
Transparent FPGA Flow
Baptiste Delporte and Anthony Convers and Roberto Rigamonti and Alberto Dassatti

HES-SO — REDS Institute, HEIG-VD — School of Business and Engineering Vaud
CH-1400 Yverdon-les-Bains, Switzerland (name.surname@heig-vd.ch)

Heterogeneous computing has recently emerged as a way
to circumvent the physical and technological limitations in the
design of computing devices. The pressure exerted by the ever-
growing demand of increased performances has eventually
made the long-awaited dream of having a traditional CPU
paired up with an FPGA a reality [1], [2]. FPGAs have
proven indeed to be a viable solution for energy efficient high-
performance computing [3], [4], [5]. However, while providing
the system integrator a very compact and cost effective way
to add advanced functionalities to products, this technological
evolution has dramatically raised the overall complexity of
the system: Exploiting the available capabilities now requires
a wide range of competencies which are not always in the
background of a company or institution. This requires a
considerable effort at development time and often limits the
applicability to a reduced set of supported brands/models,
while being effective only when predicted usage patterns
match the actual ones. High-Level Synthesis (HLS) [6] par-
tially mitigates the above-mentioned problems by removing
the language-barrier, but compiling and deploying a bitstream
is an extremely long process, and again its development
requires establishing a-priori usage patterns that might lead
to a suboptimal usage of the available hardware.

In this demo we propose an automated flow that allows
the transparent execution of ordinary code on a heteroge-
neous platform including an FPGA. Our solution requires no
change in the code, not even pragma indications to guide
the optimization, and dynamically adapts its behaviour to the
available data and the workload of the system. Thus, the
developer does not need to be aware of the target platform
details, nor she has to forecast usage patterns to prevent
performance bottlenecks, as the system transparently identifies
parallelizable, computationally-intensive code fragments and
dispatches them to a data flow overlay architecture built on
top of the FPGA. Since the bitstream we use is fixed, and
contrary to HLS, we can alter the functionalities offered by
the FPGA on-the-fly to adapt them to current usage. Finally,
since we operate at the LLVM’s Intermediate Representation
(IR) level [7], our approach is language-agnostic.

At the heart of our system, depicted by Fig. 1, lies a Just-
In-Time (JIT) compiler, coupled with the Linux perf event
performance monitor to automatically detect which code frag-
ments require the largest fraction of resources. Once this
region is identified, it is analyzed using Polly [8], a state-of-
the-art polyhedral optimizer, to expose parallelization opportu-
nities. The Control Flow Graph and the Data Flow Graph are
then extracted and merged, and the overlay pre-synthesized on

Fig. 1. Schematic representation of the developed system.

the FPGA is reconfigured on-the-fly to execute the new model.
We have chosen to adopt the overlay architecture for pipelined
execution of data flow graphs presented in [9], and we perform
the place&route operation using a custom-made randomized
algorithm. Once the overlay is reconfigured — which takes
few hundreds of microseconds —, we alter the execution flow
of the code as in [10] and we feed the FPGA with the data
provided by the application at hand.

To the best of our knowledge, no other approach proposed
thus far is capable of achieving these goals.

REFERENCES

[1] L.H. Crockett et al., The Zynq Book. Strathclyde Academic, 2014.
[2] S.R. Alam et al., “Using FPGA Devices to Accelerate Biomolecular

Simulations,” Computer, 2007.
[3] A. Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services,” in ISCA, 2014.
[4] A. Canis et al., “LegUp: High-level Synthesis for FPGA-based

Processor-Accelerator Systems,” in FPGA, 2011.
[5] R. Chen and V.K. Prasanna, “Accelerating Equi-Join on a CPU-FPGA

Heterogeneous Platform,” in FCCM, 2016.
[6] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and

Future,” IEEE Design Test of Computers, 2009.
[7] C. Lattner, “LLVM and Clang: Advancing Compiler Technology,” in

FOSDEM, 2011.
[8] T. Grosser and A. Groesslinger and C. Lengauer, “Polly - Performing

polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, 2012.

[9] D. Capalija and T.S. Abdelrahman, “A High-Performance Overlay
Architecture for Pipelined Execution of Data Flow Graphs,” in FPL,
2013.

[10] B. Delporte and R. Rigamonti and A. Dassatti, “Toward Transparent
Heterogeneous Systems,” in MULTIPROG-2016, 2016.

Published in 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 
august-2 september 2016, which should be cited to refer to this work.

DOI: 10.1109/FPL.2016.7577382

“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

https://doi.org/10.1109/FPL.2016.7577382

