
POPMUSIC for a Real World Large Scale Vehicle

Routing Problem with Time Windows

Alexander Ostertag†, Karl F. Doerner†,

Richard F. Hartl†, Éric D. Taillard‡,

Philippe Waelti‡

† Department of Business Administration, University of Vienna

Bruenner Strasse 72, 1210 Vienna, Austria

{Alexander.Ostertag,Karl.Doerner,Richard.Hartl}@univie.ac.at

‡ SiM-TIC Institute, University of Applied Science,

Rue Galilée 15, CH-1400 Yverdon-Les-Bains, Switzerland

{Eric.Taillard,Philippe.Waelti}@heig-vd.ch

Abstract

This paper presents a heuristic approach based on the POPMUSIC frame-

work for a large scale Multi Depot Vehicle Routing Problem with Time

Windows (MDVRPTW) derived from real world data. Popmusic is a very

powerful tool for tackling large problem instances. A Memetic Algorithm

(MA) is used as an optimiser in the Popmusic framework. It is shown

that a population based search combined with decomposition strategies is

a very efficient and flexible tool to tackle real world problems with regards

to solution quality as well as runtime.

Keywords: Vehicle Routing, Heuristics, Problem Decomposition

Introduction

Modern carrier fleet operators face the challenge of optimising their vehicle fleets

and routing operations to stay competitive. Furthermore in real world situations

more than one depot is usually used, from where drivers can start operating.

This leads to combinatorial problems for which good solutions are very hard to

find and practically impossible to solve exactly. Metaheuristics are used to face

1

Published in Journal of the Operational Research Society, 2009, vol. 60, no.
7, pp. 934-943, which should be cited to refer to this work.
DOI: 10.1057/palgrave.jors.2602633

https://doi.org/10.1057/palgrave.jors.2602633

POPMUSIC for the MDVRPTW 2

this kind of problems in order to find high quality solutions with a reasonable

computational effort. Even though developed metaheuristics scale well with the

problem size, a borderline may exist when problems get too large to be solved

efficiently. The practical solving limit of many algorithms is few hundreds of

customers that have to be serviced with a fleet of few dozens of vehicles. So, real-

life problem instances which can involve several thousands of customers clearly

cross this borderline. The recent work of Mester & Bräysy (2007, 2005) who use

active guided evolution strategies as well as the Variable Neighbourhood Search

(VNS) approach by Kytöjoki et al. (2007) shows that even large instances may

be solved in an efficient way. The 2-phase hybrid metaheuristic developed by

Homberger & Gehring (2005) also proved to successfully solve problems from

small sizes up to 1000 customers. Another possible approach is to use decompo-

sition strategies like the POPMUSIC framework by Taillard & Voss (2001) that

try to overcome size restrictions, by intelligently splitting the problem into sub

problems and solving them separately. Decomposition strategies were recently

also successfully applied to large scale real world problems by Flaberg et al.

(2006). They considered the problem of newspaper delivery in the city of Oslo.

The present paper proposes such a strategy based on POPMUSIC that uses

a Memetic Algorithm (MA) as optimiser for sub problems. These are small

instances of multi depot Vehicle routing problem with time windows (MD-

VRPTW). Very few papers tackle the MDVRPTW. Let us quote the work

of Cordeau et al. (2001) which uses a Tabu Search heuristic to solve MDVRPTW

instances as well as a wide variety of related problems. A more recent work is

the VNS by Polacek et al. (2004). Hybrid genetic algorithms have already been

implemented in the context of VRPTW, for instance by Prins (2004), Berger &

Barkaoui (2004). Memetic algorithms such as the one implemented as optimiser

in our POPMUSIC framework are special cases of evolutionary algorithms often

called genetic hybrids. So, it is interesting to provide some insights to generali-

sation of the VRPTW to the Multi Depots case.

The remainder of the paper is organised as follows. The first section describes

the problem in detail. The next section describes each part of the Memetic

Algorithm implemented as basic optimiser for the POPMUSIC framework. The

general POPMUSIC framework as well as its adaptation for the MDVRPTW are

presented in the next but one section. The results for three different strategies

to solve the problem are then presented and discussed in subsequent section. A

final conclusion and possible directions in which further research on POPMUSIC

algorithms in the field of large scale MDVRPTW are given in the last section.

POPMUSIC for the MDVRPTW 3

Problem Description

The real world problem considered in this paper was transformed so that it

can be tackled as a MMDVRPTW. Compared to the well known Vehicle Rout-

ing Problem with Time Windows (VRPTW), the MDVRPTW is extended by

having more than one depot with different locations and associated vehicle

fleets. The MDVRPTW is defined on a complete graph G = (V, A) where

V = {v1, ..., vm, vm+1, ..., vm+n} is the vertex set and A = {(vi, vj) : vi, vj ∈

V, i 6= j} is the arc set. The n customers are represented by vertices vm+1 to

vm+n, while v1 to vm stand for the m depots. Several weights are associated to

each vertex vi ∈ V, i = m+1, ..., m+n. These weights represent the demands di,

the service times si, as well as the time windows [ei, li] which are defined by the

earliest ei and latest li possible start times for the service. These time windows

also apply to the depots (i = 1, ..., m) where they define the opening hours of

the depots. Each arc (vi, vj) is associated with a non-negative travel time or

cost. A vehicle fleet consisting of a total of K vehicles is globally assigned to the

m depots. The fleet is homogeneous and each vehicle is characterised by a non-

negative capacity D and a non-negative maximum route duration T . Finally,

the distribution of the vehicles over the depots is defined as input data. The

aim is to build K vehicle routes, each route starting from a depot and returning

back to the same depot, so that each customer i belongs to one route exactly

and is serviced during its corresponding time window [ei, li]. Each vehicle route

has to satisfy the additional constraints of the maximal allowed tour length T

and vehicle capacity D. The objective considered in this paper is to minimise

the total distance travelled by all vehicles.

The resulting MDVRPTW problem is a generalisation of the VRPTW that is

known to be NP-hard. State-of-the art exact algorithms cannot solve prob-

lem instances with more than few dozens of customers. So, the only practical

issue is to heuristically solve real-life problem instances. An overview about

the VRPTW in the fields of heuristics and more sophisticated metaheuristics is

presented in (Bräysy & Gendreau, 2005a,b).

Memetic Algorithm

General description

A typical MA is based on the structure of a Genetic Algorithm, but is further

enriched in a way that it can exploit all available knowledge about the prob-

POPMUSIC for the MDVRPTW 4

lem that is under consideration (for an overview see Moscato & Cotta (2003)).

A Memetic Algorithm was developed following the basic principles of Genetic

Algorithms (Reeves, 2003, Goldberg, 1989). A population of solutions is ini-

tially generated and maintained, while a reproductive process is applied. The

offsprings are generated in a way that they incorporate desired features and are

used to update the existing population. The idea of MAs is incorporated so that

individual offsprings as well as parts of the population can be improved through

a stochastic local search. The basic concept of the MA is shown in Figure 1.

Initialisation

The initial population is created through a modified I1 insertion heuristic (Solomon,

1987). In order to generate an initial population of size popsize with very dif-

ferent initial solutions, the I1 heuristic is modified with a stochastic insertion

criterion. The modified I1 heuristic is composed of two stages. In a first cluster-

ing stage, all customers are assigned to their geographically closest depot. We

are aware that there exist more sophisticated methods for assigning customers

to depots (Salhi & Sari, 1997), however we opted for a simpler approach be-

cause we didn’t want to focus on construction algorithms. In a second routing

stage, K empty routes are generated consisting of about K/m routes for each

depot. Each customer is then tentatively inserted into a route, and the resulting

insertion costs are saved in a sorted list. After all customers have been tenta-

tively inserted, the customer to be inserted is selected randomly from the first

three entries of this list with probability 0.5 for the first entry and 0.25 for the

remaining two entries. A route is considered complete when no more customers

can be feasibly inserted. The customers eventually not assigned are inserted

into the routes at the places where they generate the smallest violations. If all

routes have been completed or all customers have been assigned, the heuristic

stops. Afterwards, the 3-opt operator is applied to each route.

Selection

The fitness evaluation function of a solution S follows the implementation

of Cordeau et al. (2001) and Polacek et al. (2004). The total travel time of

the routes is denoted by c(S). The values q(S), t(S) and w(S) respectively

denotes the total violation of load, duration and time window constraints. The

arrival time ai at each customer i is calculated and an arrival after the end of

the time window ai > li is penalized while an arrival before the start of the

time window ai < ei is allowed but generates a waiting time. Each route is then

POPMUSIC for the MDVRPTW 5

checked for violations with respect to D and T as well as the total violation

of the time window constraints
∑n

i=1
max(0, ai − li). The fitness function is

defined by f(S) = c(S) + αq(S) + βt(S) + γw(S) where α, β and γ are positive

weights.

The selection procedure follows the idea of binary tournament, where two solu-

tions S1 and S2 are randomly selected from the population pop and are evaluated

by the fitness function. Only the individual with the lower value is chosen for

recombination. Then the selection procedure restarts for the selection of the

second recombination partner.

Recombination

Recombination operators are used in evolutionary algorithms to simulate the

reproductive process. This usually results in selecting two solutions and recom-

bining them so that the offsprings hopefully inherit the good attributes of both

parents. Sophisticated cross-over operators like those presented in (Prins, 2004)

are difficult and time expensive to implement due to the large problem size as

well as the extensions like time windows and multiple depots.

So, we apply a simple route based two-point crossover operator (see Bräysy &

Gendreau, 2005b) that is not computationally expensive. This operator creates

two offsprings O1 and O2 by combining, one at a time, b pair of routes, R1 of

parent solution S1 with R2 of parent solution S2. Only the best offspring is

kept. b is randomly drawn between one and the maximum possible combination

of routes, with a bias towards small values. The probabilities for the amount

of routes selected are 0.99 for one pair of routes, 0.0075 for two pairs and the

remaining probability is equally distributed between three and the maximum

number of pairs. After the pairs of routes are chosen, one route is randomly cut

into three sequences. The length of the middle sequence is at most the length

of the smallest route diminished by the position of the first customer of the

middle sequence. The same sequence length is used for R1 and R2. Also the

same starting positions are used so that time window violations can be antici-

patively minimised. After the exchange of the middle sequences, the solution is

checked for missing or duplicated customers. The latter are erased out of the

routes where they appeared before recombination, and missing customers are

inserted at the cheapest possible position using a I1 insertion heuristic proposed

by Solomon (1987).

The crossover operator is illustrated in the following example:

R1 (1 2 | 3 4 5 | 6 7)

POPMUSIC for the MDVRPTW 6

R2 (5 2 | 3 1 4 | 9 6 7 8)

Where R1, R2 are the chosen routes from S1 and S2 that produce the following

routes of the offsprings O1 and O2 after swapping the middle sequence.

R1 (1 2 | 3 1 4 | 6 7)

R2 (5 2 | 3 4 5 | 9 6 7 8)

The new solutions need to be repaired in a way that no double or missing

customers exist. The final routes of the offsprings can then look like this:

R1 (5 2 | 3 1 4 | 6 7)

R2 (2 1 | 3 4 5 | 9 6 7 8)

The best of the two offsprings is then used to update the population.

Population Management

After the generation of the initial population, the algorithm starts with the selec-

tion of individual solutions for recombination. After the recombination operator

has generated an offspring, pop is updated in a steady state fashion (Whitley,

1987), which means that new solutions are allowed to enter pop if they are fitter

than the worst solution in pop. The population is implemented as an array of

chromosomes sorted by their fitness values. To save computational time, fitness

values for whole solutions as well as for individual routes are stored in the chro-

mosomes, and need only to be re-evaluated when a change in the chromosome

occurs. The detection of clones is based on this stored fitness value, where iden-

tical values are handled as identical solutions. Additionally the best feasible

solution is saved. In the case that no feasible solution exists in the population

at the end of the calculation, this solution then represents the final solution.

Mutation

A Stochastic Local Search procedure based on Variable Neighbourhood Search

(VNS) (Hansen & Mladenović, 1999) is applied to modify existing solutions as

well as newly generated ones. The goal of this procedure is to better explore

the search space as well as to overcome local optima. It follows the ideas of the

work done by Polacek et al. (2004) and uses CROSS neighbourhoods (Taillard

et al., 1997) in the shaking phase. CROSS swaps two sequences of customers

POPMUSIC for the MDVRPTW 7

belonging to different routes. This leads to the possibility of reaching more dis-

tant neighbourhoods. The maximum allowed sequence length is fixed as well as

the number of depots involved in a move. The 12 different neighbourhoods used

in our VNS frame (κ = 1, . . . , 12) are shown in Table 1 where Ck denotes the

number of customers assigned to route k. After the swapping of the sequences,

a 3-opt operator, that is restricted to sequence length sl, is used to bring the

newly generated routes into local optimum.

The Stochastic Local Search Procedure is applied to each newly generated off-

spring with probability p1 and to each solution in pop with probability p2. The

VNS stopping criterion is set to a small amount of iterations itvns, to be rela-

tively inexpensive with regard to computational time.

POPMUSIC algorithm

POPMUSIC general description

The POPMUSIC framework was proposed by Taillard & Voss (2001) for dealing

with large problem size. The idea is to decompose a given solution S into p

parts s1, ..., sp. Once these parts are identified, some of them are aggregated to

build a sub problem. The latter is tentatively improved with an optimiser. If

parts and sub problem are well defined, to every improvement of a sub problem

corresponds to an improvement of the whole solution S. The process is then

repeated until all the sub problems that can be built with parts have been

optimised. The basic POPMUSIC framework is described in Figure 2.

Obtaining an initial solution by clustering

For creating the initial solution, the customers are first clustered. Each cluster of

customers builds a smaller MDVRPTW. The partition of customers is obtained

by solving a relaxation of a capacitated p-Median problem (see Hakimi, 1965,

Taillard, 2003, Waelti et al., 2002). To build clusters of customers for which the

overall demand is balanced, the distances between customers are modified with

Lagrangian multipliers, one for each cluster. Initially, all multipliers are set to 0

and a standard p-Median problem is solved. Then, for each cluster c the overall

demand Qc is computed and is compared to a global capacity Vc that is allowed

for this cluster. The quantity Vc corresponds to the capacity of the vehicles that

are allotted to cluster c. If Vc < Qc, it is not possible to deliver all customers

allotted to cluster c. In this case, the Lagrangian multiplier λc associated to

POPMUSIC for the MDVRPTW 8

cluster c is increased by a quantity that depends on Qc/Vc. The true distance

dij between customers i and j is modified, resulting in a new distance measure

Πij between customers:

Πij = dij + λc · di

Since the new distance mixes length and demand units, the Lagrangian coef-

ficients λc must be multiplied by a factor that balances the influence of both

units. Once new distances are computed, the problem is decomposed again with

the p-Median solver and the process repeats until a feasible decomposition is

found or an iteration limit is reached.

At this stage of the process, it is not very important to get a decomposition that

strictly respects the capacity constraints, since the routes have still to be built

and customers can be moved from one route to another. The main advantage of

this relaxation is that constraints other than capacity (pick-up, time windows)

can be added while using a common p-Median solver. The main layout of the

algorithm is presented in Figure 3.

Better balancing customers between clusters

In the initial phase, customers are assigned to clusters s1, ..., sp using the p-

Median decomposition procedure. A typical solution of the p-Median decompo-

sition can be seen in Figure 4 for an example of our real world problem instances.

The city of Vienna is shown expanded in Figure 5. It can be seen that most

of the customers are located in a small geographic region in the centre. As a

result, the solution of the p-Median decomposition procedure may consist of

clusters with a high amount of customers as well as clusters with only a handful

of customers. Since this feature may not be a good starting point for further

evaluation, a preprocessing procedure, as described by Figure 6, tries to level

out the number of customers inside clusters.

In detail, routes are build by itini iterations of the sub problem optimiser to

generate the first solution for each cluster. After the optimiser has built routes

for each cluster, clusters that exceed a certain amount of customers csize, are

split in the following way. The centre of gravity (Reimann et al., 2004) is

calculated for each route in the cluster to represent its aggregated customers.

The Sweep algorithm (Gillet & Miller, 1974) is then applied and splits the

cluster by the centres of its routes. The starting point is randomly defined

and the Sweep algorithm then sequentially adds routes until csize customers

are reached. When this limit is reached the cluster is split and the routes are

POPMUSIC for the MDVRPTW 9

removed from the cluster and inserted into a new cluster until no more new

clusters can be generated. The remaining clusters smaller then csize are then

checked if they could be merged to form new clusters with a size smaller than

csize. Clusters are then merged by a greedy heuristic that uses the distance of

the centres of gravity of each cluster.

Note that the number of available vehicle in the real world problem tackeled is

far sufficient to perform the deliveries. Also, the time windows of customers are

wide (basically: morning, afternoon or whole day). So, no unfeasible solutions

(customers not delivered) have to be managed.

POPMUSIC customisation

In order to implement POPMUSIC, it is necessary to specify its principal com-

ponents in relation to the problem at hand. For the MDVRPTW, a part is

defined as a route. The proximity measure (relation) between routes is defined

as the distance between the centres of gravity of the entities (routes, clusters).

As mentioned previously, for creating the initial solution, the customers are first

clustered by solving a capacitated p-Median problem and are then balanced

as described in in the previous section. Each cluster is considered as a small

MDVRPTW. Initially, each route only visits customers that belong to the same

cluster. Instead of selecting a single part as seed for initiating the creation of

sub problems (as in a regular POPMUSIC framework) all the routes of a cluster

are considered as a seed part. The centre of gravity of the entities composing

the cluster is computed. Then, the seed part is extended by adding routes until

it contains r routes. Routes are chosen by their proximity to the cluster they

will be added to.

A sub problem is therefore a subset of routes that can be treated as a small,

independent MDVRPTW. All resulting sub problems are then optimised by a

MA that stops either if a computational time or an iteration limit is reached.

Computational Analysis

The problem considered is a large real world problem of an Austrian carrier

company that owns two depots in or near Vienna. The depots serve around

4000 different customers by a total fleet of 160 vehicles that are split equally

between the depots. Two weeks, consisting of 10 workdays, were chosen for

evaluation with customers ranging between 743 and 1848 per day. Note that

POPMUSIC for the MDVRPTW 10

some customers are visited on several days. To present more concise results,

the problem instances are merged into three classes (S,M,L) according to their

size. Table 2 shows the three classes and the assignment of the individual days

to each class.

The parameters used for all calculations are shown in Table 3. Further we

decided to set csize to 75 customers as the MA provides good solutions in a

reasonable amount of time for this problem size. In order to find appropriate

csize the MA was tested on standardised instances used in (Cordeau et al., 2001,

Polacek et al., 2004). It turns out that the MA could find the best known solu-

tions for all instances up to size 75 except one (where it only deviates by 0.08%)

within reasonable computation time. Because no related work was done on the

same problem and no data for comparison exists, we set up three strategies to

tackle the large real world problem.

Strategy I (no decomposition) is the most basic one, which tries to solve the

problem as a whole by the described MA until a certain amount of time is

elapsed .

Strategy II (fixed decomposition) is based on the initial clustering by the p-

Median algorithm. In this case all clusters where treated as individual problems

and solved by the MA respectively. The resulting problems vary in size and

therefore the time ti allowed for each problem si is dependent on the square of

its size Csi
in relation to the total problem size Csn

and the maximum time

tmax allowed . It is calculated as follows; ti = tmax · (Csi
)2/

∑p

n=0
(Csn

)2. The

whole solution was then generated by simply merging the solutions of the single

clusters.

Strategy III (POPMUSIC) was executed with different parameter settings.

The POPMUSIC Algorithm was implemented with longer runtime in IIIa and

shorter runtime in IIIb. Furthermore the optimiser was given less time in IIIb

to improve the sub problems than in IIIa to put some emphasis on faster descent

of the solution quality. Strategies I, II and IIIa were given tmax = 28800

seconds for each individual run, with 10 runs each. Furthermore eight starting

clusterings by the p-Median procedure where evaluated for Strategy II and III

ranging from 16 to 80 clusters. Table 6 gives an overview about the different

parameters retained for each strategy.

The sum of the length of the routes is provided in Table 4 for each strategy.

Table 5 provides the percentage of deviation of each strategy relative to Strat-

egy I. All runs where executed on Pentium Dual 3.2 GHz with 1 GB Ram, but

they had to share the 1 GB of Ram since both processors were used at the same

time for different instances.

POPMUSIC for the MDVRPTW 11

Solving the problem without decomposition resulted in the worst solution qual-

ity. The decomposition of the problem into intelligently chosen parts (Strategy

II) is a very simple and easy to implement. This strategy is able to provide

significantly better results; about −13% compared to the most basic strategy.

Detailed computational results are given in the Appendix.

Looking at the average results of strategy IIIa compared to strategy I, nearly

20% improvement in solution quality shows that the POPMUSIC framework

can solve large scale problems efficiently. This fact is underlined when looking

at the results of the short POPMUSIC results IIIb. Even though the algorithm

has only about 6% of the time available it can beat the simple Strategy I by

nearly 14% and the decomposition Strategy II by around 0.75%.

The POPMUSIC strategy that uses a MA shows that large scale problems de-

rived from real world data can be solved more efficiently than by simple ap-

proaches that focus on the problem as a whole. The set-up of Strategy III with

short runtimes and reduced number of iterations itini for the MA (Strategy

IIIb) also shows that relatively satisfying solutions can be found in a reason-

able amount of time. The average objective values as well as a 95% confidence

interval for Strategies I, IIIa and IIIb over the runtime are shown in Figure

7 for day 6. Strategy II is not represented in these tables because clusters are

solved sequentially.

Conclusion

We have shown that a decomposition strategy such as a POPMUSIC algo-

rithm that uses a MA as optimiser can be very efficient in solving large scale

MDVRPTW. We achieved an average improvement of about 20% over all con-

sidered real world instances compared to the use of the same optimiser without

decomposition. The POPMUSIC framework is therefore able to automatically

and efficiently reassign ”borderline customers”, i.e. customers that are about

equally distant from both depots. Furthermore, the framework can be flexibly

adapted for a faster solution finding process. The POPMUSIC framework is

easy to develop for large VRP instances.

Nevertheless, further research may focus on different relatedness approaches,

that are for example based on a route - route (see Semet & Rochat, 1994) or

even customer - customer (see Shaw, 1998) basis instead of a route - cluster

basis. More emphasis has also to be put on developing intelligent ways to

maintain or create new populations which can be used for further optimisation.

The algorithm presented also provides a good starting point to extend the whole

POPMUSIC for the MDVRPTW 12

problem to a Location Routing Problem, where the number and locations of the

depots are not fixed but may be chosen independently.

Acknowledgment

Support from the Austrian Science Fund (FWF) by grant #L362-N15 (Trans-

lational Research) is gratefully acknowledged. Support form the Strategic Re-

search Funds of the University of Applied Sciences of Western Switzerland (De-

ProLo project, grant 12804) is also gratefully acknowledged.

POPMUSIC for the MDVRPTW 13

References

Berger, J. & Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the ve-

hicle routing problem with time windows. Computers & Operations Research,

31, 2037–2053.

Bräysy, O. & Gendreau, M. (2005a). Vehicle routing problem with time win-

dows, part i: Route construction and local search algorithms. Transportation

Science, 39, 104–118.

Bräysy, O. & Gendreau, M. (2005b). Vehicle routing problem with time win-

dows, part ii: Metaheuristics. Transportation Science, 39, 119–139.

Cordeau, J.-F., Laporte, G., & Mercier, A. (2001). A unified tabu search heuris-

tic for the vehicle routing problems with time windows. Journal of the Oper-

ation Research Society, 52, 928–936.

Flaberg, T., Hasle, G., Kloster, O., & Riise, A. (2006). Towards solving huge-

scale vehicle routing problems for household type applications. Workshop

presentation in Network Optimization Workshop Saint-Remy de Provence,

France August 2006.

Gillet, B. & Miller, L. (1974). A heuristic algorithm for the dispatch problem.

Operations Research, 22, 340–349.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley Pub. Co.

Hakimi, S. L. (1965). Optimum distribution of switching centers in a com-

munication network and some related graph theoretic problems. Operations

Research, 13, 462–475.

Hansen, P. & Mladenović, N. (1999). An introduction to variable neighborhood

search. In Voss, S., Martello, S., Osman, I. H., & Roucairol, C. (Eds.), Meta-

Heuristics: Advances and Trends in Local Search Paradigms for Optimization,

(pp. 433–458). Kluwer Academic Publishers.

Homberger, J. & Gehring, H. (2005). A two-phase hybrid metaheuristic for the

vehicle routing problem with time windows. European Journal of Operational

Research, 162, 220–238.

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient

variable neighborhood search heuristic for very large scale vehicle routing

problems. Computers & Operations Research, 34, 2743–2757.

POPMUSIC for the MDVRPTW 14

Mester, D. & Bräysy, O. (2005). Active guided evolution strategies for large-

scale vehicle routing problems with time windows. Computers & Operations

Research, 32, 1593–1614.

Mester, D. & Bräysy, O. (2007). Active-guided evolution strategies for large-

scale capacitated vehicle routing problems. Computers & Operations Re-

search, 34, 2964–2975.

Moscato, P. & Cotta, C. (2003). A gentle introduction to memetic algorithms.

In Glover, F. & Kochenberger, G. (Eds.), Handbook of Metaheuristics, (pp.

105–144). Springer.

Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A variable

neighborhood search for the multi depot vehicle routing problem with time

windows. Journal of Heuristics, 10, 613–627.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research, 31, 1985–2002.

Reeves, C. (2003). Genetic algorithms. In Glover, F. & Kochenberger, G. (Eds.),

Handbook of Metaheuristics, (pp. 55–82). Springer.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: Saving based ants

divide and conquer the vehicle routing problem. Computers & Operations

Research, 31, 563–591.

Salhi, S. & Sari, M. (1997). A multi-level composite heuristic for the multi-

depot vehicle fleet mix problem. European Journal of Operational Research,

103, 95–112.

Semet, F. & Rochat, Y. (1994). A tabu search approach for delivering pet food

and flour in Switzerland. Journal of the Operational Research Society, 45,

1233–1246.

Shaw, P. (1998). Using constraint programming and local search methods to

solve vehicle routing problems. Technical report, ILOG SA.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling

problems with time window constraints. Operations Research, 32 (2), 254–

265.

Taillard, E. D. (2003). Heuristic methods for large centroid clustering problems.

Journal of Heuristics, 9, 51–73.

Taillard, E. D., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A

tabu search heuristic for the vehicle routing problem with soft time windows.

Transportation Science, 31, 170–186.

POPMUSIC for the MDVRPTW 15

Taillard, E. D. & Voss, S. (2001). Popmusic: Partial optimization metaheuristic

under special intensification conditions. In Ribeiro, C. & Hansen, P. (Eds.),

Essays and surveys in metaheuristics, (pp. 613–629). Kluwer Academic Pub-

lishers.

Waelti, P., Taillard, E. D., & Mautor, T. (2002). Cueillir du mimausa en

écoutant de la popmusic. Technical report, MiS-TIC Institute, HEIG-Vd.

Whitley, D. (1987). Using reproductive evaluation to improve genetic search

and heuristic discovery. In Grefenstette, J. J. (Ed.), Proceedings of the Second

International Conference on Genetic Algorithms and their Applications, (pp.

108–115). Lawrence Erlbaum Associates.

Appendix

Table 7 shows the results of Strategy I for each day that were found after 10

runs. According to these figures Table 8 was created, that shows the combined

results for each of the three classes. Table 9 shows the results for solving each

cluster individually. It can be seen that a small number of clusters (20, 16, 16)

provides the best results. This is in direct contrast to the results of Strategy

III shown in Table 10 and 11, where a larger starting number of (40, 80, 53)

provides better results than the other options. As conclusion one can assume

that more clusters result in a better distribution of customers in the clusters. Big

chunks of customers like those occurring in densely populated areas are already

divided. This allows POPMUSIC algorithm to reach better solutions in the

same amount of time. Both tables 10 and 11 show that the maximum difference

in solution quality when using different p-Median starting solutions does not

exceed 1%. The best solution values found so far are provided in Table 12. All

these best solutions where found by Strategy IIIa with the initial clustering. It

can be seen that most of the best solutions were found in the higher spectrum

of the number of clusters, with some exceptions like days 3 and 6.

POPMUSIC for the MDVRPTW 16

List of Figures

1 Basic Steps of the Memetic Algorithm 17

2 Basic POPMUSIC framework . 18

3 p-Median decomposition algorithm 19

4 p-Median decomposition . 20

5 Zoom in on p-Median clusters . 21

6 POPMUSIC Initialisation Phase 22

7 Average objective values and confidence intervals over runtime
for day 6 . 23

FIGURES 17

Figure 1: Basic Steps of the Memetic Algorithm

1. Initialisation Repeat popsize times

(a) Generate a solution with modified I1 insertion heuristic (Solomon,
1987)

(b) Improve solution with 3-opt local search until reaching local optimum

(c) Insert solution in pop

2. Repeat until Stopping Criterion is met

(a) Selection Select two solutions from pop for recombination

(b) Recombination Generate offsprings O1, O2 through route based
two-point Crossover Procedure

(c) Improvement Step

i. With probability p1, improve offspring O1 and O2 with Stochas-
tic Local Search

ii. With probability p2, improve each solution of pop with Stochastic
Local Search

(d) Population Management

i. If no other solution from pop has the same solution quality, insert
the best offspring into pop

ii. If an offspring was inserted, erase worst solution from pop

(e) Stopping Criterion Stop algorithm when maximum allowed time or
iterations is reached

FIGURES 18

Figure 2: Basic POPMUSIC framework

1. Input: Solution S composed of parts s1, ..., sp, parameter r

2. Set A← ∅

3. While A 6= {s1, ..., sp} repeat

(a) Select seed part si /∈ A

(b) Create a sub-problem Ri composed of the r parts si1 , ..., sir
most

related to si

(c) Optimise Ri

(d) If Ri has been improved

i. Update S (and corresponding parts)

ii. Set A = A \ {si1 , ..., sir
}

(e) Else

i. Set A← A ∪ {si}

FIGURES 19

Figure 3: p-Median decomposition algorithm

1. Input: MDVRPTW, number of clusters p, iteration limit itdec

2. Build p-Median problem according to MDVRPTW customers

3. Allocate K/p vehicles to each cluster c and compute maximum capacity
Vc

4. Set Qc ←∞ ∀c, λc ← 0, i← 0

5. Repeat while (Qc > Vc ∀c) and (i ≤ itdec)

(a) Solve p-Median problem with modified distances Πij (see Taillard,
2003)

(b) Compute overall capacity Qc of each cluster c

(c) Update λc coefficients according to capacity constraint violation

(d) Set i← i + 1

FIGURES 20

Figure 4: p-Median decomposition

FIGURES 21

Figure 5: Zoom in on p-Median clusters

FIGURES 22

Figure 6: POPMUSIC Initialisation Phase

1. Assign customers to clusters by p-Median decomposition

2. Run itini iterations of the MA on each cluster to build initial routes

3. Split clusters that have more than csize customers

(a) Repeat until all parts s1, ..., sp are ≤ csize

4. Merge clusters that are smaller than csize customers

(a) Repeat until no more parts s1, ..., sp can be merged

FIGURES 23

Figure 7: Average objective values and confidence intervals over runtime for
day 6

10 100 1000 10000 100000
2400

2600

2800

3000

3200

3400

3600

3800

4000

Runtime [s]

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

MA (I)

POPMUSIC short (IIIb)

POPMUSIC long (IIIa)

FIGURES 24

List of Tables

1 Set of neighbourhood structures 25

2 Problems size and class definitions 26

3 Global Parameters Settings . 27

4 Sum of route length for each strategy and for each problem class 28

5 Comparison of the strategies . 29

6 Parameter settings for the different strategies 30

7 Results of Strategy I for each day 31

8 Results of Strategy I by class . 32

9 Results of Strategy II by class 33

10 Results of Strategy IIIa by class 34

11 Results of Strategy IIIb by class 35

12 Best solution values found . 36

TABLES 25

Table 1: Set of neighbourhood structures

κ Depots Sequence length
1 1 min(1, Ck)
2 1 min(2, Ck)
3 1 min(3, Ck)
4 1 min(4, Ck)
5 1 min(5, Ck)
6 1 Ck

7 2 min(1, Ck)
8 2 min(2, Ck)
9 2 min(3, Ck)

10 2 min(4, Ck)
11 2 min(5, Ck)
12 2 Ck

TABLES 26

Table 2: Problems size and class definitions

Day 1 2 3 4 5 6 7 8 9 10
Size 1201 1180 1284 1305 1175 743 889 1095 1848 1709

Class M M M M M S S S L L

TABLES 27

Table 3: Global Parameters Settings

Parameter Value
Load violation factor α 100
Duration violation factor β 100
Time window violation factor γ 100
Size of the population popsize 10
Mutation probability p1 0.1
Mutation probability p2 0.01
3-opt sequence length sl 3
Iterations for VNS itvns 10
ideal cluster size csize 75
Number of related routes r 1

TABLES 28

Table 4: Sum of route length for each strategy and for each problem class

Class Strategy Best Mean Worst Stdv
S I 10,768.38 11,157.48 11,577.30 93.82
S II 10,476.20 10,569.07 10,679.76 33.95
S IIIa 9,089.32 9,227.38 9,397.18 39.62
S IIIb 9,687.67 9,966.59 10,289.52 112.26
M I 24,608.03 25,428.30 26,260.06 243.88
M II 21,694.29 21,923.49 22,110.66 74.94
M IIIa 20,156.41 20,429.33 20,713.18 60.57
M IIIb 21,450.20 21,800.15 22,237.30 76.30
L I 14,131.32 14,532.08 14,942.90 127.30
L II 11,970.13 12,067.94 12,162.91 37.03
L IIIa 11,505.03 11,607.31 11,826.82 80.29
L IIIb 12,297.36 12,473.14 12,607.14 62.68

TABLES 29

Table 5: Comparison of the strategies

Class RPD I/II RPD I/IIIa RPD I/IIIb
S–Small -5.27% -17.30% -10.67%

M–Medium -13.78% -19.66% -14.27%
L–Large -16.96% -20.13% -14.17%
Average -12.83% -19.28% -13.46%

TABLES 30

Table 6: Parameter settings for the different strategies

I II IIIa IIIb
itpop ∞ ti 10 1
itini - - 200 1
tmax 28800 28800 28800 1800

Number of clusters 1 16 80 80

TABLES 31

Table 7: Results of Strategy I for each day

no decomposition (10 · 10 · 8h = 800h)
Day Best Mean Worst Stdv

1 4,560.34 4,747.76 4,938.84 106.30
2 4,829.90 4,975.89 5,138.89 102.01
3 4,860.68 5,070.26 5,315.12 125.95
4 5,348.45 5,490.42 5,628.42 97.85
5 5,008.66 5,143.97 5,238.79 73.10
6 2,872.69 3,046.42 3,253.43 119.44
7 4,030.47 4,103.11 4,159.57 38.54
8 3,865.22 4,007.95 4,164.30 99.37
9 6,861.64 7,004.53 7,216.25 106.26

10 7,269.68 7,527.55 7,726.65 145.73

TABLES 32

Table 8: Results of Strategy I by class

no decomposition (10 · 10 · 8h = 800h)
Best Mean Worst Stdv

Small 10,768.38 11,157.48 11,577.30 93.82
Medium 24,608.03 25,428.30 26,260.06 243.88

Large 14,131.32 14,532.08 14,942.90 127.30

TABLES 33

Table 9: Results of Strategy II by class

fixed decomposition (10 · 10 · 8 · 8h = 6400h)
clusters Best Mean Worst Stdv Rank

16 10,476.20 10,569.07 10,679.76 33.95 2
20 10,454.03 10,543.05 10,645.76 31.43 1
22 10,826.24 10,905.97 11,068.00 29.49 3

Small 26 11,061.94 11,154.92 11,231.33 34.31 4
32 11,453.13 11,546.82 11,627.81 32.36 5
40 12,133.01 12,174.46 12,236.35 14.05 6
53 13,253.88 13,328.14 13,377.80 27.40 7
80 15,489.56 15,512.81 15,564.26 12.85 8
16 21,694.29 21,923.49 22,110.66 74.94 1
20 21,759.04 21,988.95 22,305.77 73.24 2
22 22,102.60 22,217.69 22,422.36 63.66 3

Medium 26 22,410.12 22,546.74 22,799.75 72.60 4
32 23,059.11 23,196.34 23,395.94 41.09 5
40 23,900.03 24,031.28 24,160.76 36.74 6
53 26,059.15 26,216.12 26,377.68 39.17 7
80 30,452.64 30,547.83 30,653.02 25.66 8
16 11,970.13 12,067.94 12,162.91 37.03 1
20 12,165.35 12,238.52 12,343.51 36.75 2
22 12,164.28 12,244.38 12,328.99 45.04 3

Large 26 12,324.99 12,417.89 12,507.92 34.22 4
32 12,587.37 12,688.86 12,748.92 26.57 5
40 12,960.88 13,012.02 13,083.13 16.11 6
53 13,350.07 13,407.04 13,455.22 26.14 7
80 14,402.30 14,487.32 14,594.94 23.97 8

TABLES 34

Table 10: Results of Strategy IIIa by class

POPMUSIC (long) (10 · 10 · 8 · 8h = 6400h)
clusters Best Mean Worst Stdv Rank

16 9,146.16 9,282.50 9,430.24 50.91 8
20 9,102.46 9,249.05 9,391.41 56.45 6
22 9,118.99 9,238.56 9,398.32 46.75 4

Small 26 9,127.43 9,266.33 9,408.25 49.89 7
32 9,122.98 9,234.82 9,349.97 37.09 3
40 9,053.41 9,218.38 9,398.19 50.84 1
53 9,129.94 9,240.59 9,404.85 61.16 5
80 9,089.32 9,227.38 9,397.18 39.62 2
16 20,437.59 20,686.65 20,993.94 104.61 8
20 20,323.06 20,540.00 20,756.90 58.35 6
22 20,268.55 20,581.12 20,848.29 85.18 7

Medium 26 20,252.23 20,472.45 20,726.84 67.86 3
32 20,221.06 20,483.68 20,770.48 92.92 4
40 20,249.71 20,497.42 20,734.10 78.27 5
53 20,269.93 20,471.12 20,810.73 102.07 2
80 20,156.41 20,429.33 20,713.18 60.57 1
16 11,532.49 11,648.60 11,759.85 50.09 7
20 11,451.16 11,599.02 11,724.41 53.92 4
22 11,525.01 11,662.78 11,763.10 54.16 8

Large 26 11,506.05 11,605.74 11,711.06 47.98 5
32 11,395.66 11,553.61 11,688.02 47.80 3
40 11,369.10 11,550.09 11,661.57 65.81 2
53 11,406.17 11,545.81 11,685.24 60.97 1
80 11,505.03 11,607.31 11,826.82 80.29 6

TABLES 35

Table 11: Results of Strategy IIIb by class

POPMUSIC (short) (10 · 10 · 8 · 0.5h = 400h)
clusters Best Mean Worst Stdv Rank

16 9,966.38 10,200.80 10,454.41 84.90 8
20 9,866.84 10,085.59 10,253.86 54.51 6
22 9,883.93 10,140.76 10,423.39 75.67 7

Small 26 9,830.67 10,020.04 10,228.69 78.48 5
32 9,793.71 9,990.40 10,218.84 76.80 4
40 9,651.10 9,865.66 10,098.00 72.80 1
53 9,713.36 9,932.95 10,233.72 112.97 2
80 9,687.67 9,966.59 10,289.52 112.26 3
16 22,352.24 22,743.57 23,090.57 136.76 8
20 22,085.14 22,541.87 23,017.33 104.78 7
22 22,138.83 22,514.31 22,976.41 74.45 6

Medium 26 21,888.54 22,254.29 22,662.73 110.00 5
32 21,741.50 22,100.39 22,518.78 70.69 4
40 21,610.46 22,013.68 22,418.18 132.56 3
53 21,648.42 22,003.30 22,353.57 103.83 2
80 21,450.20 21,800.15 22,237.30 76.30 1
16 12,636.64 12,829.57 13,121.98 63.39 8
20 12,575.81 12,793.70 13,035.89 97.84 7
22 12,585.25 12,784.62 12,952.19 73.43 6

Large 26 12,427.22 12,625.26 12,898.93 60.77 5
32 12,314.27 12,557.46 12,756.27 90.84 3
40 12,332.03 12,564.40 12,766.31 57.71 4
53 12,227.43 12,434.03 12,627.31 86.63 1
80 12,297.36 12,473.14 12,607.14 62.68 2

TABLES 36

Table 12: Best solution values found

Day Best # clusters
1 3,649.09 80
2 4,061.71 32
3 4,022.29 22
4 4,258.19 80
5 4,134.59 40
6 2,423.83 22
7 3,438.83 40
8 3,164.80 80
9 5,427.65 40

10 5,941.45 40

