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Abstract. An adaptive mesh refinement method for the solution of the elliptic Monge-
Ampère equation in two dimensions of space is presented. The solution of the ellip-
tic Monge-Ampère equation is obtained through a numerical method based on a time-
stepping strategy for the corresponding flow problem. Continuous piecewise linear finite
elements are used for the space discretization. The error is bounded above by an error
indicator plus an extra term that can be disregarded in special cases. Numerical exper-
iments exhibit appropriate convergence orders and a robust behavior. Adaptive mesh
refinement proves to be efficient and accurate to tackle test cases with singularities.

1 THE MONGE-AMPÈRE EQUATION

Let Ω be a smooth bounded convex domain of R2. We consider the elliptic two-
dimensional Monge-Ampère equation, with Dirichlet boundary conditions, which reads as
follows: find u : Ω→ R satisfying{

det D2u = f in Ω,

u = g on ∂Ω,
(1)

Here f > 0, g are given functions with the required regularity, and D2u is the Hessian
of the unknown function u. In order to accurately approximate the solution of (1), we
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consider the corresponding flow problem and look for a stationary solution of the time-
evolutive problem: find u : Ω× (0, T )→ R satisfying

∂u

∂t
− det D2u = −f in Ω× (0, T ),

u = g on ∂Ω× (0, T ),
u(0) = u0 in Ω.

(2)

Here u0 is a given function, and we assume in the sequel that it is convex, in order to
favor the regularity of a smooth transient towards a stationary solution.

Numerical results will show that the right-hand side f may change sign, as long as the
numerical solution of (2) remains convex and the operator in the parabolic Monge-Ampère
equation remains coercive. Following [4], the Monge-Ampère operator can be rewritten
under a divergence form, namely

det D2u =
1

2
∇ ·
(
cof(D2u)∇u

)
, (3)

meaning that (2) can be interpreted as a, strongly nonlinear, parabolic equation reminis-
cent of a nonlinear heat equation.

When looking for a convex solution, if cof(D2u) remains positive definite, then the
operator is well-posed. The challenge becomes thus to capture convex solutions, and
to derive numerical methods that take into account accurately the strongly nonlinear
diffusion and guarantee the coercivity of the diffusion operator at all times.

2 TIME-STEPPING ALGORITHM AND SPACE DISCRETIZATION

Let ∆t > 0 be a constant given time step, tn = n∆t, n = 1, 2, . . ., to define the
approximations un ' u(tn). In order to handle the stiff behavior of the Monge-Ampère
equation, a semi-implicit time discretization of (2) is considered. In this case, we advocate
a midpoint rule and, un being known, we look for the next time step approximation un+1

satisfying

un+1 − un

∆t
− det

(
D2un+1/2

)
= −fn+1/2 n = 0, 1, . . . , (4)

where un+1/2 := (un+1 +un)/2 and fn+1/2 := f ((tn+1 + tn)/2). Note that (4) is equivalent
to

un+1/2 −∆t det D2un+1/2 = un − 1

2
∆tfn+1/2,

together with un+1 = 2un+1/2 − un. This nonlinear problem is solved with a safeguarded
Newton method at each time step. Details can be found in [2].
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For the space discretization, let us denote by h > 0 a space discretization step, together
with an associated triangulation Th of Ω. We associate with Th a finite element method
based on continuous piecewise linear finite elements. We denote by unh the piecewise linear
continuous approximation of the solution u at time tn, and by uh the approximation of
the stationary solution. The approximation of the second derivatives is achieved via a
mixed method with regularization, as mentioned below.

3 ADAPTIVE ALGORITHM

We’d like to consider the Monge-Ampère equation in presence of singularities. These
non-smooth examples include cases with an exact solution with less or no regularity, or
cases without an exact classical solution. A mesh adaptive strategy is thus advocated
in order to increase the accuracy of the approximation of the solution. The adaptive
algorithm in incorporated into the time-stepping approach, at given time steps, to capture
the stationary solution. Our goal is to build an adaptive mesh such that the estimated
relative error is close to a given tolerance TOL, namely:

0.5 TOL ≤ η

||∇uh||L2(Ω)

≤ 1.5 TOL,

where the (isotropic) error indicator η is computed from a finite element approximation,
and uh is the finite element approximation of the stationary solution u of (1) [2]. With
(1) and (3), the stationary problem reads as follows: find u : Ω→ R such that{ 1

2
∇ ·
(
cof(D2u)∇u

)
= f in Ω,

u = g on ∂Ω,
(5)

Let us define Vg = {w ∈ H1(Ω) : w|∂Ω = g}. The weak formulation of (5) corresponds to:
find u ∈ Vg such that:

1

2

∫
Ω

cof(D2u)∇u · ∇vdx = −
∫

Ω

fvdx, ∀v ∈ H1
0 (Ω) . (6)

Let us denote by Vg,h the space of continuous piecewise linear functions over Th satisfying
the appropriate boundary condition g. The discrete problem reads: find uh ∈ Vg,h such
that:

1

2

∫
Ω

cof(D2
huh)∇uh · ∇vhdx = −

∫
Ω

fvhdx, ∀vh ∈ V0,h.

The approximation D2
huh ∈ V0,h is achieved via a mixed finite element method with a

Tychonoff regularization procedure, as detailed in [1].
The error estimate that we derive is based on a classical residual approach [5]. We

assume for the derivation that g ≡ 0. Let R(u − uh) be the residual defined, for all
v ∈ H1

0 (Ω), by:
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〈R(u− uh), v〉 =
1

2

∫
Ω

(
cof(D2u)∇u− cof(D2

huh)∇uh
)
· ∇vdx

= −
∫

Ω

fvdx− 1

2

∫
Ω

cof(D2
huh)∇uh · ∇vdx.

Proceeding as in [5], we obtain

〈R(u− uh), v〉 ≤ c

(∑
K∈Th

(ηK)2

) 1
2

||∇v||L2(Ω). (7)

where c is a constant that depends on the mesh aspect ratio, but that is independent of
the data f and mesh size h, and where

(ηK)2 = h2
K || − f +

1

2
∇ ·
(
cof(D2

huh)∇uh
)
||2L2(K) +

1

16
hK ||

[
cof(D2

huh)∇uh · n
]
||2L2(∂K)

= h2
K || − f + det D2

huh||2L2(K) +
1

16
hK ||

[
cof(D2

huh)∇uh · n
]
||2L2(∂K),

and [·] denotes the jump of the inside quantity on the internal edges. The error indicator

η is thus defined by η =
(∑

K∈Th(ηK)2
) 1

2 . Using (6), we also obtain:

〈R(u− uh), u− uh〉 =
1

2

∫
Ω

(
cof(D2u)∇u− cof(D2

huh)∇uh
)
· ∇ (u− uh) dx

=
1

2

∫
Ω

cof(D2u)∇ (u− uh) · ∇ (u− uh)

+
1

2

∫
Ω

(
cof(D2u)− cof(D2

huh)
)
∇uh · ∇ (u− uh) dx.

Assuming that u is strictly convex we obtain

〈R(u− uh), u− uh〉 ≥
λ1

2
||∇ (u− uh)||2L2(Ω) (8)

−1

2
||
(
cof(D2u)− cof(D2

huh)
)
∇uh||L2(Ω) ||∇ (u− uh)||L2(Ω) ,

where λ1 is the smallest eigenvalue of cof(D2u). Finally (7) and (8) lead to:

λ1

2
||∇ (u− uh)||L2(Ω) ≤ c η + γ, (9)
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where the additional term γ :=
1

2
||
(
cof(D2u)− cof(D2

huh)
)
∇uh||L2(Ω) highlights the full

nonlinearity of the Monge-Ampère operator. Numerical results will show that the con-
vergence behavior of this indicator is appropriate albeit not always optimal, as expected.

The general approach we propose to solve the elliptic Monge-Ampère equation (1) is
to implement the adaptive algorithm within the time-stepping algorithm to approximate
the solution of the stationary problem. The frequency of the adaptive mesh refinement is
detailed in the numerical experiments.

4 NUMERICAL EXPERIMENTS

In this section, we present various test cases in order to examine the efficiency of the
indicator η. For all test cases, the computational domain is the unit square Ω = (0, 1)2.
The initial time step is ∆t = 5× 10−4, and will be adapted depending on the number of
iterations of the Newton method at each time step, see [3]. Unless specified otherwise,
we initially consider a structured (asymmetric) mesh of size hK = 1/20, then we perform
the first mesh refinement when ||un+1

h − unh||L2(Ω) ≤ 5 × 10−4. This condition is usually
reached in less than 100 timesteps. Then, we adapt the mesh every 50 timesteps, or if
the same previous condition is satisfied, with a maximum of 800 timesteps. In the sequel,
we define hmin := minK∈Th hK and hmax := maxK∈Th hK , and we enforce the condition
(hmax/hmin) ≤ 40 to avoid an unbounded number of iterations of the algorithm.

4.1 Smooth example without mesh refinement

Let us consider first a smooth exponential example:{
det D2u(x, y) = (x+ y + 1) e(x

2+y2) ∀(x, y) ∈ Ω,

u(x, y) = e
1
2(x2+y2) ∀(x, y) ∈ ∂Ω.

The convex solution u of this problem is u(x, y) = e
1
2(x2+y2) for all (x, y) ∈ Ω. In this

example we use a triangular unstructured mesh and we vary hK uniformly, with a stopping
criterion given by ||un+1

h − unh||L2(Ω) ≤ 10−7. Without adapting the mesh, the objective
of this example is to highlight the appropriate properties of the error indicator η on
smooth solutions and unstructured refined mesh. Table 1 shows that the H2 error norm,
the estimation of γ, and the error indicator η converge with order O(h). Note that the
additional factor γ is not negligible but converges with same order as the error indicator;
however, as emphasized in [1], we can expect a better convergence behavior when the
mesh is a structured one.

4.2 Non-smooth example

Let us consider a non-smooth problem:
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Table 1: Smooth exponential example with uniformly refined mesh. Estimated errors of u− uh, values
of the indicator η, number of time steps, and the corresponding convergence orders for various hK .

hK η rate
η

|u− uh|H1(Ω)

||D2u−D2
huh||L2(Ω) rate γ rate Timesteps

0.03125 6.29e-01 - 8.51 7.17e-01 - 4.81e-01 - 150
0.01561 3.33e-01 0.91 11.40 4.74e-01 0.59 3.42e-01 0.49 247
0.01035 2.18e-01 1.04 12.72 3.06e-01 1.07 2.26e-01 1.02 378
0.00776 1.63e-01 1.01 13.60 2.30e-01 0.99 1.69e-01 1.01 379


det D2u(x, y) =

R2

(R2 − (x− 0.5)2 − (y − 0.5)2)2 ∀(x, y) ∈ Ω,

u(x, y) = −
√
R2 − (x− 0.5)2 − (y − 0.5)2 ∀(x, y) ∈ ∂Ω,

(10)

where R = 1/
√

2. The exact solution u of problem (10) is given by

u(x, y) = −
√
R2 − (x− 0.5)2 − (y − 0.5)2, ∀(x, y) ∈ Ω̄.

Note that the solution u is smooth in Ω but ∇u is discontinuous in the four corners of
Ω. Figure 1 illustrates the refined meshes for various TOL, and shows an appropriate
tracking of the discontinuities by mesh refinement in the corners of the domain. Numerical
results are illustrated in Table 2; when TOL decreases, hmin, hmax and the L2 error norm
decrease while the number of elements and nodes increase for both solvers. However,
the indicator η and the H1 error norm do not decrease for decreasing TOL. This test
case being out of the classical theoretical framework, this behavior is probably due to the
singularity of the gradient of the solution.

Table 2: Non-smooth example with data f(x, y) = R2

(R2−(x−0.5)2−(y−0.5)2)2 , g(x, y) =

−
√
R2 − (x− 0.5)2 − (y − 0.5)2 and R = 1√

2
. Convergence behavior of the algorithm for various val-

ues of parameter TOL (final minimal and maximal mesh size, final numbers of elements and nodes, value
of the indicator, H1 and L2 error norms). Results obtained after 800 timesteps.

TOL hmin hmax # elem # nodes η |u− uh|H1 ||u− uh||L2

1.0 6.65e-03 1.43e-01 916 523 0.36e+01 1.32e-01 4.41e-03
0.5 3.00e-03 9.60e-02 2949 1612 0.65e+01 9.30e-02 1.23e-03
0.25 2.03e-03 5.57e-02 9217 4889 1.18e+01 1.03e-01 5.75e-04
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TOL = 1.0 TOL = 0.5 TOL = 0.25

Figure 1: Non-smooth example with data f(x, y) = R2

(R2−(x−0.5)2−(y−0.5)2)2 , g(x, y) =

−
√
R2 − (x− 0.5)2 − (y − 0.5)2 and R = 1√

2
. Graphs of the final adapted mesh for various values

of TOL obtained after 800 timesteps.

4.3 Example without an exact solution

Another non-smooth problem that we consider is{
det D2u(x, y) = 1 ∀(x, y) ∈ Ω,
u(x, y) = 0 ∀(x, y) ∈ ∂Ω,

(11)

Despite the smooth data, this problem does not admit a classical solution. As mentioned
in [1], the main difficulties occur nearby the boundary of the domain. This is confirmed in
Figure 2, where the refined meshes are displayed for different TOL. For TOL ≤ 0.5, the
algorithm successfully refines the mesh around the boundary and keeps a coarser mesh
in the center of the domain. Table 3 shows in particular that the indicator η does not
decrease for decreasing TOL. We note that, when TOL = 0.25, the reason why the
minimal mesh size hmin does not decrease remains to be investigated.

TOL = 1.0 TOL = 0.5 TOL = 0.25

Figure 2: Non-smooth example with data f(x, y) = 1 and g(x, y) = 0. Graphs of the final adapted mesh
for various values of TOL obtained after 800 timesteps.
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Table 3: Non-smooth example with data f(x, y) = 1 and g(x, y) = 0. Convergence behavior of the
algorithm for various values of parameter TOL (final minimal and maximal mesh size, final numbers of
elements and nodes, value of the indicator, and minimal solution of uh error norm). Results obtained
after 800 timesteps.

TOL hmin hmax # elem # nodes η min(uh)

1.0 1.31e-01 3.16e-01 46 30 4.41e-01 -0.168726
0.5 2.89e-03 8.61e-02 4454 2496 2.82e-01 -0.173368
0.25 2.76e-03 5.40e-02 9916 5279 5.83e-01 -0.179461

5 CONCLUSIONS

We have derived an isotropic error estimate to introduce an adaptive mesh refinement
method for the solution of the elliptic Monge-Ampère equation. The adaptive algorithm is
inserted into a time-stepping scheme for an evolutive Monge-Ampère equation. It allows
to track more accurately the singularities of the solution or of its gradient. Numerical
experiments have exhibited optimal convergence properties for smooth cases, but to be
improved when in presence of singularities.
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