hybrid physical-statistical models (i.e., 

coupling weather models and statistical approaches). By focusing on forecast models of solar irradiance and photovoltaic (PV) 

power production, Linear Quantile Regression (LQR) models are proposed in [3,4]. The LQR approach is used in (Juban et al., 

2016) to predict the distribution of outcomes. Probabilistic models for intra-day solar forecasting are carried out in the case of 

highly variable sky conditions based on an LQR model in (Lauret et al., 2017). Other approaches are based on machine learning 

techniques (Voyant et al., 2017). The performance of machine learning methods (k-nearest-neighbors and gradient boosting 

regression trees (GBRT)) for both deterministic and probabilistic intra-hour forecasting of solar irradiance is evaluated in 

(Pedro et al., 2018). Applications of regression trees to solar forecasting are presented in (Voyant et al., 2018). A hybrid 

physical-statistical model developed in (Almeida et al., 2015) uses Quantile Regression Forests (QRF) to forecast power output 

employing as inputs predicted meteorological variables from a Numeric Weather Prediction (NWP) model and actual power 

measurements of PV plants. Quantile Regression Neural Network (QRNN) is used in (Fernandez-Jimenez et al., 2017) for 

probabilistic short-term forecasting of the power production in a PV power plant. A real-time hybrid probabilistic model is 

developed for intra-hour horizons in (Chu et al., 2015). 

It is worth to note that it is crucial to improve predictions of some weather variables through the proper model selection, 

which allows selecting the most informative predictors and discarding uninformative inputs. To do that the exploitation of 

available input data must be maximized. In probabilistic energy forecasting, this has been successfully done through ensemble 

approaches (Ren et al., 2015, La Salle et al., 2020), as evidenced also by the results of the PV forecasting track of the Global 

Energy Forecasting Competition 2014 (Hong et al., 2016). Among these, widely applicable and powerful tools are those based 

on the bootstrap methodology.  

The bootstrap is a statistical tool which can be tailored to quantify the uncertainty related to a specific estimator or statistical 

learning method. In the bootstrap method, samples are repeatedly extracted with replacement from the available data. For each 

of these set of samples, models are estimated and used to generate differentiated forecasts. Regarding the suitability of this 

technique for real-time applications, it must be noted that despite bootstrap can appear characterized by a heavy computational 

burden, it is a flexible technique which can be applied on some selected suitable parameters, thus reducing the computational 

time. Focusing on real-time application, the bootstrap technique has been used to monitor PV power plant output in (Vergura 

et al., 2009). A two-stage method is proposed in (Wen et al., 2020) to estimate the uncertainty of PV forecasting; the forecasting 

is based on the bootstrap method applied to short-term deterministic predictions obtained from a hybrid intelligent model that 

combines wavelet transform technique for data pre-processing, and radial basis function neural network method. Within the 

Bayesian framework – which is successfully applied to short-term photovoltaic forecasting, e.g., (Doubleday et al., 2020) and 
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(Lee et al., 2019) – bootstrapping techniques have also been used to improve the probabilistic forecasts. Bayesian bootstrap 

techniques for short-term PV power forecasting have been, however, rarely adopted (Bozorg et al., 2020).   

This paper focuses on the application of Bayesian bootstrap in short-term probabilistic PV forecasting. The Bayesian 

bootstrap is specifically suited up in this paper to be applied to three different underlying probabilistic models (i.e., LQR, GBRT 

and QRNN), in order to evaluate potential improvements due to its application. The major aim of this research is indeed to 

evaluate if the Bayesian bootstrap enables for better performance and increased skill of the forecasts, compared to the stand-

alone usage of the underlying probabilistic models and compared to the application of the traditional bootstrap. Another 

contribution of this research is the development of the three aforementioned probabilistic forecasting methods which are 

developed for the first time under a new framework. Compared to (Bozorg et al., 2020), the three methods make the Bayesian 

bootstrap operate directly on the PV power forecasts, rather than on the parameters of the models. This approach therefore 

allows reducing the overall computational effort which is particularly important in short-term forecasting, thanks to the fact 

that there is no need to pass through the sample bootstrap distributions of the parameters since the sample Bayesian bootstrap 

distribution of the predictive quantile of PV power is directly provided.   

Eventually, a dedicated procedure for the extraction of the optimal sample quantile from the sample Bayesian bootstrap 

distribution is also proposed, in order to suit the requirements of common decision-making tools that accept probabilistic 

forecasts as a set of predictive quantiles.       

This paper is organized as follows. The Bayesian bootstrap analytic details are presented in Section 2. The application of 

the Bayesian bootstrap to probabilistic models for short-term PV power forecasting is described in Section 3. The background 

for the forecasting performance assessment is shown in Section 4, whereas Section 5 presents the results of numerical 

experiments based on actual PV data. The paper is concluded in Section 6. 

 

2. The Bayesian bootstrap 

Let’s assume to be interested in characterizing a target statistic 𝜑𝜑(𝒙𝒙) ∈ ℝ𝑠𝑠  that is a function of a (row) vector 𝒙𝒙 =

{𝑥𝑥1, … , 𝑥𝑥𝑁𝑁𝑏𝑏} of 𝑁𝑁𝑏𝑏 variables, and let’s assume that an estimation 𝜑𝜑�(𝒙𝒙) of the target, statistic can be characterized using an 

available dataset 𝑿𝑿 = {𝒙𝒙1, … ,𝒙𝒙𝑀𝑀} that contains 𝑀𝑀 known occurrences of 𝒙𝒙. 

Bootstrapping is a resampling approach that allows estimating the probabilistic properties of the target statistic by randomly 

sampling with replacement from data 𝑿𝑿 (Hastie et al., 2009, Clyde et al., 2001). Under the previous assumptions, 𝑿𝑿 is a 𝑀𝑀 × 𝑁𝑁𝑏𝑏 

matrix and its generic 𝑚𝑚 th row is 𝒙𝒙𝑚𝑚 = {𝑥𝑥𝑚𝑚,1, … , 𝑥𝑥𝑚𝑚,𝑁𝑁𝑏𝑏}. The 𝑀𝑀  rows of 𝑿𝑿  can theoretically be assumed as 𝑀𝑀  elements 

extracted from an unknown 𝑁𝑁𝑏𝑏-variate distribution 𝐹𝐹(𝒙𝒙) ∈ ℱ, and within a probability distribution framework the estimated 

target statistic 𝜑𝜑�(𝒙𝒙) retains the statistical properties of a function 𝐺𝐺[∙] applied to 𝐹𝐹(𝒙𝒙), i.e., 𝐺𝐺[𝐹𝐹(𝒙𝒙)], that maps from ℱ to ℝ𝑠𝑠. 

Bootstrapping estimates the target statistic in terms of an empirical 𝑅𝑅 -sample bootstrap distribution 

𝐺𝐺�𝐹𝐹〈1〉(𝒙𝒙)�, … ,𝐺𝐺[𝐹𝐹〈𝑅𝑅〉(𝒙𝒙)] , obtained by applying the function 𝐺𝐺[∙]  to 𝑅𝑅  replicates 𝐹𝐹〈1〉(𝒙𝒙), … ,𝐹𝐹〈𝑅𝑅〉(𝒙𝒙) . Specifically, 

bootstrapping assumes the type of the unknown distribution 𝐹𝐹(𝒙𝒙) to be:  

 

𝐹𝐹(𝒙𝒙) = ∑ 𝑤𝑤𝑚𝑚 ∙ 𝛿𝛿𝒙𝒙𝑚𝑚
𝑀𝑀
𝑚𝑚=1 ,   ∑ 𝑤𝑤𝑚𝑚𝑀𝑀

𝑚𝑚=1 = 1 and 𝑤𝑤𝑚𝑚 ≥ 0,             (1) 

 

where 𝑤𝑤𝑚𝑚 is a weight assigned to the 𝑚𝑚th occurrence, and 𝛿𝛿𝒙𝒙𝑚𝑚 is a degenerate probability measure for the 𝑚𝑚th vector 𝒙𝒙𝑚𝑚.  

The generic 𝑟𝑟th replicate is: 



4 
 

𝐹𝐹〈𝑟𝑟〉(𝒙𝒙) = ∑ 𝑤𝑤𝑚𝑚
〈𝑟𝑟〉 ∙ 𝛿𝛿𝒙𝒙𝑚𝑚

𝑀𝑀
𝑚𝑚=1 ,   ∑ 𝑤𝑤𝑚𝑚

〈𝑟𝑟〉𝑀𝑀
𝑚𝑚=1 = 1 and 𝑤𝑤𝑚𝑚

〈𝑟𝑟〉 ≥ 0,            (2) 

 

where the weights 𝒘𝒘〈𝑟𝑟〉 = {𝑤𝑤1
〈𝑟𝑟〉, … ,𝑤𝑤𝑀𝑀

〈𝑟𝑟〉} are extracted randomly from an assigned 𝑀𝑀-variate distribution 𝑓𝑓𝒘𝒘.  

In traditional bootstrap, the distribution 𝑓𝑓𝒘𝒘 from which the weights 𝒘𝒘〈𝑟𝑟〉 are extracted is the multinomial distribution in 𝑀𝑀 

dimensions with equal probabilities 1/𝑀𝑀, i.e.:  

  

𝑓𝑓𝒘𝒘 = Mul(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|𝑀𝑀; 1/𝑀𝑀, 1/𝑀𝑀, … ,1/𝑀𝑀) = 𝑀𝑀!
𝑤𝑤1!…𝑤𝑤𝑀𝑀!

∏ �1
𝑀𝑀
�
𝑤𝑤𝑚𝑚𝑀𝑀

𝑚𝑚=1 ;            (3) 

 

the 𝑀𝑀-variate sample extracted from (3) is then normalized by 𝑀𝑀 (i.e., 𝑤𝑤𝑚𝑚
〈𝑟𝑟〉 = 𝑤𝑤𝑚𝑚/𝑀𝑀), to meet the constraint ∑ 𝑤𝑤𝑚𝑚

〈𝑟𝑟〉𝑀𝑀
𝑚𝑚=1 = 1.  

In Bayesian bootstrap, instead, the weights 𝒘𝒘 = {𝑤𝑤1, … ,𝑤𝑤𝑀𝑀}  are estimated through the Bayesian inference upon the 

observed probabilities 𝒘𝒘� = {𝑤𝑤�1, … ,𝑤𝑤�𝑀𝑀}  of data 𝒙𝒙1, … ,𝒙𝒙𝑀𝑀  in 𝑿𝑿 . The posterior distribution 𝑝𝑝(𝒘𝒘|𝒘𝒘� ,𝜶𝜶)  of the weights is 

obtainable by assigning a prior distribution 𝑝𝑝(𝒘𝒘|𝜶𝜶) to the objective weights 𝒘𝒘, which has a general set of parameters 𝜶𝜶. To 

allow the calculation of the posterior distribution in closed form, the prior distribution is selected as a conjugate prior of the 

likelihood. Since the likelihood is multinomial (Hastie et al., 2009, Clyde et al., 2001, Rubin, 1981), the prior distribution is a 

symmetric Dirichlet that has all parameters 𝜶𝜶 equal to 𝛼𝛼, i.e., 𝜶𝜶 = {𝛼𝛼, … ,𝛼𝛼}: 

 

 𝑝𝑝(𝒘𝒘|𝜶𝜶) = Dir(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|𝛼𝛼, … ,𝛼𝛼) = 1
B(𝜶𝜶)

∙ ∏ 𝑤𝑤𝑚𝑚
(𝛼𝛼−1)𝑀𝑀

𝑚𝑚=1 ,              (4) 

 

where B(𝜶𝜶) is the Beta function calculated on the 𝑀𝑀-dimensional vector 𝜶𝜶 = {𝛼𝛼, … ,𝛼𝛼}. With this position, the corresponding 

posterior distribution is a Dirichlet too: 

 

 𝑝𝑝(𝒘𝒘|𝒘𝒘� ,𝜶𝜶) = Dir(𝑤𝑤1 , … ,𝑤𝑤𝑀𝑀|𝛼𝛼 + 𝑀𝑀𝑤𝑤�1, … ,𝛼𝛼 + 𝑀𝑀𝑤𝑤�𝑀𝑀) = 1
B(𝛼𝛼+𝑀𝑀𝑤𝑤�1,…,𝛼𝛼+𝑀𝑀𝑤𝑤�𝑀𝑀)

∙ ∏ 𝑤𝑤𝑚𝑚
(𝛼𝛼+𝑀𝑀𝑤𝑤�𝑚𝑚−1)𝑀𝑀

𝑚𝑚=1 .     (5) 

 

If the prior is uninformative, as in (Hastie et al., 2009, Clyde et al., 2001, Rubin, 1981), 𝛼𝛼 = 0 and: 

 

𝑝𝑝(𝒘𝒘|𝒘𝒘� ,𝟎𝟎) = Dir(𝑤𝑤1 , … ,𝑤𝑤𝑀𝑀|𝑀𝑀𝑤𝑤�1, … ,𝑀𝑀𝑤𝑤�𝑀𝑀) = 1
B(𝑀𝑀𝑤𝑤�1,…,𝑀𝑀𝑤𝑤�𝑀𝑀)

∙ ∏ 𝑤𝑤𝑚𝑚
(𝑀𝑀𝑤𝑤�𝑚𝑚−1)𝑀𝑀

𝑚𝑚=1 ,         (6) 

 

which, for continuous variables, can be further and reasonably written as Dir(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|1, … ,1) since the observed rows 

𝒙𝒙1, … ,𝒙𝒙𝑀𝑀 likely have the probability 1/𝑀𝑀 to occur (i.e., only once in the entire dataset 𝑿𝑿) (Rubin et al., 1981). 

In Bayesian bootstrap, in summary, the distribution 𝑓𝑓𝒘𝒘 from which the weights 𝒘𝒘〈𝑟𝑟〉 are directly extracted is the 𝑀𝑀-variate 

flat Dirichlet distribution, i.e.:  

  

𝑓𝑓𝒘𝒘 = Dir(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|1, … ,1).                     (7) 
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Once the weights are extracted, the function 𝐺𝐺[∙] is applied to 𝐹𝐹〈1〉(𝒙𝒙), … ,𝐹𝐹〈𝑅𝑅〉(𝒙𝒙) given by (3), and the 𝑅𝑅-sample Bayesian 

bootstrap distribution 𝐺𝐺�𝐹𝐹〈1〉(𝒙𝒙)�, … ,𝐺𝐺[𝐹𝐹〈𝑅𝑅〉(𝒙𝒙)] is the output of the Bayesian bootstrap that gives an estimation 𝜑𝜑�(𝒙𝒙) of the 

target statistic. 

 

3. Applications of the Bayesian bootstrap to probabilistic models for PV power forecasting 

Traditional bootstrap is commonly applied in forecasting problems to generate probabilistic predictions or to characterize 

the uncertainty of predictive parameters (Hastie et al., 2009). In this paper, the Bayesian bootstrap is applied to three 

probabilistic forecasting models (LQR, GBRT and QRNN) to provide sample bootstrap distributions of the predictive quantiles 

of PV power. The models, selected from the literature, are purposely very heterogeneous by nature to evaluate the performance 

of the Bayesian bootstrap within different forecasting frameworks.  

The three probabilistic forecasting models are briefly recalled in the first part of this Section; then the role of Bayesian 

bootstrap in the forecasting system and a procedure to optimize the Bayesian-bootstrap-based predictions are detailed in the 

second part of this Section.   

 

3.1. Linear Quantile Regression model  

An LQR model allows estimating the cumulative distribution function of the PV power by means of a linear relationship 

between the power and informative predictors (Juban et al., 2016). The linear relationship is established between the predictive 

𝛼𝛼𝑞𝑞 -quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉  of PV power and the predictors 𝒛𝒛ℎ = {𝑧𝑧ℎ,1, … , 𝑧𝑧ℎ,𝑁𝑁}  through a set of model parameters 𝜷𝜷〈𝛼𝛼𝑞𝑞〉 =

�𝛽𝛽0
〈𝛼𝛼𝑞𝑞〉, … ,𝛽𝛽𝑁𝑁

〈𝛼𝛼𝑞𝑞〉� which have to be estimated. Both quantile and predictors refer to the time horizon ℎ, and the forecast lead 

time 𝑘𝑘 is assumed for predictors, i.e., their values are available at ℎ − 𝑘𝑘, that is the forecast origin. For ease of notation, in what 

follows the forecast lead time 𝑘𝑘 is not included in the symbols. The linear relationship imposed by a generic QR model is 

provided by: 

 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛ℎ  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉� = 𝛽𝛽0

〈𝛼𝛼𝑞𝑞〉 + ∑ 𝛽𝛽𝑛𝑛
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑧𝑧ℎ,𝑛𝑛

𝑁𝑁
𝑛𝑛=1  ,                (8) 

 

where the vector  𝜷𝜷〈𝛼𝛼𝑞𝑞〉 = �𝛽𝛽0
〈𝛼𝛼𝑞𝑞〉, … ,𝛽𝛽𝑁𝑁

〈𝛼𝛼𝑞𝑞〉� includes the 𝑁𝑁 + 1 parameters of the LQR model. The estimated values 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 of 

𝜷𝜷〈𝛼𝛼𝑞𝑞〉 derive from the model training obtained by the minimization of a proper score evaluated respect to a known data set (i.e., 

the supervised training set that includes 𝑀𝑀𝑡𝑡𝑟𝑟  training PV power samples 𝑷𝑷〈𝑡𝑡𝑟𝑟〉 = {𝑃𝑃𝑡𝑡 , 𝑡𝑡 ∈ Ω〈𝑡𝑡𝑟𝑟〉}  and the corresponding 

predictors 𝒁𝒁〈𝑡𝑡𝑟𝑟〉 = {𝒛𝒛𝑡𝑡 , 𝑡𝑡 ∈ Ω〈𝑡𝑡𝑟𝑟〉} . The Pinball Score (PS) is used for this purpose. PS is a score calculated on the training 

samples 𝑷𝑷〈𝑡𝑡𝑟𝑟〉 and on the corresponding 𝑀𝑀𝑡𝑡𝑟𝑟 𝛼𝛼𝑞𝑞-quantiles 𝑷𝑷〈𝑡𝑡𝑟𝑟〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑟𝑟〉 | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉� = �𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�, 𝑡𝑡 ∈ Ω〈𝑡𝑡𝑟𝑟〉� given by the 

LQR model: 

 

𝑃𝑃𝑃𝑃�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝑷𝑷〈𝑡𝑡𝑟𝑟〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑟𝑟〉 | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�� = 1

𝑀𝑀𝑡𝑡𝑟𝑟
∑ 𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡,𝑃𝑃𝑡𝑡

〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉��𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 =  

= 1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ �𝛼𝛼𝑞𝑞 − I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡 | 𝜷𝜷

〈𝛼𝛼𝑞𝑞〉��� ∙ �𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡 | 𝜷𝜷

〈𝛼𝛼𝑞𝑞〉��𝑡𝑡∈Ω〈𝑡𝑡𝑟𝑟〉 ,           (9) 

 

where I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡 | 𝜷𝜷

〈𝛼𝛼𝑞𝑞〉�� is the indicator function that depends on the condition in the brackets: 
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 I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡 | 𝜷𝜷

〈𝛼𝛼𝑞𝑞〉�� = �
1   if 𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡

〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡 | 𝜷𝜷
〈𝛼𝛼𝑞𝑞〉�

0   if 𝑃𝑃𝑡𝑡 > 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡 | 𝜷𝜷

〈𝛼𝛼𝑞𝑞〉�.
                   (10) 

 

The estimated parameter vector 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 is eventually given by: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = argmin
𝜷𝜷〈𝛼𝛼𝑞𝑞〉

 𝑃𝑃𝑃𝑃�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝑷𝑷〈𝑡𝑡𝑟𝑟〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑟𝑟〉 | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉��,               (11) 

 

i.e., it is a function of 𝑷𝑷〈𝑡𝑡𝑟𝑟〉 and 𝒁𝒁〈𝑡𝑡𝑟𝑟〉: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝒁𝒁〈𝑡𝑡𝑟𝑟〉�.                     (12) 

 

The LQR predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the time horizon ℎ, returned by using the estimated parameters, 

consequently depends on 𝑷𝑷〈𝑡𝑡𝑟𝑟〉 and 𝒁𝒁〈𝑡𝑡𝑟𝑟〉, too:  

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛ℎ | 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝒁𝒁〈𝑡𝑡𝑟𝑟〉�� = �̂�𝛽0

〈𝛼𝛼𝑞𝑞〉 + ∑ �̂�𝛽𝑛𝑛
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑧𝑧ℎ,𝑛𝑛

𝑁𝑁
𝑛𝑛=1 .               (13) 

 

3.2. Gradient Boosting Regression Trees  

GBRTs focus on the functional dependence 𝑓𝑓〈𝛼𝛼𝑞𝑞〉(∙) between the response variable (the predictive 𝛼𝛼𝑞𝑞-quantile of PV power)  

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 and the corresponding predictors 𝒛𝒛ℎ (Alexey and Alois, 2013, Friedman, 2002):  

 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑓𝑓〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ) .                       (14) 

 

Assuming 𝑓𝑓〈𝛼𝛼𝑞𝑞〉  to be unknown, the predictive 𝛼𝛼𝑞𝑞 -quantile of PV power depends on the function 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 , i.e., 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 =

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ|𝑓𝑓〈𝛼𝛼𝑞𝑞〉). An estimation 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 of 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 can be obtained by minimizing the PS over the training data (Alexey and Alois, 

2013, Friedman, 2002): 

 

𝑓𝑓〈𝛼𝛼𝑞𝑞〉 = argmin
𝑓𝑓〈𝛼𝛼𝑞𝑞〉

  𝑃𝑃𝑃𝑃�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝑷𝑷〈𝑡𝑡𝑟𝑟〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑟𝑟〉 | 𝑓𝑓〈𝛼𝛼𝑞𝑞〉�� .                    (15) 

 

The iterative procedure for solving (15) starts at iteration 𝑗𝑗 = 0 by initializing 𝑓𝑓〈0〉 at the constant value: 

 

𝑓𝑓〈0〉
〈𝛼𝛼𝑞𝑞〉 = 𝜌𝜌�〈0〉

〈𝛼𝛼𝑞𝑞〉 = argmin
𝜌𝜌

∑ 𝑃𝑃𝑃𝑃[𝑃𝑃𝑡𝑡 ,𝜌𝜌]𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 .                  (16) 
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The GBRT iterative procedure at the iteration 𝑗𝑗 > 0 uses gradient descent to create new learners and the new estimation is 

made through the negative gradient, that is the negative partial derivative of the PS loss function evaluated for the 𝑚𝑚th historical 

observation 𝑃𝑃𝑡𝑡: 

 

𝑔𝑔𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡) = −�

𝜕𝜕𝜕𝜕𝜕𝜕�𝜕𝜕𝑡𝑡,𝑓𝑓〈𝑗𝑗−1〉
〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)� 

𝜕𝜕𝑓𝑓〈𝑗𝑗−1〉
〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)

�
𝑓𝑓〈𝑗𝑗−1〉
〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)=�̂�𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)

�.                    (17) 

   

The weak learner to make predictions is a regression tree fitted on a random subsample extracted from the original data, 

using the negative gradients as response variables and the predictors as input variables. More specifically, the predicted value 

𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉 for the 𝑡𝑡th negative gradient, given the predictors 𝒛𝒛𝑡𝑡, can be written as: 

 

𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡) = ∑ �̅�𝑔〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 ∙ I�𝒛𝒛𝑡𝑡 ∈ ℛℓ〈𝑠𝑠〉�

𝜕𝜕
𝑠𝑠=1 ,                        (18) 

 

where �̅�𝑔〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 is the average of the negative gradient values contained in the 𝑠𝑠th leaf of the fitted tree, 𝑃𝑃 is the total number of 

leaves, ℛℓ〈𝑠𝑠〉 is the rectangular subspace domain corresponding to the 𝑠𝑠th terminal leaf ℓ〈𝑠𝑠〉. The indicator function assumes 

value 1 if predictors 𝒛𝒛𝑡𝑡 belong to the subspace ℛℓ〈𝑠𝑠〉 (or, equivalently, if predictors 𝒛𝒛𝑡𝑡 individuate the 𝑠𝑠th leaf on the fitted tree), 

and 0 otherwise. At the 𝑗𝑗th iteration, the updated weak learner is given by: 

  

𝑓𝑓〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 = 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 + 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,                           (19) 

 

where 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 is the gradient descent step size to update the estimate of 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 at the 𝑗𝑗th iteration. The gradient descent is obtained 

by adding the outcome of the regression tree, 𝜌𝜌 ∙ 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡),  to the previous estimate 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 , in order to get an improved estimate, 

i.e.:  

 

𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 = argmin

𝜌𝜌
∑ 𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 , 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡) + 𝜌𝜌 ∙ 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡)�𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 .                     (20) 

 

Since the value 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡) is constant in the terminal leaf individuated by 𝒛𝒛𝑡𝑡 (i.e., it is the average of the negative gradient 

values contained in the unique �̃�𝑠th leaf, ℓ〈�̃�𝑠(𝒛𝒛𝑡𝑡)〉, individuated by 𝒛𝒛𝑡𝑡),  the problem in (20) can be solved separately for each 𝑠𝑠th 

leaf subspace, yielding the simplified expression (Friedman, 2002, Buzna et al., 2020):  

 

𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 = argmin

𝜌𝜌
∑ �𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 , 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡) + 𝜌𝜌� ∙ I�𝒛𝒛𝑡𝑡 ∈ ℛℓ〈𝑠𝑠〉��𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 .                   (21) 

 

Hence, at the 𝑗𝑗th iteration, the updated weak learner can be expressed as: 

  



8 
 

𝑓𝑓〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 = 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 + 𝜐𝜐 ∙ ∑ 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 ∙ I�𝒛𝒛𝑡𝑡 ∈ ℛℓ〈𝑠𝑠〉�

𝜕𝜕
𝑠𝑠=1 ,                      (22) 

 

where 𝜐𝜐 is the weight of each learner (called shrinkage or leaning rate), whose value is strictly related to the optimal number 

of iterations (R gbm package, 2020) since smaller values involve more iterations and usually more skilled forecasts (Persson et 

al., 2015).  

An ending condition for the iterative procedure is reaching values of 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 smaller than a given threshold. Assuming that 

this is obtained at the iteration 𝚥𝚥,̅ the prediction is: 

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ|𝑓𝑓〈�̅�𝚥〉

〈𝛼𝛼𝑞𝑞〉) = 𝑓𝑓〈�̅�𝚥〉
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ) ,                     (23) 

 

and, since it is easy to verify that 𝑓𝑓〈�̅�𝚥〉
〈𝛼𝛼𝑞𝑞〉 is estimated upon training data 𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝒁𝒁〈𝑡𝑡𝑟𝑟〉, the GBRT predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉 of 

PV power for the time horizon ℎ, it consequently depends on 𝑷𝑷〈𝑡𝑡𝑟𝑟〉 and 𝒁𝒁〈𝑡𝑡𝑟𝑟〉, too:  

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 �𝒛𝒛ℎ | 𝑓𝑓〈�̅�𝚥〉

〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝒁𝒁〈𝑡𝑡𝑟𝑟〉�� = 𝑓𝑓〈�̅�𝚥〉
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ).                  (24) 

 

Note that the application of the gradient descent to search for the PS minimum (15) may lead to a local minimum. This 

notable drawback of the GBRT is typically solved through stochastic gradient descend or by bootstrapping. Bayesian bootstrap 

intrinsically mitigates this problem, as several replicates of the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power will be considered to 

build the final forecast, as it will be described in Section 3.4.  

 

3.3. Quantile Regression Neural Network  

QRNN exploits a neural network to generate predictive quantiles of PV power. It estimates conditional quantiles for 

specified values of quantile probability using regression equations and reproducing the behavior of the human brain to discern 

among the informative inputs and to produce an output. An efficient approach is the Monotone Composite Quantile Regression 

Neural Network (MCQRNN) proposed in (Cannon, 2018) which is based on the Multi-Layer Perceptron (MLP) neural network 

with partial monotonicity. It assumes the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power coming from a weighted combination of 𝐿𝐿 

hidden layer outputs:  

 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ|𝝑𝝑〈𝛼𝛼𝑞𝑞〉) = ∑ �Φ �∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝑒𝑒

𝛾𝛾𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ1 + ∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝛾𝛾𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ2 + 𝜏𝜏𝑙𝑙
〈𝛼𝛼𝑞𝑞〉� ∙ 𝑒𝑒𝜇𝜇𝑙𝑙

〈𝛼𝛼𝑞𝑞〉
�𝐿𝐿

𝑙𝑙=1 + 𝜀𝜀〈𝛼𝛼𝑞𝑞〉,           (25) 

 

where Φ(∙) is the function applied by each of the 𝐿𝐿 neurons in the network hidden layer (in this paper, the hyperbolic tangent 

function), Ξ1 is the set of indices for predictors monotonically increasing with the predictors, Ξ2 is the corresponding set of 

indices for predictors. Ξ2  does not have monotonicity constraints (note that 𝒛𝒛ℎ = {𝑧𝑧ℎ,𝑐𝑐, 𝑐𝑐 ∈ Ξ1} ∪ {𝑧𝑧ℎ,𝑐𝑐, 𝑐𝑐 ∈ Ξ2} ), 

𝜸𝜸1
〈𝛼𝛼𝑞𝑞〉, … ,𝜸𝜸𝐿𝐿

〈𝛼𝛼𝑞𝑞〉, 𝝁𝝁〈𝛼𝛼𝑞𝑞〉 = {𝜇𝜇1
〈𝛼𝛼𝑞𝑞〉, … , 𝜇𝜇𝐿𝐿

〈𝛼𝛼𝑞𝑞〉}, 𝝉𝝉〈𝛼𝛼𝑞𝑞〉 = {𝜏𝜏1
〈𝛼𝛼𝑞𝑞〉, … , 𝜏𝜏𝐿𝐿

〈𝛼𝛼𝑞𝑞〉}, and 𝜀𝜀〈𝛼𝛼𝑞𝑞〉 are the parameters (all included in the vector 𝝑𝝑〈𝛼𝛼𝑞𝑞〉, 

for clarity of representation) of the QRNN.  
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These parameters are once again estimated by minimizing the PS over a training dataset [27], i.e., by solving the following 

constrained optimization problem: 

 

𝝑𝝑�〈𝛼𝛼𝑞𝑞〉  = argmin
𝝑𝝑〈𝛼𝛼𝑞𝑞〉

∑ 𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 ,𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,  

s.t. 𝜕𝜕𝜕𝜕𝑡𝑡
〈𝛼𝛼𝑞𝑞〉

𝜕𝜕𝑧𝑧𝑡𝑡,𝑐𝑐
≥ 0,     ∀𝑐𝑐 ∈ Ξ1.                     (26) 

 

It is easy to verify that parameters 𝝑𝝑�〈𝛼𝛼𝑞𝑞〉 are estimated upon training data 𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝒁𝒁〈𝑡𝑡𝑟𝑟〉. The QRNN predictive 𝛼𝛼𝑞𝑞-quantile 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the time horizon ℎ consequently depends on 𝑷𝑷〈𝑡𝑡𝑟𝑟〉 and 𝒁𝒁〈𝑡𝑡𝑟𝑟〉, too:  

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛ℎ | 𝝑𝝑�〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑟𝑟〉,𝒁𝒁〈𝑡𝑡𝑟𝑟〉�� = ∑ �Φ�∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝑒𝑒

𝛾𝛾�𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ1 + ∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝛾𝛾�𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ2 + �̂�𝜏𝑙𝑙
〈𝛼𝛼𝑞𝑞〉� ∙ 𝑒𝑒𝜇𝜇�𝑙𝑙

〈𝛼𝛼𝑞𝑞〉
�𝐿𝐿

𝑙𝑙=1 + 𝜀𝜀̂〈𝛼𝛼𝑞𝑞〉.    (27) 

 

3.4. The role of the Bayesian bootstrap in the probabilistic forecasting system 

As discussed above, in either the LQR, the GBRT or the QRNN the 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the target horizon ℎ 

can be viewed as a function of the predictors 𝒛𝒛 and of the PV power 𝑷𝑷. In this sense, the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV 

power for the target horizon, ℎ can be viewed as a function of the training data  𝒀𝒀〈𝑡𝑡𝑟𝑟〉 = [𝑷𝑷〈𝑡𝑡𝑟𝑟〉 𝒁𝒁〈𝑡𝑡𝑟𝑟〉], and thus it can be viewed 

as a target statistic calculated on 𝑀𝑀𝑡𝑡𝑟𝑟  variables, with occurrences contained in 𝒀𝒀〈𝑡𝑡𝑟𝑟〉 . Therefore, the Bayesian bootstrap 

presented in Section 2 can be directly applied to evaluate the sample Bayesian bootstrap distribution of the predictive 𝛼𝛼𝑞𝑞-

quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power, with the following correspondences: 

 

𝒙𝒙 = 𝒚𝒚 = [𝑷𝑷 𝒛𝒛],   𝑿𝑿 = 𝒀𝒀〈𝑡𝑡𝑟𝑟〉 = [𝑷𝑷〈𝑡𝑡𝑟𝑟〉 𝒁𝒁〈𝑡𝑡𝑟𝑟〉], 

𝜑𝜑(𝒙𝒙) = 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉(𝒚𝒚),  𝜑𝜑�(𝒙𝒙) = 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉�𝒀𝒀〈𝑡𝑡𝑟𝑟〉�,                 (28) 

𝑀𝑀 = 𝑀𝑀𝑡𝑡𝑟𝑟,                    𝑁𝑁𝑏𝑏 = 𝑁𝑁 + 1. 

 

The sample Bayesian bootstrap distribution is constituted by 𝑅𝑅 replicates of the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power, 

i.e., 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 = {𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,1〉, … ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞,𝑅𝑅〉}. The necessary steps to calculate them are hereby summarized: 

1) 𝑅𝑅 weight samples 𝒘𝒘〈1〉, … ,𝒘𝒘〈𝑅𝑅〉 are independently drawn from distribution (7); 

2) 𝐹𝐹〈1〉(𝒙𝒙), … ,𝐹𝐹〈𝑅𝑅〉(𝒙𝒙) are calculated by applying (2); 

3) 𝐺𝐺�𝐹𝐹〈1〉(𝒙𝒙)�, … ,𝐺𝐺[𝐹𝐹〈𝑅𝑅〉(𝒙𝒙)] are calculated by applying either (11)-(13) for the LQR, (20)-(24) for the GBRT, or (26)-(27) 

for the QRNN; 

4) 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞,𝑟𝑟〉 = 𝐺𝐺�𝐹𝐹〈𝑟𝑟〉(𝒙𝒙)� for 𝑟𝑟 = 1, . . . ,𝑅𝑅. 

It is worth noting that the application of the Bayesian bootstrap to the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power is a specific 

contribution of this research, since bootstrapping techniques are typically applied to the parameters of the underlying models 

rather than on the target variable. With the proposed approach there is no need to pass through the sample bootstrap distributions 
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of the parameters since the sample Bayesian bootstrap distribution of the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power is directly 

provided, thus reducing the overall computational effort which is particularly important in short-term forecasting.   

 

3.5. Optimizing the Bayesian-bootstrap-based predictions 

Dealing with a sample bootstrap distribution of predictive quantiles may be not friendly for system operators, who are the 

recipients of the PV power forecasts and are usually unaware of the statistical background behind the predictions. Also, most 

of the probabilistic decision-making tools in power systems accept input probabilistic forecasts of PV power given either in 

terms of predictive distribution or in terms of a set of predictive quantiles (Lauret et al, 2019, Van der Meer et al., 2018). For 

this reason, two procedures to extract an optimal predictive quantile from the sample Bayesian bootstrap distribution are 

presented in this paper, in order to put the forecasting system in line with the needs of operators and practitioners. 

The first procedure, called Sample Mean Bayesian Bootstrap (SM-BB), is quite naïve and it simply consists of picking the 

sample mean from the sample Bayesian bootstrap distribution 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 as the optimal predictive 𝛼𝛼𝑞𝑞-quantile of PV power 𝑃𝑃�ℎ

′〈𝛼𝛼𝑞𝑞〉 

for the target horizon ℎ, i.e.: 

 

𝑃𝑃�ℎ
′〈𝛼𝛼𝑞𝑞〉 = 1

𝑅𝑅
∑ 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,𝑟𝑟〉𝑅𝑅
𝑟𝑟=1 .                      (29) 

 

The sample mean performs well in most scenarios; moreover, it does not exactly require a rigorous “optimization. 

The second procedure, called Optimal Quantile Bayesian Bootstrap (OQ-BB), consists of picking a sample quantile from 

the sample Bayesian bootstrap distribution 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 as the optimal predictive 𝛼𝛼𝑞𝑞-quantile of PV power 𝑃𝑃�ℎ

′〈𝛼𝛼𝑞𝑞〉 for the target horizon 

ℎ, i.e.: 

 

𝑃𝑃�ℎ
′〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉,                       (30) 

 

where 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉 is the value that is smaller than a 𝜎𝜎∗ fraction of the samples in 𝑷𝑷�ℎ

〈𝛼𝛼𝑞𝑞〉 or, equivalently, 100 ∙ (1 − 𝜎𝜎∗)% of the 

samples in 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 are greater than 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉. The fraction 𝜎𝜎∗ is the result of an optimization problem that minimizes the PS over 

a validation dataset with indices Ω〈𝑣𝑣𝑣𝑣〉 (this validation dataset may or may not have overlaps with the training dataset; the latter 

option is preferable). It is: 

 

𝜎𝜎∗ = argmin
𝜎𝜎

∑ �𝛼𝛼𝑞𝑞 − I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉�� ∙ �𝑃𝑃𝑡𝑡 − 𝑃𝑃�𝑡𝑡

〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉�𝑡𝑡∈Ω〈𝑣𝑣𝑣𝑣〉 ,             (31) 

 

with 𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉 = inf {𝑃𝑃�𝑡𝑡

〈𝛼𝛼𝑞𝑞,𝑟𝑟〉 ∈ 𝑷𝑷�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉 ∶ 𝐹𝐹�𝐵𝐵𝐵𝐵,𝑡𝑡

〈𝛼𝛼𝑞𝑞〉 �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞,𝑟𝑟〉� ≥ 𝜎𝜎} , and 𝐹𝐹�𝐵𝐵𝐵𝐵,𝑡𝑡

〈𝛼𝛼𝑞𝑞〉  is the cumulative distribution obtained from the 

sample Bayesian bootstrap distribution of the predictive 𝛼𝛼𝑞𝑞-quantile of PV power at time 𝑡𝑡. 

 

3.6. Hints on the selection of the size of the sample Bayesian bootstrap distribution 

The size 𝑅𝑅 of the sample bootstrap distribution has an impact on the overall performance of the forecasting system. This 

topic has been discussed extensively in the literature on the traditional bootstrap framework, but there is no general agreement 
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about how the sample size should be arranged with respect to the number of available data 𝑀𝑀. Optimizing 𝑅𝑅 through a random 

search upon a validation set is, in general, a good practice and this should also be valid for the Bayesian bootstrap; theoretically, 

there are no boundaries in which the optimal 𝑅𝑅 should be searched. However, there are some practical limitations:  

1) the Bayesian bootstrap is originally applied in this paper to a particular statistic, i.e., the predictive quantile of PV power, 

and therefore the function 𝐺𝐺[∙] intrinsically contains the formulation of the training procedure of the probabilistic forecasting 

model. For models that require a non-trivial solution of the training procedure (as in the case of the GBRT and QRNN), 

increasing 𝑅𝑅 determines an increased computational complexity that is not in line with some short-term forecasting lead times 

using standard workstations; 

2) increasing 𝑅𝑅 does not necessarily increase the performance of the forecasts. We found in our numerical experiments that 

optimal values for 𝑅𝑅 are across a 1:100 ratio between 𝑅𝑅 and 𝑀𝑀, as performance deteriorates with greater 𝑅𝑅. 

For these reasons, the search for the optimal 𝑅𝑅 is performed within this range.     

 

4. Background of the performance assessment 

The performance of Bayesian bootstrap in probabilistic PV power forecasting is assessed in a wide comparative framework. 

Several benchmarks and error indices and scores, presented in this Section, are exploited for this assessment. 

 

4.1. Benchmarks 

Several benchmarks are discussed in this paper to compare the outcomes of the Bayesian-bootstrap-based forecasts and to 

highlight the pros and cons with respect to existing literature.  

The first group of benchmarks aims at evaluating how the Bayesian bootstrap performs with reference to the traditional 

bootstrap. This group, therefore, includes three forecasting systems (LQR-TB, GBRT-TB, and QRNN-TB) that apply the 

traditional bootstrap to build the sample traditional bootstrap distribution of the predictive quantiles of PV power, respectively 

applying an LQR, a GBRT and a QRNN model. The extraction of the optimal prediction from the traditional bootstrap 

distribution is performed applying the SM and the OQ procedures, as described in Section 3.5 for the Bayesian bootstrap. 

Therefore, the only difference with the presented Bayesian-bootstrap forecasts consists of the different bootstrap procedure 

applied in the first place.  

The second group of benchmarks aims at evaluating if, in general, the bootstrap increases the performance or not. This 

group, therefore, includes three forecasting systems (LQR-NB, GBRT-NB, and QRNN-NB) that directly predict the quantiles 

of PV power, respectively applying an LQR, a GBRT and a QRNN model, without any bootstrap.  

The third group of benchmarks is instead based on persistence models, and they are provided as an unbiased reference for 

the performance evaluation. This group includes two benchmarks: the PM1 that assumes the predictive quantiles for the target 

horizon equal to the last observed PV power, i.e.: 

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃ℎ−𝑘𝑘,   ∀𝑞𝑞 = 1, … ,𝑄𝑄,                  (32) 

 

and the PM2 that assumes the predictive quantiles for the target horizon equal to the PV power observed in the same time slot 

of the day before, as in the smart persistence framework. For an hourly time resolution, e.g., the PM2 returns: 
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𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃ℎ−24,  ∀𝑞𝑞 = 1, … ,𝑄𝑄.                  (33) 

 

4.2. Probabilistic error indices and scores  

In this paper, three error indices are used to compare the accuracy of the proposed forecasting method with the other methods 

which have been used as benchmarks. In what follows, the definition of the PS metric is first recalled (Lauret et al., 2019). 

Then, the Average Absolute Coverage Error (AACE) and the Prediction Intervals Normalized Width (PINAW) are briefly 

introduced.  

 

A. Pinball score 

PS allows addressing the accuracy of the prediction by evaluating, at the same time, the reliability and the sharpness of the 

forecasted values (Bracale et al., 2016, Gneiting and Raftery, 2007). It is used in all the three considered models as the loss 

function to be minimized to train the corresponding parameters as it is a negatively oriented error measure (i.e., a smaller PS 

indicates a better forecast performance). It is here recalled that PS is defined as: 

 

𝑃𝑃𝑃𝑃 �𝑃𝑃ℎ ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� = �𝛼𝛼𝑞𝑞 − I �𝑃𝑃ℎ ≤ 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉�� ∙ �𝑃𝑃ℎ − 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�.               (34) 

 

To obtain a measure of the forecast performance in a comprehensive manner, the value of PS can be evaluated by averaging 

the values it assumes across multiple forecast issues and summing over the 𝑄𝑄  quantiles. In the numerical experiments, a 

normalized version of the PS is used for evaluating performance in the test period. The Normalized Pinball Score (NPS) is: 

 

𝑁𝑁𝑃𝑃𝑃𝑃 �𝑃𝑃ℎ ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� =

𝜕𝜕𝜕𝜕�𝜕𝜕ℎ,𝜕𝜕�ℎ
〈𝛼𝛼𝑞𝑞〉�

𝑃𝑃�rated
,                           (35) 

 

where 𝑃𝑃�rated is the rated power of the PV system.   

 

B. Average Absolute Coverage Error 

The AACE is used to assess the reliability of the forecasting method, by quantifying the difference of the predicted values 

and the nominal coverages of the predictive quantiles (Alfieri and De Falco, 2020). AACE can only be formulated for multiple 

forecast issues. For a test set with indices Ω〈𝑡𝑡𝑡𝑡〉, the estimated 𝛼𝛼𝑞𝑞-coverage 𝛼𝛼�𝑞𝑞 is provided by: 

 

𝛼𝛼�𝑞𝑞 = 1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ I �𝑃𝑃𝑡𝑡,𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,                    (36) 

 

with 𝑀𝑀𝑡𝑡𝑡𝑡 the size of the considered test set. The absolute coverage error on the nominal 𝛼𝛼𝑞𝑞-quantile, 𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉, is defined as: 

 

𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉 = �𝛼𝛼𝑞𝑞 − 𝛼𝛼�𝑞𝑞�.                      (37) 

 

and the percentage value of AACE, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴%, across the 𝑄𝑄 coverages can be easily derived as a percentage value of 𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉, as: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴% = 100
𝑄𝑄
∙ ∑ 𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉𝑄𝑄

𝑞𝑞=1 .                       (38) 

 

AACE is a negatively oriented metric, i.e., smaller is the value it assumes, more reliable is the forecast method. 

 

C. Prediction intervals normalized width 

 The PINAW is used to assess the sharpness of the forecasting method, by quantifying the width of the prediction intervals 

(Alfieri and De Falco, 2020). It is a property of the forecast by itself, so this index is not calculated considering the actual PV 

power outcomes. For a test set of size 𝑀𝑀𝑡𝑡𝑡𝑡 with indices Ω〈𝑡𝑡𝑡𝑡〉, the PINAW at the nominal prediction interval rate 𝜆𝜆 is: 

 

𝑃𝑃𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃𝜆𝜆 = 1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ 𝑃𝑃�𝑡𝑡
〈0.5+𝜆𝜆/2〉−𝑃𝑃�𝑡𝑡

〈0.5−𝜆𝜆/2〉

𝜕𝜕�rated𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,                 (39) 

 

PINAW is a negatively oriented metric, i.e., smaller is the value it assumes, sharper are the forecasts. 

 

5. Numerical experiments 

Bayesian bootstrap in probabilistic PV power forecasting is evaluated on an actual PV dataset collected at HEIG-VD, 

Switzerland (ReIne Lab (Carpita et al., 2019) from 12 roof-top PV panels with a-Si/𝜇𝜇C-Si dual junction technology. For each 

panel, the stable peak power, at maximum power point (MPP) is 𝑃𝑃𝑀𝑀𝜕𝜕𝜕𝜕 = 100 𝑃𝑃. The PV panels are connected to the AC grid 

through a 1.3 kW AC/DC inverter. The data set includes both the electrical system and meteorological data collected at every 

one minute. The electrical system data set composed of the measurements of voltage, current and power on DC side of the 

inverter (i.e., output of the PV panels). The meteorological data set composed of all the relevant weather measurements such 

as global, direct and diffuse irradiations, wind speed and wind direction, wind speed, external temperature, humidity, pressure, 

etc. Figure 1 shows the PV panels as well as some of weather measurement devices. 

  
Fig. 1 – PV system and measurement setup at HEIG-VD, Switzerland. 
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The NWPs used in the experiments are taken from the European Centre for Medium-range Weather Forecast (ECMWF) 

(ECMWF website, 2020). All the NWPs belong to the midnight run, i.e., they are issued at midnight and cover the 24 hours of 

the following day. 

All the data are averaged to obtain an hourly time resolution. They are normalized to their respective minimum and 

maximum values to be processed by the forecasting models. 

Data are stored from February 1, 2016 to November 30, 2018, for a total number of 24816 occurrences. In these experiments, 

the training set covers until January 31, 2018 and it is Ω〈𝑡𝑡𝑟𝑟〉 = {𝑡𝑡: 1 ≤ 𝑡𝑡 ≤ 17544}, whereas the test set covers the remaining 

months in 2018 and is Ω〈𝑡𝑡𝑡𝑡〉 = {𝑡𝑡: 17545 ≤ 𝑡𝑡 ≤ 24816}. The validation set Ω〈𝑣𝑣𝑣𝑣〉 used in the OQ-BB procedure to optimize 

the extraction of the final prediction from the sample Bayesian bootstrap distribution is applied on a rolling monthly window: 

for example, the validation set Ω〈𝑣𝑣𝑣𝑣〉 = {𝑡𝑡: 16801 ≤ 𝑡𝑡 ≤ 17544} that corresponds to data in January 2018 is used to optimize 

the extraction of the final prediction for February 2018, the validation set Ω〈𝑣𝑣𝑣𝑣〉 = {𝑡𝑡: 17545 ≤ 𝑡𝑡 ≤ 18264} that corresponds 

to data in February 2018 is used to optimize the extraction of the final prediction for March 2018, and so on.  

The 1-hour-ahead probabilistic forecasts are generated by 𝑄𝑄 = 19 predictive quantiles at nominal coverages 𝛼𝛼1, … ,𝛼𝛼19 =

0.05,0.10, … ,0.90,0.95. For the considerations in Section 3.6, the sample size of the Bayesian bootstrap distribution is 𝑅𝑅 =

100 and is kept at this value for all the experiments. All forecasts are generated using an i7-6700HQ CPU @2.60GHz equipped 

with 16 GB RAM in R, with the packages bayesboot (R bayesboot package, 2018), quantreg (R quantreg package, 2020), qrnn 

(R qrnn package, 2019)  and gbm (R gbm package, 2020). In any case, the time required to generate forecasts was in line with 

the requirements driven by the 1-hour lead time. 

Table I shows the NPS, the AACE and the PINAW obtained using the Bayesian-bootstrap-based forecasting systems and 

the benchmarks, averaged across the test set. Bold values in Table I indicate the best performance for each model family.  

The application of the Bayesian bootstrap to either LQR, GBRT or QRNN allows increasing the skill of the forecasts, as 

the NPS are the smallest in the three cases. In particular, the OQ-BB procedure always outperforms the SM-BB procedure, 

suggesting that the optimization of the quantile extraction is mandatory to pick the best from the Bayesian bootstrap samples.  

 
Table I. Performance of the probabilistic forecasts averaged across the test set. Bold values indicate the best performance for each model family. 

Model 
family Bootstrap Forecasting 

system 
Error score/index 

NPS [-] AACE [%] PINAW10 [-] PINAW90 [-] 

LQR 

Bayesian 
LQR-SM-BB 0.184 2.89 0.713 11.637 
LQR-OQ-BB 0.183 1.42 0.632 11.980 

Traditional 
LQR-SM-TB 0.184 2.79 0.699 12.012 
LQR-OQ-TB 0.184 2.09 0.675 12.365 

None LQR-NB 0.186 2.99 0.749 12.312 

GBRT 

Bayesian 
GBRT-SM-BB 0.188 3.91 0.560 7.938 
GBRT-OQ-BB 0.185 0.97 0.675 11.481 

Traditional 
GBRT-SM-TB 0.192 3.10 0.684 8.289 
GBRT-OQ-TB 0.190 1.23 0.731 11.705 

None GBRT-NB 0.194 4.11 0.830 12.172 

QRNN 

Bayesian 
QRNN-SM-BB 0.188 3.64 0.797 7.135 
QRNN-OQ-BB 0.186 2.02 0.716 10.200 

Traditional 
QRNN-SM-TB 0.187 3.89 0.831 7.427 
QRNN-OQ-TB 0.186 2.08 0.782 8.985 

None QRNN-NB 0.189 3.68 0.827 7.461 
PM1 0.522 - - - 
PM2 0.595 - - - 
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The NPS improvements brought by the Bayesian bootstrap, with respect to the traditional bootstrap, are about 0.5%, and 

2.7% on the LQR and GBRT, respectively; there is no improvement instead on the QRNN. Compared to the rough application 

of the underlying probabilistic models, the Bayesian bootstrap allows reducing the NPS by about 1.1%, 4.7% and 1.6%. The 

NPS of the OQ-BB procedure is roughly one third of the NPS of the PM1 and PM2 benchmarks. 

It is also important to observe that the Bayesian bootstrap returns the most reliable forecasts, as the LQR-OQ-BB, GBRT-

OQ-BB, and QRNN-OQ-BB forecasting systems generate the smallest AACE index, which notably drops below 1% for the 

GBRT case. The LQR-OQ-TB, GBRT-OQ-TB, and QRNN-OQ-TB forecasting systems show also small AACE indices, 

denoting once again that the OQ procedure is significant for the performance of the predictions.  

With reference to the sharpness, the Bayesian bootstrap returns also the forecasts with the smallest PINAW indices, although 

this is mostly achieved by the SM-BB procedure which, in turn, is less reliable. This, however, is not surprising, as reliability 

and sharpness are typically in contrast to each other [29]. Nevertheless, the PINAW of the LQR-OQ-BB, GBRT-OQ-BB, and 

QRNN-OQ-BB forecasting systems are in line with those of the benchmarks, suggesting that the increased reliability does not 

make the forecast unnecessarily less sharp.   

The reliability diagrams are shown for the LQR-OQ-BB, the GBRT-OQ-BB and the QRNN-OQ-BB in Figure 2(a), 2(b) 

and 2(c), respectively. The graphical inspection of the reliability diagrams denotes that forecasts are calibrated, as the estimated 

coverages tend to lie along the bisector curve. GBRT-OQ-BB forecasts only marginally deviate from the ideality, as confirmed 

by the smallest AACE index (0.97%) reported in Table I.  

 
Fig. 2 – Reliability diagrams of the LQR-OQ-BB forecasts (a), GBRT-OQ-BB forecasts (b), and QRNN-OQ-BB forecasts (c). 

 

LQR-OQ-BB forecasts, GBRT-OQ-BB forecasts and QRNN-OQ-BB forecasts during the first two weeks of the test period 

are plotted versus time and compared to the actual PV power in Figure 3(a), 3(b) and 3(c), respectively. Figures show similar 

behaviors of the forecast versus time and demonstrate the effectiveness of the proposed approach with values of the prediction 

intervals that, in most cases, include the actual PV power.  
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Fig. 3 – LQR-OQ-BB forecasts (a), GBRT-OQ-BB forecasts (b), and QRNN-OQ-BB forecasts (c) during the first two weeks of the test period. 

 

6. Conclusions 

This paper addresses Bayesian bootstrap in real-time probabilistic PV power forecasting. Three forecasting systems based 
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in increasing the skill of predictions. The Bayesian bootstrap is arranged in the forecasting systems in order to directly address 

the predictive PV power quantiles rather than the model parameters, thus allowing for a direct estimation of the target variable. 

A dedicated procedure for the extraction of the optimal sample quantile from the sample Bayesian bootstrap distribution is also 

prepared, and it proves to be significant in the overall improvement of the forecast skill.  

Several benchmarks and error indices are used to assess the Bayesian bootstrap in probabilistic PV power forecasting. The 

systems are tested on an actual PV dataset. The results of the numerical experiments show that the Bayesian bootstrap is 

effective in adding skill to the final predictions, whatever the underlying probabilistic forecasting model is considered. 

Combined with the OQ procedure for the optimal quantile extraction, the Bayesian bootstrap reduces the NPS up to 2.7% with 

respect to the traditional bootstrap and up to 4.7% with respect to the rough application of the underlying probabilistic models, 

with excellent reliability and good sharpness of the probabilistic predictions.  

Future research may address the inclusion of Bayesian bootstrap in other probabilistic energy forecasting systems or the 

development of new frameworks for the Bayesian bootstrap formulation.  

 

Acknowledgment 

This research was supported through the ERA-NET Smart Energy Systems Regsys joint program 2019 in the frame of the 

project “DiGRiFlex-Real time Distribution GRid control and Flexibility provision under uncertainties.” 

 

Declaration of competing interests 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared 

to influence the work reported in this paper. 

 

References 

Alexey, N., Alois, K., 2013. Gradient boosting machines, a tutorial. Frontiers Neurorobot. 7. 

Alfieri, L., De Falco, P., 2020. Wavelet-based decompositions in probabilistic load forecasting. IEEE Trans. Smart Grid 11(2), 

1367-1376. 

Almeida, M.P., Perpiñán, O., Narvarte, L., 2015. PV power forecast using a nonparametric PV model. Solar Energy 115, 354-

368. 

Bessa, R.J., et al., 2017. Towards improved understanding of the applicability of uncertainty forecasts in the electric power 

industry. Energies 10, 1402. 

Bozorg, M., et al., 2020. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting. J. Protect. 

Control Modern Power Syst. 5(1), 1-12. 

Bracale, A., Carpinelli, G., De Falco, P., 2016. A probabilistic competitive ensemble method for short-term photovoltaic power 

forecasting. IEEE Trans. Sustain. Energy 8(2), 551-560. 

Buzna, L., et al., 2020. Hierarchical probabilistic electric vehicle load forecasting. Submitted to Appl. Energy. 

Cannon, A.J., 2018. Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, 

with application to rainfall extremes. Stoch. Environm. Res. Risk Assess. 32(11), 3207-3225. 

Carpita, M., et al., 2019. ReIne, a flexible laboratory for emulating and testing the Distribution grid. 21st Europ. Conf. Power 

Electron. Appl. (EPE'19 ECCE Europe), Genova, Italy, 1-6. 



18 
 

Chu, Y., Li, M., Pedro, H.T.C., Coimbra, C.F.M., 2015. Real-time prediction intervals for intra-hour DNI forecasts, Renew. 

Energy 83, 234-244. 

Clyde, M.A., and Lee, H.K.H., 2001. Bagging and the Bayesian bootstrap. Artificial Intelligence and Statistics, eds. Richardson, 

T. & Jaakkola, T. New York: Elsevier, 169-174. 

Doubleday, K., Jascourt, S., Kleiber, W., Hodge, B., 2020. Probabilistic solar power forecasting using Bayesian model 

averaging. IEEE Trans. Sustain. Energy, in press. 

ECMWF website, 2020. European Centre for Medium-range Weather Forecasts. Available online: https://www.ecmwf.int/ 

(Accessed on October 1 2020).  

Fernandez-Jimenez, L.A., et al., 2017. Day-ahead probabilistic photovoltaic power forecasting models based on quantile 

regression neural networks. 2017 Europ. Conf. Electr. Eng. Comp. Sci. (EECS 2017), Bern, Switzerland, 89-294. 

Friedman, J., 2002. Stochastic gradient boosting. Comput. Statist. Data Analysis 38(4), 367-378. 

Gneiting, T, Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. J. Am. Statist. Assoc. 102(477), 359-

378. 

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: Data mining, inference, and prediction, 2nd 

edition. Springer Series in Statistics. 

Hong, T., et al., 2016. Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. Int. J. Forecast 

32(3), 896-913. 

Juban, R., Ohlsson, H., Maasoumy, M., Poirier, L., Zico Kolter, J., 2016. A multiple quantile regression approach to the wind, 

solar, and price tracks of GEFCom2014. Int. J. Forecast. 32(3), 1094-1102. 

La Salle, J.L.G., Badosa, J., David, M., Pinson, P., Lauret, P., 2020. Added-value of ensemble prediction system on the quality 

of solar irradiance probabilistic forecasts. Renew. Energy, in press. 

Lauret, P., David, M., Pedro, H.T.C., 2017. Probabilistic solar forecasting using quantile regression models Energies 10, 1591. 

Lauret, P., David, M., Pinson, P., 2019. Verification of solar irradiance probabilistic forecasts. Solar Energy 194, 254-271. 

Lee, H., Lee, B., 2019. Confidence-aware deep learning forecasting system for daily solar irradiance. IET Renew. Power Gen. 

13(10), 1681-1689. 

Pedro, H.T.C., Coimbra, C.F.M., David, M., Lauret, P., 2018. Assessment of machine learning techniques for deterministic 

and probabilistic intra-hour solar forecasts. Renew. Energy 123, 191-203. 

Persson, C., Bacher, P., Shiga, T., Madsen, H., 2015. Multi-site solar power forecasting using gradient boosted regression trees. 

Solar Energy 150, 423-436. 

R bayesboot package, 2018. An implementation of Rubin’s (1981) Bayesian bootstrap. Available online: https://CRAN.R-

project.org/package=bayesboot (Accessed on October 1 2020). 

R gbm package, 2020. Generalized boosted regression models. Available online: https://CRAN.R-project.org/package=gbm 

(Accessed on October 1 2020). 

R qrnn package, 2019. Quantile regression neural network. Available online: https://CRAN.R-project.org/package=qrnn 

(Accessed on October 1 2020). 

R quantreg package, 2020. Quantile regression. Available online: https://CRAN.R-project.org/package=quantreg (Accessed 

on October 1 2020). 

Ren, Y., Suganthan, P.N., Srikanth, N., 2015. Ensemble methods for wind and solar power forecasting—A state-of-the-art 

review. Renew. Sustain. Energy Rev. 50, 82-91. 

https://cran.r-project.org/package=gbm


19 
 

Rubin, D.B., 1981. The Bayesian bootstrap. Annals Statist. 9(1), 130-134. 

Van der Meer, D.W., Widén, J., Munkhammar, J., 2018. Review on probabilistic forecasting of photovoltaic power production 

and electricity consumption. Renew. Sustain. Energy Rev. 81, 1484-1512. 

Vergura, S., Vacca, F., 2009. Bootstrap technique for analyzing energy data from PV plant. 2009 Int. Conf. Clean Electr. Power 

(ICCEP 2009), Capri, Italy, 268-275. 

Voyant, C., et al., 2017. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 105, 569-582. 

Voyant, C., et al., 2018. Prediction intervals for global solar irradiation forecasting using regression trees methods. Renew. 

Energy 126, 332-340. 

Wen, T., et al., 2020. Performance evaluation of probabilistic methods based on bootstrap and quantile regression to quantify 

PV power point forecast uncertainty. IEEE Trans. Neural Networks Learn. Syst. 31(4), 1134-1144. 

 

 

 

 

 


