
Low Complexity Motion Detection with

Background Modeling

Alberto Dassatti, Guido Masera, Gianluca Piccinini

VLSI Lab, Electronic Department,

Politecnico di Torino, Torino, Italy

{alberto.dassatti,guido.masera,gianluca.piccinini}@polito.it

Abstract—Motion Detection is of utmost importance in several
applications such as video surveillance, remote sensing and
medical diagnosis, and a large number of algorithms have been
proposed for implementation. In this paper we focus on low
resources scenarios where standard solutions are inapplicable.
We present a novel algorithm that exploits spacial correlation
of neighbor pixels in an image to get the most accurate view
of the moving scene without increasing computational burden.
In conjunction with the proposed algorithm we investigate, to
the best of our knowledge for the first time, several background
models and update policies, comparing available approaches and
exploring trade-offs between complexity and detection capability.

I. INTRODUCTION

Motion Detection (MD) deals with identifying part of video

sequences that capture moving objects. This kind of informa-

tion is a crucial ingredient in a growing set of applications,

ranging from well known surveillance appliance to sensors

networks. Particularly, the availability of low cost wireless

video sensors to be spread in a proper area opens up new

application possibilities in contexts such as environmental

monitoring, domotics, marine biology, habitat studies, etc . . . .

All these applications are characterized by remote sensors

with extremely limited processing capabilities and reduced

activity of the RF (Radio Frequency) interface. Therefore

low complexity and low energy MD algorithms resident in

the sensor and capable of triggering the sensor only when

necessary are a key enabling technology for this kind of

monitoring applications.

The most popular method for motion detection and image

segmentation is based on the evaluation of frame differences;

basically the absolute difference between a reference image

and the frame under test is computed and, if the difference is

above a threshold, motion is detected. A lot of variants of this

method were proposed in the literature and a complete survey

is available in [1]. These methods also need the choice of a

reference model and some thresholds; interesting examples are

in [2] and [3] where thresholds are chosen dynamically , based

on the statistical properties of the video sequence. Another

example is [4]; here authors propose a statistical adaptive

update scheme for the reference frame, combining different

methods that operate at pixel, region and frame levels. All

the recently published techniques focus on detection accuracy,

not considering complexity as key point. In [5], [6] and [7]

under-sampling with a fixed grid is used to remarkably reduce

the number of performed operations. In [6] authors modified

the algorithm proposed in [8] to achive better resilience to

illumination changes; in [6] and [7] homomorphic filtering

techniques proposed in [9] are exploited to combat the effects

of illumination changes.

A completely different approach is presented in [10], [11],

where authors target a low power solution: to this purpose,

the image is processed in the analog domain and a single

bit plane is used to decide if motion has occurred or not.

This approach reduces considerably the overall complexity of

the MD, but requires custom hardware and cannot be easily

adopted in existing systems.

As proved by the large number of papers published on this

topic in the last ten years, one of the most challenging prob-

lems in motion detection and segmentation is the background

modeling (for a recent and complete survey the interested

reader can refer to [1]). Two problems arise when background

modeling is considered: i) how to build the model and ii) how

often the model has to be updated Both these issues have a

deep impact on processing complexity as well as on the overall

detection performance, so that possible trade-offs have to be

carefully investigated.

In this work we present a reduced complexity algorithm

with automatic noise calibration, able to detect motion and

trigger alarm, with the computational power of few Mega

Instructions per second (MIPS) on a CIF (in the PAL system

352x288 pixel) video sequence.

Our method is described in Section II, while section III

presents, to the best of our knowledge for the first time, a study

of background modeling techniques, comparing their complex-

ity and evaluating the update policy impact on the overall

processing. Finally Section IV summarizes performance and

trade-offs for the implementation of efficient low cost MD.

II. MOTION DETECTION ALGORITHM

Detection of moving objects in image sequences is often

based on difference between a reference image and the current

frame. Both real motion or noise generate these differences and

the purpose of MD is to discriminate them and label those

changes that are due to motion. Noise–related changes, on the

other hand, have to be neglected.

The proposed MD algorithm is designed with low complex-

ity in mind and it works as follows: at the beginning of the

Published in Proceedings of the 3rd International Conference on Information and 
Communication Technologies: From Theory to Applications, Damascus, Syria, Damascus, 
Syria, which should be cited to refer to this work.
DOI: 10.1109/ICTTA.2008.4530099

“© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.”

https://doi.org/10.1109/ICTTA.2008.4530099


procedure a reference image is stored and successive frames

are compared with it.

Some thresholds need to be defined:

• N , noise threshold
• M , motion threshold
• P , max number of randomly selected pixels
• S, size (in bit) of the minimum object of interest.

The process starts sampling a pixel location; for each

sampled pixel, the difference between the current pixel and

the reference one is computed. If the difference is below the

threshold N , the pixel is classified as noise and neglected,
otherwise we select recursively neighbor pixels, not yet tested,

and repeat the same process. Once we have tested all adjacent

non-noise pixels, if they are more than S, the homomorphic
filtering proposed in [12] is applied and the mean difference

is evaluated in the logarithm domain, as proposed in [7].

Pixels can be considered as composed by the product of two

components: illumination and reflectance. Only changes in the

reflectance influence the detection capability, so if we are able

to separate the two components we can neglete the illumina-

tion changes. Illumination is placed at low spatial frequencies

whereas the reflectance is located at higher frequencies, thus

a simple filter can separate them and two exponentials can

recover them separately (see Fig. 1a). Image 1 describes

the standard processing and the simplified computation in

the logarithm domanin (Fig. 1b). If this mean is larger than

M the block is classified as Motion Block, it is discarded

otherwise. As soon as a Motion Block is discovered the

process can be terminated. This early termination is useful

when this algorithm is used as alarm trigger; in scenarios

where identification of several moving objects is of concern

this step can be easily omitted.

Comparing only a small subset of pixels per frame is a

powerful method to reduce complexity in MD as demonstrated

in [6] and [7]. A fixed under-sampling grid can be applied to

this purpose and different criteria can be adopted to choose the

grid. Once chosen the maximum number (P ) of pixels to be
tested for each frame, we select randomly and uniformly pixels

along the frame. The computational complexity associated

to the genration of a random grid is negligible; moreover

this method brings two positive consequences: 1) no easy

untested paths are present and 2) the minimum size of a

detectable moving object is reduced to a single pixel; it is

important noticing that the grid proposed in [6] results into a

minimum size detectable object of 6 × 6 pixels in round 1,

(decreased to 4× 4 and 3× 3 in round 2 and 3 respectively).

A further advantage of the proposed method comes from

the possibility of limiting the required computation around

a region of interest, that is the area where motion occurrence

is more probable. Image adjustments and optimizations of the

moving object view are not performed in this application.

M and N thresholds can be dynamically adjusted by means
of a calibration process. In [7] an effective procedure to adapt

N was proposed: in the presented method, the algorithm is

run for some frames, ensuring that no motion occurs; all the

differences are then stored in one vector and a normalized

(a) Complete form

(b) Simplified form

Fig. 1. The homomorphic filter

histogram is generated to determine N . The same procedure
is adopted in the present work and periodically re-called in

order to re-calibrate the system.

The calibration of S is application dependent and it can
address either a single pixel or a wide slice of the image

under test. The choice of this parameter has almost no impact

on the computational complexity, but it is critical from the

performance point of view; too small values of S bring
to a high number of homomorfic filtering operations to be

performed, while large values tend to reduce the probability

of discover small moving objects. Whenever the resiliency

to light changes is of concern, S has to be large enough to
give statistical significance to the mean value computed in the

homomorphic filter.

There is no limitation in the choice of parameter P ; it is
obvious that a small P makes the algorithm extremely fast,
but it increases the probability of missing detection in the

frame under test. On the other hand, large values of P reduce
the achievable speed-up while increasing the probability of

detection, defined in this case as the probability that a single

pixel within a moving object is tested and its difference with

the reference frame is larger than N .

The random sampling process is not reset after a frame

processing: this ensures that all the spatial location will be

tested within few frames with high and uniform probability.

This consideration links the value of P to the system frame
rate. Intuitively similar detection capabilities can be achieved

either with high frame rates and low P values or with low
frame rates and high values of P . This makes the proposed
method extremely flexible and adaptable to different system



scenarios.

If the system is used for alarm generation, high values of

P are suggested coupled width high values of S and low
frame rates. This combination ensures low probabilities of

miss-detection and low number of false alarms, providing at

the same time limited complexity.

III. BACKGROUND MODELLING

The algorithm described in II requires a reference frame

in order to compute temporal differences. Unfortunately, to

the best of our knowledge, no previous studies investigated

the complexity of background modeling and all the low

complexity MD algorithms presented in section I do not make

use of any background technique.

W

Mean

−

W

Mean
S

+ +

Fig. 2. Frame Window processing

In this Section, we specifically address the background

modeling issue, evaluating in particular low cost methods,

with limited requirements of both computational and storage

requirements.

From [4] and [1] we selected the following seven methods:

Trivial (T): a single frame is used as background.

Temporal Mean (TM): first order statistic is collected for

each pixel computing the mean of the values assumed by the

pixel in the same position of successive frames.

Temporal Mean and Variance (TMV): second order statistic

is added to the previous method computing temporal variance

for each pixel.

Spatial Mean (SM): the image is divided in blocks of size

B; each pixel in the block is represented by the mean values
of intensity within the block.

Spatial Mean and Variance (SMV): the second order spatial

statistic is computed for each block.

Space-Time Mean and Variance (STMV): this method

combine the SMV and TMV methods.

Temporal Derivative (TD): maximum and minimum values

in intensity are stored as well as maximum inter-frame

distance between two successive frames. Then the MD

algorithm classifies the pixel as motion if it deviates from

maximum and minimum more then maximum inter-frame

distance.

The algorithm described in Section II has to be slightly

modified when a second order background model is used: the

pixel is classified as motion if the difference between the pixel

and the mean is larger than the variance plus M .

Complexity of this model can be compared in terms of

memory accesses, memory storage and number of operations

performed. Table III provides normalized values for these

metrics. In Table III, W is the size of a sliding window (we

use power of two values for W in order to avoid divisions)

used to compute moving average and the pixel variance as

illustrated in Figure III. The same is true for B, where B×B
represents the dimension, measured in pixels, of a block in

which spatial statistics are collected. All values are normalized

with respect to the image size and obtained manually analyzing

our unoptimized C implementation. It has to be stressed that

the whole processing has to be repeated accordingly to the

update policy adopted.

Memory access Memory Storage Basic Operation
T 1 1 0
TM 2 1 + W 2A + S
TMV 1 + W 2 + W (W + 1)A + (W + 1)S

+WM
SM 1 1/B A + BS
SMV 2 2/B A + 2BS + 1M
STMV 2 + W 2/B + 2 + W (W + 2)A + (W + 1)M

(W + 1 + 2B)S
TD 3 3 3A

TABLE I

COMPLEXITY OF BACKGROUND MODELING TECHNIQUES IN TERMS OF

MEMORY REQUIREMENTS AND OPERATIONS PERFORMED (A FOR SUM OR

SUBTRACTION, S FOR SHIFT AND M FOR MULTIPLICATIONS). THIS

VALUES ARE NORMALIZED BY THE IMAGE SIZE.

Background modeling is often undervalued in motion detec-

tion problems and when limiting complexity is one of the main

goals it becomes a key processing component. For example, if

we consider the TM model applied to a CIF movie sequence

with a frame rate of 30 fps, even this simple method requires
more than 9 MIPS.

Comparing models in Table III in terms of detection per-

formance is an hard task. Figure 3 depicts a visual example

of performance obtained with the MD algorithm described in

Section II and using different background models. Figure 3(a)

reports original frames from three different movie sequences

while Figures 3(b) .. 3(h) are the output of the MD algorithm

on the same reference frames presented in 3(a) with the seven

background models. Figure 3 reveals that temporal correlation

(sub-figures c,d,g) performs better than spatial one (sub-figures

e,f): for example if we compare images 3(c) and 3(e) we

can see how SM is unable to detect some moving objects

(first and second sequences) and add a lot of noise generating

false alarms. Due to the difficulties of comparing visually

the performance of these techniques, we also compare them

in terms of false positive and false negative detected motion

pixels. For each background model, we counted the number

of pixels wrongly labeled as motion, and motion pixels not

recognized. In order to compute these metrics we need a

reference segmentation of each frame. Instead of the manual

segmentation adopted in [4], we employed the segmentation

made by the more sophisticated method (STMV) as reference.



All the experiments are executed with P equal to half frame
size. Figure III reports numbers of false positive and false

negative pixels detected in 100 frames, chosen from 5 different

video sources.

Numeric results, presented in Figure 3, confirm the visual

impression, but they add one new element of information:

methods based on spacial analysis are mainly affected by false

detection.

A. Update Policy

In order to evaluate the complexity of the complete detection

systems we have to include the background model updating.

Therefore, in conjunction with the aforementioned background

schemes, we studied four update policies: α) update every
frame, β) update after a fixed timeout, γ) update every time
motion is detected and δ) random partial update. The former
two policies are proposed here for the first time in order to

mitigate the complexity of the background modeling; in policy

δ) the update of the background model for a specific spatial
location occurs every time the MD algorithm visits that pixel.

This policy reduces by a factor P the complexity reported in
Table III regardless the used method.

As done for the comparison among background modeling

methods, we evaluate the effect of the update policy on the

system performance in terms of false detections. Figure III-

A shows performance of the considered methods combined

with the four update policies. From the image analysis it is

clear that there is no significant impact of the policy over the

detection capability; on the other hand Table III-A highlights

a remarkable variation in terms of complexity.

α β γ δ(16) δ(64) δ(128)
T 1052.17 752.36 906.94 1033.99 1714.47 2350.42
TM 608.48 903.50 897.28 784.17 1231.41 1686.76
TMV 246.95 589.29 584.01 575.80 1140.73 1608.88
SM 508.28 629.47 543.28 524.98 1192.29 1853.29
SMV 306.37 496.04 482.23 398.43 1253.49 1849.96
TD 562.72 553.57 701.53 893.40 1698.36 2256.45
STMV 173.24 737.53 637.55 660.74 1396.54 1392.90

TABLE II

CIF FRAME PROCESSED PER SECOND ACHIEVED WITH DIFFERENT

COMBINATIONS OF BACKGROUND MODEL AND UPDATE POLICY. IN THE β

CASE THE BACKGROUND MODEL IS COMPUTED FOR ONE HUNDRED

TRAINING FRAME AND NEVER UPDATED AGAIN.

Some conclusions can be drawn from the results presented

in Table III-A and Figure III-A. Although a throughput of

thousands frames per seconds (fps) is far beyond any practical

use, this measure provides a meaningful value for compar-

ing complexity of different combinations. Interestingly high

frame rates imply low frame processing time and potentially

good power saving in systems equipped with advanced power

management features. As clear is Table III-A, the simple TM

method used with policy α is almost as complex as the STMV
method updated in agreement with policy δ, while the former
is absolutely better in detection capabilities. The proposed

δ-policy has the advantage of computing the background

(a) Reference frames.

(b) T method

(c) TM

(d) TMV

(e) SM

(f) SMV

(g) STMV

(h) TD

Fig. 3. Experimental results with several videos sources changing the
Background model.



Fig. 4. Number of false and unrevealed motion pixels computed over 100
frames from 5 video sequences.

Fig. 5. Number of false motion and unrevealed motion pixels computed over
100 frames from 5 video sequences; different update policies are compared.

model only for those pixels that are strictly necessary for

the MD processing, so guaranteeing a remarkable saving of

complexity.

IV. RESULTS

We evaluate the performance of the proposed algorithm in

terms of MIPS (Millions of Instructions per Second) required

for a real time implementation and compare obtained results

to other low complexity MD algorithms.

The performed experiments make use of several benchmark

video sequences and test suite from VSSN 2006 [13]. The

algorithm described in section II was set with P equal to
1/16 of the image size (making our performance comparable

to simulation results presented in [7]). We adopted STMV

background model and δ-policy, which offer the best trade-off
between performance and detection capabilities.

The frame rate achieved by algorithm in [6] is as high as

300 PAL fps (720 × 576 pixel), while in [7] authors claim

950 PAL fps on a Pentium IV 2.4GHz. In [3] the average
time for computing a CIF (352 × 288) frame is reported for

several algorithms, ranging from 0.0263s (equal to 38 fps) to
0.538s on the same processor.
In our experiments the algorithm described in Section II

reaches a frame rate of 119 PAL fps on an Intel Pentium-M

1.86GHz; the measured processing complexity includes the
background model and update, which is not present in [6],

[7];

The choice of P can help to further reduce the complexity;
values up to 256 have been tested with reasonable degradation

in detection capability. Figure 6 reports some frames grabbed

during the execution of our algorithm with different P values
and algorithm presented in [7]. The visual comparison denotes

small degradation in performance for P = 64; in this case the

frame rate increases up to 264 PAL fps. If this algorithm is
used only for alarm generation, setting P = 128 brings to the

image presented in Figure 6(e), with a measured frame rate of

344.39 PAL fps.
Our system was tested on an ARM processor (ARM9JSE

400MHz) to demonstrate the applicability of our approach
in embedded systems. On this platform, running at the same

time Linux and network I/O, the MD can perform up to

57 PAL fps demonstrating relatively high real time perfor-
mance.

In this paper a new low complexity MD technique is

proposed. It is analyzed in terms of complexity and detection

capability, presenting to the reader data and images to figure

out reasonable trade-offs.

REFERENCES

[1] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: a systematic survey,” Image Processing, IEEE
Transactions on, vol. 14, pp. 294 – 307, March 2005.

[2] G. Jing, D. Rajan, and C. E. Siong, “Motion detection with adaptive
background and dynamic thresholds,” in Information, Communications
and Signal Processing, 2005 Fifth International Conference on, Decem-
ber 2005, pp. 41 – 45.

[3] M.-C. Chang and Y.-J. Cheng, “Motion detection by using entropy image
and adaptive state-labeling technique,” in Circuits and Systems, 2007.
ISCAS 2007. IEEE International Symposium on, May 2007, pp. 3667–
3670.

[4] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: prin-
ciples and practice of background maintenance,” in Computer Vision,
1999. The Proceedings of the Seventh IEEE International Conference

on, September 1999, pp. 255 – 261.

[5] C.-F. Chiasserini and E. Magli, “Energy-efficient coding and error
control for wireless video-surveillance networks,” Telecommunication
Systems, vol. 26, no. 2-4, pp. 369–387, june-august 2004.

[6] P. Bassignana, M. Martina, G. Masera, A. Molino, and F. Vacca, “DSP
implementation of a low complexity motion detection algorithm,” in
Conference Record of the Thirty-Ninth Asilomar Conference on Signals,

Systems and Computers, November 2005, pp. 1352–1355.

[7] A. Dassatti, G. Masera, M. Nicola, and F. Vacca, “Low resources
algorithm for video survelliance,” in IEEE International Symposium on
Communications and Information Technologies, ISCIT, October 2007.

[8] E. Magli, M. Mancin, and L. Merello, “Low-complexity video compres-
sion for wireless sensor networks,” in IEEE International Conference on
Multimedia and Expo,, 2003, pp. 585–588.

[9] Y. Matsushita, K. Nishino, K. Ikeuchi, and M. Sakauchi, “Illumination
normalization with time-dependent intrinsic images for video surveil-
lance,” IEEE Transaction on Pattern Analysis and Machine Intelligence,
vol. 26, no. 10, pp. 1336–1347, October 2004.

[10] S. H. Lee, S. W. Kim, and S. Kim, “Implementation of a low power
motion detection camera processor using a CMOS image sensor,”
in Circuits and Systems, 2004. ISCAS ’04. Proceedings of the 2004
International Symposium on, May 2004, pp. 737–40.

[11] S.-M. Sohn, S.-H. Kim, S.-H. Lee, K.-J. Lee, and S. Kim, “A cmos image
sensor (cis) architecture with low power motion detection for portable
security camera applications,” Consumer Electronics, IEEE Transactions
on, vol. 49, pp. 1227 – 1233, November 2003.



(a) Original Video Frames

(b) Algorithm [7]

(c) Proposed P = 16

(d) Proposed P = 64

(e) Proposed P = 128

Fig. 6. Experimental results with different videos sequences

[12] D. Toth, T. Aach, and V. Metzler, “Illumination-invariant change detec-
tion,” in IEEE Southwest Symposium on Image Analysis and Interpre-
tation, 2000, pp. 3–7.

[13] [Online]. Available: http://imagelab.ing.unimo.it/vssn06/


