
Investigation of the Blackouts Complexity Regarding 
Spinning Reserve and Frequency Control in 

Interconnected Power Systems 
 

Omid Alizadeh Mousavi, Mokhtar Bozorg, Rachid Cherkaoui, Mario Paolone 
École Polytechnique Fédérale de Lausanne (EPFL)  

Lausanne, Switzerland 
omid.alizadeh@epfl.ch, mokhtar.bozorg@epfl.ch, rachid.cherkaoui@epfl.ch, mario.paolone@epfl.ch 

 
 

Abstract— The dynamics of power system blackouts and the 
associated Self-Organized Criticality (SOC) behavior is a subject 
that receives continuous attention in view of its inherent 
complexity and relevant consequences. Within this context, the 
paper focuses on the short-term dynamic and, more specifically, 
aims at studying the role of the spinning reserve and frequency 
control on the blackout mechanism. The main contribution is to 
study the influence of the power system interconnections on the 
pre and post blackout system behavior. For this investigation, a 
statistical procedure, based on the Monte Carlo Simulation 
(MCS) method, is proposed to perform a blackout risk analysis 
considering cascading outages and generators frequency 
responses. The proposed procedure is then applied to the IEEE 
118 bus system as an interconnected network characterized by 
three areas. The distribution of the blackout size and the number 
of component outages are assessed for the whole system as well as 
for each area. 

Keywords-component: Blackout Analysis, Power Law 
Distribution, Self-Organized Criticality, Cascading Outages, Monte 
Carlo Simulation. 

 

I.  INTRODUCTION  

Power transmission networks are large and complex 
systems that have experienced wide blackouts in the recent two 
decades (i.e. the Northeast and Italy blackouts in 2003). 
Although large cascading blackouts are relatively rare events, 
the investigation of their mechanism calls for significant efforts 
in view of the relevant consequences. Understanding the 
complex dynamics of power systems components through their 
interactions with different control methods, are the main 
challenges to comprehend a blackout mechanism. In this 
respect, several investigations have been performed in the 
literatures [1]–[14]. An additional aspect that increases the 
complexity of the problem is the operation of single power 
systems within an interconnected supergrid (e.g. interconnected 
networks in continental Europe – ENTSOE and North America 
– NERC). The areas of an interconnected power system 
generally profit of increased security and mutual economically 
efficient generation where higher security margins are a 
consequence of shared active power reserves. However, the 
security of the interconnected power system could decrease 
with the increase of the interconnection and consequently 
increase of the system complexity.  

The blackouts data of the power system in North America 
and China have been studied in [1]–[2] and [3]–[5], 
respectively. These analysis have shown an overall power law 
distribution of the blackout size. This peculiarity demonstrates 
that the dynamic of blackouts can be associated to complex 
systems with Self-Organized Criticality (SOC) feature. In the 
system with the SOC characteristic, there are different types of 
variables with opposed driving forces that, in certain 
conditions, could drive the system into a critical operation 
state. In this state, after the occurrence of an initial fault or 
disturbance, cascading outages could cause a blackout (e.g. 
[6]). An important consequence of the SOC is that occurrences 
of small and large blackouts are associated each other (e.g. [7]). 
Therefore, the delivery of required control actions should be 
carefully evaluated because of counter-intuitive effects of 
opposing forces in the dynamics of complex systems. 

The different aspects of the blackouts complexity could be 
investigated in different time scales, namely, long-term, short-
term, and transient dynamics [6]. Concerning the long-term 
dynamic, in [8]–[10] it has been investigated the role of load 
growth and engineering responses (including upgrades of 
generation and transmission systems) as external opposing 
forces to evaluate the system margins from critical loading in 
monthly or yearly time scales. The short-term dynamic in the 
range between several minutes to an hour, represents the 
internal system driving forces and can be associated to the load 
flow calculation [9]–[11]. The transient dynamics from 
milliseconds to seconds represents the inductive factor initiated 
by transient instability subsequent to large disturbances. The 
successive transient dynamics may cause abrupt outages [12]. 

Various methods have been proposed to model and analyze 
different aspects of blackouts in long-term, short-term and 
transient dynamics, such as, hidden failure model [8], OPA 
(ORNL-PSerc-Alaska) model [9], CASCADE model [13], 
Manchester model [11], Optimal Power Flow (OPF) based 
model [10] and OPF Transient Stability (OTS) model [12]. 

In this paper we focus on the short-term dynamics and 
specifically investigate the complexity of blackouts concerning 
the spinning reserve and frequency control. The main idea is to 
study the complexity of blackouts regarding the counteraction 
of the spinning reserve and the load shedding (including load 
curtailment and under-frequency load shedding) and their 
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impacts on the cascading outages. In traditional approaches, 
regardless cascading outages, it is considered that the higher 
amount of the spinning reserve leads to the higher system 
security. Whereas, in one hand, less amount of spinning reserve 
may cause successive actions of under-frequency load 
shedding which increase the number of small blackouts. On the 
other hand, excessive amount of spinning reserve avoids the 
operation of the under-frequency load shedding and decreases 
the probability of small blackouts. However, it can increase the 
probability of line overloads triggering cascading outages and 
consequent large blackouts. 

In order to study the aforementioned phenomena, a 
blackout risk analysis method based on Monte Carlo 
Simulation (MCS) is proposed. It takes into account the 
following aspects: a) the effects of cascading outages due to the 
overloading and hidden failure of transmission system, b) the 
response of primary frequency control of generation units to 
the power imbalance in each step of cascading outages. 

In view of what above, the proposed model aims at 
effectively show the interaction between spinning reserve and 
load shedding as opposing forces in short-term dynamics 
criticality.  

The structure of the paper is the following: section II 
describes the blackout risk assessment methodology, section III 
illustrates and discusses the simulation results with reference to 
the IEEE 118 bus test system considered as an interconnected 
network with three main areas. 

II. BLACKOUT RISK ASSESSMENT METHOD 

The evaluated blackout risk should demonstrate the power 
law distribution in different measures of the blackout size [7]. 
For this purpose, this section describes a statistical method 
aimed at numerically evaluate the risk of cascading blackouts 
regarding the spinning reserve and the frequency control in the 
power systems. The method considers the following elements: 
a) the effects of cascading outages due to overloads and hidden 
failure of protection systems, b) the response of primary 
frequency control of the generating units to power imbalance 
(i.e. frequency deviation). It must be noted that this model 
represents some of the main important mechanisms associated 
to blackout dynamics. The other concomitant mechanisms, 
such as voltage excursions and collapse, transient instability, 
are not taken into consideration. Generally, these mechanisms 
don’t impose high impact on the spinning reserve and the 
frequency control procedure.  

The flowchart of the proposed procedure for the blackout 
risk assessment is shown in Fig. 1.  

For the blackout risk assessment purpose, the MCS is 
applied to provide contingency scenarios containing both 
generation and transmission outages. The system states are 
derived by sampling the state of each component based on the 
probability of its availability [15]. One of the merits of the 
MCS method is that it has the ability to look beyond the 
probable contingencies taking into account rare, but significant, 
events [16]. Moreover, the dagger sampling is used as a 
variance reduction technique to simulate the rare event cases 
and to improve the performance of the MCS [17]. This method 
is appropriate for two state variables and small probability 

events [18]. In this sampling method, for each component with 
failure probability p, a single failure is randomly selected 
within each 1/p trials. Hence, only one random number 
determines the state of the component for 1/p trials. 

 
Figure 1.  Flowchart of the proposed blackout risk assessment method. 
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The contingency scenarios construct the system states and 
model the initial event. In the simulation procedure, after the 
initial event or after each step of cascading outages, there may 
be a power imbalance and consequently a frequency deviation 
in the system. The frequency deviation spreads uniformly in 
the system and all the generators with primary frequency 
control respond to this power imbalance. A distributed slack 
bus model is considered in such a way that all of the remaining 
dispatched generating units share the power imbalance 
according to their droop frequency-control characteristics. It is 
noteworthy that, when the frequency deviation in the system 
(or in each island of the system after cascading outages and 
system separation) exceeds or drops 5% of the nominal 
frequency (±2.5 Hz in 50 Hz), all the generators in this area trip 
and the system collapses [19]. 

Whenever the frequency deviation is in the allowed range 
(i.e. for a 50 Hz system between 47.5 Hz and 52.5 Hz), but the 
available capacities of the synchronized generating units are 
unable to satisfy the load, a frequency load shedding scheme 
uniformly disconnects the amount of the load to reach a new 
power balance. After the generation and load balance is 
restored, a linearized load flow (DCLF) is applied to calculate 
the power flow and the transmission loading in each step of the 
cascading outages. 

The outage of overloaded lines is one of the most 
important mechanisms in the power system blackouts. 
Moreover, the protection system has an undetected defect that 
remains dormant until an abnormal operating condition is 
reached. This state is often referred as ‘hidden failure’. In order 
to consider the effect of hidden failure in cascading outages, it 
is assumed that each transmission line has a different flow-
dependent probability of incorrect trip. This characteristic is 
modeled as an increasing function of the line flow which is 
seen by the line protective relay. As shown in Fig. 2, this 
probability (Pr) is small and equal to 0.01 for line flow lower 
than the line limit. This probability increases in proportion to 
the line flow between 1 and 1.4 times of the line limit [8]. The 
lines that loaded more than 1.4 times of the line limit 
(overloaded lines) trips. It worth to mention that the hidden 
failures can only occur whenever there is not any overloaded 
line. Also, the lines which are connected to the last tripped 
lines are exposed to the hidden failure of protection system 
according to the obtained probability from Fig. 2. 

 

 
Figure 2.  Probability of incorrect line tripping [8]. 

As above-mentioned, after each step of cascading outage, 
power generation and consumption balance would be restored 
mainly through the generators primary frequency response. 
These generating units reach their new operating points 
typically in tens of seconds. Therefore, the operator has the 
opportunity to implement some remedial actions and minimize 
the amount of lost load, after several steps of cascading 
outages. Investigation on the cascading dynamics of the power 
system blackouts in [8] shows that this model is appropriate to 
demonstrate the power law distribution of the blackouts size. 
Hence, the model of operators’ response to contingencies is 
considered as a linearized OPF (DC OPF). The aim of the DC 
OPF is the minimization of the lost load through re-dispatching 
the generating units and shedding some loads. This DC OPF is 
performed once after the third step of cascading outages. The 
DC OPF is accomplished using simplex algorithm of Linear 
Programming (LP).  

In each step of lines outage, if the system is divided into 
multiple islands, the simulation would be separately performed 
for each island. It is assumed that each island continue its 
operation under this condition considering its own constraints.  

After simulating each scenario, the obtained amount of lost 
loads and the number of transmission component outages are 
utilized to evaluate the risk of blackout. For this purpose, the 
Complementary Cumulative Distribution Function (CCDF) of 
the lost load is calculated simply by ranking the lost load data 
and then scaling the ranked data. Also, the Probability 
Distribution Function (PDF) of the number of transmission 
component outages, as a discrete random variable, is calculated 
simply by assigning a probability to each possible value such 
that the total probability for all number of outages is equal to 1.   

It is worth noting that, in general, for the cumulative 
probability associated with a particular quantity (e.g. lost load), 
sufficient number of the MCS samples should be calculated to 
ensure a specific level of accuracy (±δ) associated to a 
confidence level (α). The accuracy level is used as the stopping 
criteria for the MCS. The percentiles closer to the 
50th percentile of an output distribution will reach a higher 
level of accuracy relatively far quicker than percentiles towards 
the tails. The proposed method in [20] ensures the required 
level of accuracy associated with a value x by determining 
what fraction of the samples fell at or above x. If so far we have 
had n samples of MCS and s have fallen at or above x, the 
cumulative percentile (Px) can be estimated as Px=s/n. Then, by 
using (1) and monitoring s and n we can determine whether the 
required level of accuracy is obtained. The variable x could be 
considered for the lost load as well as the number of outages.       

ߜ ൌ ඨ.ݖ ௫ܲ. ሺ1 െ ௫ܲሻ

݊
																																						ሺ1ሻ

where z is 1.96, 2.56 and 3.29 for 95%, 99% and 99.9% of the 
confidence level, respectively.  

III. SIMULATIONS AND DISCUSSIONS 

The aforementioned complexity in the spinning reserve and 
frequency control is investigated in the IEEE 118 bus system as 
an interconnected system with three areas, shown in Fig. 3. The 
detailed data of generation, load, and the transmission system 

Pr 

1 

Line Limit 1.4 Line Limit 

Line Flow 

Probability 
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are given in [21]. The proposed blackout risk analysis method 
is applied for each area separately as well as for the 
interconnected system. Different amounts of spinning reserve 
are specified for each one of the four study cases. Then, the 
risks of blackout in each area and in the interconnected system 
are compared using the distribution of the blackout size and the 
number of transmission component outages. For this purpose, 
the CCDF of the lost load data and the PDF of the number of 
transmission outages are calculated. The CCDF of the lost load 
and the PDF of the outage numbers are plotted in the log-log 
and log-linear axes, respectively, to effectively illustrate the 
power law region in the distributions. For the convenience of 
comparing different systems, the outage power divided by the 
total load, as a normalized blackout indicator, is used in this 
study. 

The amount of generation and the maximum available 
spinning reserve for each area is given in Table I. The 
simulations are performed for the four study cases with 
different amount of spinning reserve. The spinning reserves (R) 
are presented in percentage of the total capacity of generators. 
The spinning reserve is allocated based on the remained 
capacity of each generator.  

It should be noted that for each area, the neighboring areas’ 
network beyond the interconnections are modeled by an active 
power injection. In this way, each interconnection line is 
modeled by a consumption or generation.  

In order to provide the stopping criteria for the MCS using 
(1), the value x should be defined for any output quantity. The 
value of x shows the percentile of the data which ensured us 
about the accuracy level. Since in this paper we derive the 
CCDF of the lost load and the PDF of the outages number, two 
different values are specified xc and xp, respectively. These 
values for each study case are obtained through sensitivity 
analysis and the results are given in Table II. xc is given in the 
lost load divided by the total load and xp is given in the number 
of outages. Note that all the simulations come with 99% of the 
confidence level. 

TABLE I.  GENERATION AND SPINNING RESERVE OF EACH AREA 

 Generation (MW) 
Maximum Available 

Spinning Reserve (MW) 
Area A 1076 500 
Area B 1866.53 1024.20 
Area C 1547.84 700 

 

 
Figure 3.  IEEE 118 bus system with three areas. 

Moreover, the power law distribution of the lost load 
CCDF and the number of outages PDF could be effectively 
demonstrated by obtaining accuracy level (δ) lower than 0.001 
and 0.0005, respectively. The required samples of the MCS to 
obtain the requested accuracy level are given in Table III. As 
an example, in the interconnected system case study with Rmax, 
for the CCDF of the lost load, the confidence interval 
associated with this accuracy level is shown in Fig. 4. The 
results have been obtained with 940000 MCS iteration 
according to Table III. It should be noted that this case is the 
worst case for the accuracy level among the other case studies.  

The obtained results of the PDF of the number of outages 
for Area A, B, C and the interconnected system are given in 
Fig.5, Fig. 6, Fig. 7, and Fig. 8, respectively. These figures 
effectively demonstrate the power law distribution of the PDF 
of the number of outages. Generally, as the amount of reserves 
increase, the probability of higher number of outages increases. 
This behavior is more explicit in Area B in comparison with 
the other areas. The reason is the higher amount of the spinning 
reserve in Area B. However, the interconnection of the areas 
intensifies this complex behavior as depicted in Fig. 8. Thus, in 
the interconnected system this complexity should receive more 
consideration.  

The CCDF of the lost load data for Area A, B, C and the 
interconnected system are given in Fig. 9, Fig. 10, Fig. 11, and 
Fig. 12, respectively. As it can be seen, the obtained CCDFs 
show the power law distribution behavior.  

TABLE II.  THE ENSURED PERCENTILE 

x Lost Load / Total Load (xc) Number of Outages (xp) 

R 
Area 

A 
Area 

B 
Area 

C 
Interc 

Area 
A 

Area 
B 

Area 
C 

Interc 

5% 0.6 0.5 0.53 0.38 16 10 16 10 
25% 0.54 0.4 0.6 0.43 16 9 16 16 

max% 0.45  0.45 0.48 0.43 16 11 16 16 

TABLE III.  NUMBER OF SAMPLES TO OBTAIN THE REQUIRED ACCURACY 

× 105 Lost Load Number of Outages 

R 
Area 

A 
Area 

B 
Area 

C 
Interc 

Area 
A 

Area 
B 

Area 
C 

Interc 

5% 5.3   3.8 4   8  5.3 5.3 6.5 6.4 
25%  4.7  2.2  1.8  0.6  5.3 5 6 6.4 

max% 3.2  0.1  0.2  9.4a 3.1 7 6 7 

a. The interconnected system case study with Rmax requires 0.00008 accuracy level. 
 

 
Figure 4.  The confidence interval of the interconnected system case study. 

 

 

Area A 
 

Area B 

Area C

68 
70 

72 

24 
69 

15 

19 

30 

33 

34 

38 47  49  65 

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

Lost Load / Total Load

C
C

D
F

 

R
max

 = 52.43%

Confidence Interval - Upper 
 Confidence Interval - Lower

Proceedings of PMAPS 2012, Istanbul, Turkey, June 10-14, 2012

985



 
Figure 5.  PDF of the number of outages for Area A. 

 
Figure 6.  PDF of the number of outages for Area B. 

 
Figure 7.  PDF of the number of outages for Area C. 

 

The slope of the CCDF could be used to show the number 
of events in the power law region. The higher slopes 
demonstrate the higher number of events. According to Fig. 9–
12, the higher amount of the reserve leads to higher slope of 
CCDF in the power law region and consequently increases the 
probability of large blackouts. This behavior becomes more 
significant in the interconnected system as illustrated in Fig. 
12. These results confirm the obtained results from the PDF of 

 
Figure 8.  PDF of the number of outages for interconnected system. 

 
Figure 9.  CCDF of the lost load for Area A. 

 
Figure 10.  CCDF of the lost load for Area B. 

the number of outages. 

It should be noted that the CCDF of the lost load starts at 
different values. This value shows the total number of 
scenarios with lost load per total number of scenarios 
(probability of scenarios with lost load). For instance in Fig. 9, 
the probability of scenarios with lost load considering the 
reserve  5%,  25%  and  46.47%  are  0.139 ,  0.121  and  0.099, 
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Figure 11.  CCDF of the lost load for Area C. 

 
Figure 12.  CCDF of the lost load for interconnected system. 

respectively. In all the study cases, as illustrated in Fig. 9–12, 
the higher amount of the spinning reserve decreases the 
number of scenarios with lost load. It means that the higher 
spinning reserve decreases the number of small blackouts, 
because previously it is demonstrated that the higher spinning 
reserve increases the number of large blackouts. 

IV. CONCLUSION 

The paper has investigated the dependency of blackouts 
regarding the spinning reserve and frequency control in the 
system. At first, it is shown that the complexity exists in short-
term dynamics between under-frequency load shedding and 
spinning reserve, as the opposing forces. Secondly it is shown 
that this complexity becomes more significant in the 
interconnected power system. Moreover, it is illustrated that 
the decrease of the amount of spinning reserve increases the 
number of under-frequency load shedding which increase the 
number of the small blackouts. As a counter effect, the higher 
amounts of spinning reserve increase the probability of 
overloading and cascading outages and consequently large 
blackouts. 

The main conclusion of the paper is that this specific 
complex behavior should be considered in the spinning reserve 
allocation of interconnected systems to prevent the risk of large 
blackouts. In particular, additional constraints should be taken 

into account in the operation of interconnected power systems 
in order to control the participation of each area in the spinning 
reserve provision. 
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