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Abstract

Longitudinal partial volume effects (z-axial PVE), which occur when an object partly

occupies a slice, degrade image resolution and contrast in computed tomography

(CT). Z-axial PVE is unavoidable for subslice objects and reduces their contrast

according to their fraction contained within the slice. This effect can be countered

using a smaller slice thickness, but at the cost of an increased image noise or radia-

tion dose. The aim of this study is to offer a tool for optimizing the reconstruction

parameters (slice thickness and slice spacing) in CT protocols in the case of partial

volume effects. This optimization is based on the tradeoff between axial resolution

and noise. For that purpose, we developed a simplified analytical model investigating

the average statistical effect of z-axial PVE on contrast and contrast-to-noise ratio

(CNR). A Catphan 500 phantom was scanned with various pitches and CTDI and

reconstructed with different slice thicknesses to assess the visibility of subslice tar-

gets that simulate low contrast anatomical features present in CT exams. The

detectability score of human observers was used to rank the perceptual image qual-

ity against the CNR. Contrast and CNR reduction due to z-axial PVE measured on

experimental data were first compared to numerical calculations and then to the

analytical model. Compared to numerical calculations, the simplified algebraic model

slightly overestimated the contrast but the differences remained below 5%. It could

determine the optimal reconstruction parameters that maximize the objects visibility

for a given dose in the case of z-axial PVE. An optimal slice thickness equal to

three-fourth of the object width was correctly proposed by the model for nonover-

lapping slices. The tradeoff between detectability and dose is maximized for a slice

spacing of half the slice thickness associated with a slice width equal to the charac-

teristic object width.
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1 | INTRODUCTION

The detection of thin objects with low contrast in computed tomog-

raphy (CT) is crucial to differentiate anatomical features with close

densities and distinguish tumors. Consequently, studies regularly

investigate the best settings to improve object detectability for

different tasks.1–3 Contrast and detection of small objects can be

dramatically lowered when spatial resolution along the longitudinal

z-axis is not adapted to object thickness. Z-axial (longitudinal) partial

volume effect (PVE) is unavoidable for subslice objects (objects thin-

ner than the slice width). It can also randomly affect those smaller

than twice the slice thickness according to their fraction contained

within the slice. Object undersampling in the longitudinal direction

introduces quantitative biases in Hounsfield units (HU), and

adversely lowers the contrast.4–6 Contrast loss introduced by z-axial

PVE is not routinely considered and is often overlooked in clinical

practice since it can be reduced using thin-slice scanning. Recon-

structing thin slices is, however, associated with small pitches, high

noise, or increased dose. Nevertheless, tradeoffs between axial reso-

lution and noise can be envisaged to optimize CT protocols for an

envisaged clinical application.7 Previous studies have tested various

protocols to find the slice thickness,8–10 slice spacing,11,12 or interpo-

lation algorithm13 that would give the best compromise between

z-axial resolution and noise. Although the physical relationships

between axial resolution and noise in CT are long known, the

stochastic influence of z-axial PVE on the contrast of small objects

has never been taken into account. Clinical medical physicists have,

however, to deal with partial volume effects for (1) optimizing the

objects detectability, and (2) minimizing the dose, which is especially

important in CT.1,14

The goal of this study is to offer a tool for optimizing the recon-

struction parameters (slice thickness and slice spacing) in CT proto-

cols for a given detection task involving z-axial PVE. The z-axial PVE

is a complex phenomenon that implies statistical variations due to

the object positioning within the slice, and a simple signal averaging

in the slice volume is not adequate for predicting contrast attenua-

tion and detection jeopardizing. The exact determination of an

expected contrast-to-noise ratio (CNR) with z-axial PVE requires

numerical computation based on the object and slice z-profiles, and

the optimization problem is therefore difficult to resolve in clinical

practice. This study develops an approximate analytical model that

allows an easy determination of the reconstruction parameters cor-

responding to the highest CNR or lowest dose for cross-sectional

imaging of thin objects. It uses a quantitative relationship between

noise, axial resolution, and dose to establish the optimal reconstruc-

tion parameters that maximize detection tasks with z-axial PVE. It

averages out the stochastic object positioning within the slices, as a

function of object size and slice thickness. First, it is tested using a

standard image quality phantom made of well-calibrated objects,

shapes, and length. Then, it is compared to the exact solution of the

problem determined by numerical computation. The contrast, CNR,

and detectability of thin objects of different lengths are assessed

with z-axial PVE for different imaging conditions (pitch, noise, and

slice thickness). A reader study confirms that the detectability of

subslice targets is CNR dependent, as expected from previous results

obtained for larger objects,2,15 and validates the relevance of the

algebraic model for optimal scanning parameters choice and dose

minimization.

2 | MATERIALS AND METHODS

2.A | Theory

2.A.1 | Exact calculation

When a voxel contains different densities, the resulting signal within

the voxel is the average of the signals from the different materials.

The signal (HU) for an object located partially in a slice is weighted

according to its fraction within the slice. Accordingly, the contrast

C(z) of such objects may vary depending on their z-position in a slice.

It is given by the convolution product between the longitudinal con-

trast profile C0(z) of the object and the slice sensitivity profile

(SSP(z)), the point spread function (PSF) of the imaging system along

the z-axis

C zð Þ ¼ C0 zð Þ � SSP zð Þ ¼
Z1

�1
C0 fð ÞSSP z� fð Þdf: (1)

For the particular case of a cylindrical object of length L and CT

number l located in a background of CT number l0,

C0 zð Þ ¼ l� l0ð Þ � rect z
L

� �
; with the rectangular function

rect xð Þ ¼ 1; x 2 ½�0:5;0:5�
0; otherwise

�
:

(2)

The statistical expected object contrast C is given by the value

of C(z) averaged over all the possible z-positions within the effective

slice thickness Te

C ¼ 1
Te

Z Te=2

�Te=2
C zð Þdz: (3)

The effective slice thickness (Te) depends on the slice sensitivity

profiles (SSP) extent. The full width at half maximum (FWHM) is

used for Te in usual regulations.16,17 The SSP is, however, not fully

characterized by its FWHM. The longitudinal signal spread will

depend on its entire shape: long tails will degrade the z-resolution

more than a close to rectangular SSP, even if both have the same

FWHM.18 For a more precise characterization of the longitudinal sig-

nal spread, the mean width of the SSP was used as a measure of the

effective slice thickness in this study.

2.A.2 | Simplified algebraic model

A simplified algebraic expression for the expected contrast can be

used to provide an understanding relationship between the quantita-

tive parameters involved in the contrast loss. This is done by approx-

imating the SSP with a rectangular function of height equal to one,
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and width equal to the effective slice thickness (Te). The object con-

trast profile C0(z) can also be approximated by a rectangular function

of height C0 and width L. In this study, L represents the characteris-

tic object length—for example, p
4 d for a sphere of diameter d. Con-

sidering the slice which contains the largest proportion of the object

(the slice with the highest object contrast), the object length in this

slice can be between L/2 and min(Te, L). Considering k = L/Te the

ratio between the characteristic object length and the effective slice

thickness, z-axial PVE may occur only if k < 2. Two cases have to be

further distinguished: 1) the object is thinner than Te (0 < k ≤ 1), and

z-axial PVE is unavoidable; 2) the object width is between one and

two-times Te (1 ≤ k < 2), and z-axial PVE will occur stochastically,

depending on the object fraction within the slice.

Figure 1 shows the convolution product between the two rectan-

gular functions of lengths L and Te. The z-position of the object is

here defined from the central z-point of the object (since objects may

have different lengths) relative to the edge of the slice (positioned at

z = 0). The plain line in Fig. 1 shows the object length L(z) in the slice

containing the largest object length, as a function of the object

z-position, for nonoverlapping slices. The position of this slice covers

the red area. The statistical expected object length L contained in this

slice is an average over all possible z-positions of the object and is

given by the average height of the trapezoidal red area in Fig. 1,

L ¼ 1
Te

Z Te=2

�Te=2
L zð Þdz ¼ L 1� k=4ð Þ: (4)

Still considering the slice with the largest object length (slice with

the highest contrast), the expected object contrast C will be

weighted by the expected object fraction within the effective slice

width (L=Te). For a homogeneous object of CT number l in a back-

ground of CT number l0, this gives

C ¼ l� l0ð Þ L
Te

¼ k 1� k=4ð Þ l� l0ð Þ: (5)

Equation (5) shows that z-axial PVE reduces the expected

object contrast by the factor k(1 � k/4) ≤ 1 (for k ≤ 2). The

highest and lowest contrasts possible, always considering the slice

with the highest contrast, occur when the entire object and half

object are contained in the slice. They are given in eqs. (6a) and

(6b), respectively.

Cmax ¼ k l� l0ð Þ (6a)

Cmin ¼ k
2

l� l0ð Þ (6b)

Equations (4) and (5) are valuable for nonoverlapping slices only.

For a slice spacing aTe (a ≤ 1), the partial overlap between adjacent

slices leads to a decrease in the length over which the expected

object length and contrast must be integrated (red area in Fig. 1).

The integration length is then reduced to (2a � 1)Te instead of Te.

The expected object length and contrast for 0.5 < a ≤ 1 are given in

eqs. (7) and (8), respectively.

L ¼ L a� k=4ð Þ � Te 1� að Þ2
2a� 1

(7)

C ¼ k a� k=4ð Þ � 1� að Þ2
2a� 1

l� l0ð Þ (8)

As expected, the particular case a = 1 (non-overlapping slices) in

eqs. (7) and (8) leads to eqs. (4) and (5), respectively. For a between

0.5 and 1, the smaller the slice spacing the closer the expected con-

trast curve approaches the highest contrast possible (Fig. 2). Addi-

tionally, the range in which z-axial PVE can occur is determined by

k < 2a, and decreases with a. A value of a equal to 0.5 will give the

highest expected contrast for a given slice thickness. Reducing a to

less than half is useless.

2.B | Image acquisition

A cylindrical Catphan 500 phantom (The Phantom Laboratory,

Salem, NY) of 20 cm diameter was used to assess the visibility of

thin targets that simulate low-contrast anatomical features present

in CT exams. A GE LightSpeed VCT scanner (GE Healthcare,

Waukesha, WI) was used to acquire the CTP515 module of the

phantom that contains six groups of rods of low contrast (A, B, C,

a, b, c in Fig. 3) arranged in two concentric circles with a

F I G . 1 . Maximal length L(z) of a rod contained in nonoverlapping
slices of effective thickness Te as a function of its z-position. The
z-axis position of the object is here defined from the central z-point
of the object. T1 = min(Te, L)�L/2 and T2 = max(Te, L) �L/2.

F I G . 2 . Maximal, minimal, and expected contrasts as functions of
the ratio between object and slice thicknesses, calculated from the
analytical model for different slice spacing.
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homogeneous background. Only rods A, a, b, and c of 40, 7, 5, and

3 mm length, respectively, and of 9 mm diameter were considered

in our study (circled rods in Fig. 3). These four rods have the same

density. Rod A of length 40 mm is not subject to z-axial PVE and

was therefore used for reference measurements of object signal (l)

or contrast (l�l0).

The phantom was placed in the phantom holder supplied by

the manufacturer on the CT table, and aligned to the isocenter

using the alignment lasers. Orthogonal scout views were used to

control the correct positioning of the phantom. All acquisitions

were performed at 120 kV, with a rotation time of 1 s, a

8 9 1.25-mm collimation, and a scan field of view (SFOV) of 25 cm

in diameter, using the helical mode with two pitch values, 0.875

and 1.675, and the automatic current modulation with three noise

indexes: 5, 10, and 15. For each protocol (Table 1), the data were

reconstructed by filtered backprojection (FBP) with a standard

abdominal reconstruction kernel into three nonoverlapping slices of

1.25, 2.5, and 5 mm. The CTDIvol displayed by the scanner for the

18 protocols are reported in Table 1. Ten acquisitions of each pro-

tocol were performed, slightly moving the phantom along the longi-

tudinal z-axis between each acquisition, while the slices were

always reconstructed from the same z-position. This created vari-

ability in the z-position of the rods and induced stochastic realiza-

tions of z-axial PVE.

2.C | Effective slice thicknesses (Te)

The 0.28-mm tungsten carbide bead of the CTP528 module of the Cat-

phan phantom was used as a subpixel point source to determine the

slice sensitivity profiles (SSP) of the CT slices along the z-direction.19

The bead was scanned using the lowest noise index (NI = 5) and two

pitches of 0.875 and 1.675. Slices of the bead were reconstructed with

the same parameters as the CTP515module, by FBP into the three slice

thicknesses of 1.25, 2.5, and 5 mm, using the standard abdominal

reconstruction kernel. Determining the SSP requires a thin z-oversam-

pling with strong overlap between slices. The images of the bead were

therefore reconstructed with a slice spacing equal to one-tenth of the

slice thickness (90% overlap). A circular region of interest (ROI) was

placed within the slice of the bead with the highest signal, and

propagated through all adjacent slices. The oversampled signal value of

the bead in the ROI was plotted against the slice location producing the

SSP. Because the bead is subslice sized, no correction for the bead size

was applied on the measured SSP.

2.D | Contrast, noise, and contrast-to-noise ratio
(CNR)

For each acquisition, the slice with the highest object contrast was cho-

sen and a circular ROI placed within each of the four cylinders gave the

mean pixel value (HU) for each of them (Fig. 3). Another circular ROI of

50 pixels in diameter positioned in the background at the center of the

phantom was used for mean background signal (l0) and noise measure-

ments. The contrast for each cylinder corresponds to the absolute dif-

ference between the cylinder and the background HU values, averaged

over the 10 acquisitions. Rod A of length 40 mm was not subjected to

z-axial PVE and its contrast, equal to (l�l0) for all protocols, was taken

as the reference contrast used to normalize all rod contrasts. The mea-

sured mean contrasts were then compared to the expected contrasts

obtained with numerical calculations of eq. 3, and with the approxi-

mate analytical eq. 5. The standard deviation of the pixel values in the

background ROI (r0) provided the noise level. The expected CNR (CNR

) for each cylinder was then calculated using eq. (9).

CNR ¼ C
r0

(9)

2.E | Subjective image quality evaluation

Phantom scoring was used to rank the perceptual image quality

against the CNR, whose value is reduced by z-axial PVE. The detec-

tion test was performed by four human observers on an Eizo Radi-

Force R22 diagnostic screen whose greyscale display function was

calibrated to the Dicom Part 14 standard. The standard display win-

dow W/L = 400/40 for routine abdominal examinations was used.

For each CT series, only the image with the highest contrast was

shown to the observers. The 180 images (10 acquisitions 9 18 pro-

tocols) were randomly displayed one at a time to each observer

without any parameter displayed. Display time per image was free

F I G . 3 . CT slice of the CTP515 module of the Catphan 500
phantom (circled: rods considered in the study).

TAB L E 1 Acquisition and reconstruction parameters and CTDIvol of
CT protocols.

Protocol Noise index Pitch CTDIvol (mGy)
Slice thickness
(mm)

1/2/3 5 0.875 106.5 1.25/2.5/5.0

4/5/6 1.675 55.6 1.25/2.5/5.0

7/8/9 10 0.875 55.2 1.25/2.5/5.0

10/11/12 1.675 26.5 1.25/2.5/5.0

13/14/15 15 0.875 24.5 1.25/2.5/5.0

16/17/18 1.675 11.8 1.25/2.5/5.0
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but cumulated observation time was limited to 45 min per observer

per day. Visualization of the four cylinders A, a, b, and c (Fig. 3) was

noted on a three level scale, 0, 0.5, and 1, corresponding to a non-

visible, partially visible, and totally visible object. The average image

quality score for the 10 acquisitions of a given protocol was estab-

lished for each cylinder and observer. The agreement between the

four observers was assessed with the Fleiss’ kappa test using the R

statistical software (R Development Core Team).

3 | RESULTS

3.A | Subjective image quality evaluation

The concordance level of subjective image scoring for the four

human observers (j) was 0.504, and indicated an adequate inter-

reader agreement according to the scale of Landis and Koch.20 The

average image quality scores of the four observers were therefore

considered for the 18 protocols and the four cylinders. The average

scores were linked to their corresponding object CNRs with a fitted

sigmoid curve (Fig. 4).

3.B | Noise level

For a given CT geometry, the number of photons detected per voxel

is proportional to the CTDIvol and voxel volume (and thus slice thick-

ness). For a quantum limited system, noise statistics in the images is

Poissonian and noise (standard deviation of pixel values) is inversely

proportional to the square root of the product CTDIvol by slice thick-

ness (T) for a fixed spatial resolution in the slice plane.21 Standard

deviation of HU (r0) measured in the homogeneous circular ROI at

the center (background) of the phantom were thus fitted using a

log–log linear function of the product CTDIvol by slice thickness (T),

log r0ð Þ ¼ a� b � log CTDIvol � Tð Þ: (10)

Fit coefficients a = 1.808 HU and b = 0.505 HU/(mGy mm) were

obtained with a Pearson’s correlation coefficient of �0.965 (Fig. 5).

Equation 10 was also tested for other noise data obtained on scan-

ners equipped with different iterative reconstruction (IR) algorithms.

Fit coefficients b equal to 0.229, 0.292, 0.380, and 0.518 were

obtained with a high degree of linear correlation for the IR algo-

rithms model-based iterative reconstruction (MBIR), ASIRV (adaptive

statistical iterative reconstruction-V) 0, ASIRV 50, and ASIR (adaptive

statistical iterative reconstruction) 50, respectively (Fig. 5). The

square root dependence of noise with the dose and the assumption

that quantum noise is dominant in the slices is confirmed for FBP

and ASIR 50 reconstruction algorithms (fitted coefficient b very close

to 0.5 in eq. 10).

3.C | Contrast reduction factor

All the FWHMs and mean widths of the measured SSP (Fig. 6) given

in Table 2 were close to the corresponding slice thicknesses, with

differences smaller than � 0.11 mm. The only exception is for the

1.25 mm slice with a pitch of 1.675, whereas effective widths of

1.63 and 1.69 mm were measured. Figure 7 shows the numerical

calculations of the normalized contrast profiles C(z)/(l � l0)

obtained with eq. (1) for the different combinations of cylinders

lengths and slice thicknesses. The expected normalized contrasts

C=ðl� l0Þ calculated with eq. (3) from the curves in Fig. 7 were

taken as the (exact) reference values for the expected contrast

reduction factors (Table 2).

The contrast of rod A (not subject to z-axial PVE) was constant

for all the protocols and equal to the nominal contrast value of 8 HU.

F I G . 4 . Relationship between the subjective image quality scores
averaged over the four observers and the measured CNRs for the
four rods.

F I G . 5 . Noise at the center of the phantom as a function of the
product between CTDIvol and slice thickness.

F I G . 6 . SSP measured for the three slice thicknesses and two
pitches used in the study.
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The contrasts of rods a, b, and c measured on the slices and averaged

over the 10 different acquisitions were thus normalized by 8 HU.

This gave the corresponding contrast reduction factors for the differ-

ent ratios k = L/Te. The measured contrast reduction factors were

then compared to their corresponding theoretical values obtained (1)

with numerical calculations of eq. (3), and (2) with the simplified alge-

braic model (eq. 5; Fig. 8). All the measured contrasts are at their

nominal value for k ≥ 2, where no z-axial PVE occurs. But as

expected, they fall off as a function of k below 2, due to z-axial PVE.

The variability in the averaged contrasts measured for a given L/Te

ratio shows statistical variability in z-axial PVE between the data

acquired with the three different noise indexes. Averaged normalized

contrasts measured on the slices are consistent with the calculated

expected contrast reduction factors given in Table 2. An exception

happened for the smallest L/Te ratio (k = 0.6) for which measured

contrasts were up to 50% lower than the theoretical values obtained

from numerical and analytical calculations. Compared to the numerical

calculation, the simplified algebraic model slightly overestimates the

contrast but the differences always remain below 5%.

3.D | Contrast-to-noise ratio (CNR)

The expected contrast from the simplified model (eq. 8) and the

noise level from eq. (10) were used to determine the theoretical

expected CNR (CNR ) of the rods as a function of the ratio k = L/Te,

CNR kð Þ ¼ 10�a CTDIvol � Lð Þb C kð Þ
kb

: (11)

The measured CNR agree with the values predicted by eq. (11),

except for the smallest L/Te ratio, as measured contrasts were up to

50% lower than the theoretical values (Fig. 9). Equation (11) was

used to analyze the slice thickness required to restore the CNR to

an optimal value for a given CTDI. The expected CNR is the highest

for k equal to

k

����
CNRmax

¼ 2
2� b

a 1� bð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b 2� bð Þ 2a� 1ð Þ

q� �
; (12a)

that reduces to eq. 12b for slices reconstructed by FBP (b = 0.5)

k

����
CNRmax

¼ 2
3

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 6aþ 3

p� �
: (12b)

The measured CNR shown in Fig. 9 reach a peak for k = 4/3, as

predicted by eq. (12b) for nonoverlapping slices (a = 1). The choice

TAB L E 2 FWHM and mean width of the SSP, and expected contrast reduction factor obtained from eq. (2) for the three rods.

Slice thickness (mm) Pitch
FWHM of the
SSP (mm)

Mean width of the
SSP (mm)

Expected contrast reduction factor

Rod a (L = 3 mm) Rod b (L = 5 mm) Rod c (L = 7 mm)

1.25 0.875 1.15 1.20 0.988 0.999 0.999

1.675 1.63 1.69 0.959 1.000 1.000

2.5 0.875 2.49 2.56 0.769 0.962 0.998

1.675 2.52 2.61 0.763 0.942 0.995

5.0 0.875 5.04 5.00 0.493 0.733 0.893

1.675 5.09 4.96 0.470 0.709 0.869

F I G . 7 . Numerical calculations of normalized contrasts for rods of
lengths L = 3, 5, and 7 mm as functions of their z-position for the
three slice thicknesses and two pitches used in the study.

F I G . 8 . Expected normalized contrasts of the rods measured on
the slice with the highest object contrast compared to the (exact)
numerical calculations and the algebraic model.
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of a slice thickness T = 0.75L maximizes the expected visibility of

objects of length L in this case. For partially overlapping slices

(a < 1), the optimal k decreases with the slice spacing and reaches 1

for a = 0.5. This implies that the optimal slice thickness increases

with the slices overlap from 0.75L up to L for 50% overlap.

Figure 10 shows the iso-CNR curve based on eq. (11) as a function

of the ratio between the chosen and optimal slice thickness. It indi-

cates how a suboptimal choice in slice thickness should be compen-

sated by an increase in CTDI for maintaining a given CNR in the

case of z-axial PVE. A choice of a slice two times thicker than the

optimal thickness would, for example, necessitate a dose increase of

28% to hold a constant CNR for nonoverlapping slices. Figure 11

gives the optimal parameter k as a function of slice spacing and

noise behavior (parameter b). For nonoverlapping slices recon-

structed with iterative algorithms, the optimal slice thickness is thin-

ner than 0.75L with Te/L = 0.57, 0.60, 0.65, and 0.75 for MBIR,

ASIRV 0, ASIRV 50, and ASIR 50, respectively.

4 | DISCUSSION

Decreasing the slice thickness restores axial resolution and contrast

in the case of z-axial PVE, but adversely increases image noise. An

optimal slice thickness dependent on the object size is therefore

expected to maximize the detection of a thin object jeopardized by

z-axial PVE. But, the knowledge of the optimal reconstruction

parameters requires numerical computation based on the complex

object z-shape and SSP. Optimization of slice thickness is thus not

routinely performed in clinical practice. A simplified analytical model

that determines easily the optimal slice thickness and spacing that

maximizes the CNR and detection for a given CTDI was proposed

(eqs. 5 and 8). It approximates the SSP and the object z-profile by

two rectangular functions of widths equal to the effective slice

thickness (Te) and the characteristic object length (L). The character-

istic length of the object L and noise coefficient b are the two

parameters determining the optimal slice thickness and spacing. For

nonoverlapping slices with a perfect quantum noise behavior (FBP

and ASIR 50), the model proposes an optimal slice thickness

T = 0.75L. The tradeoff between detectability and dose is maximized

by a slice spacing of half a slice thickness equal to the characteristic

object length. The model determined the expected object contrast

loss due to z-axial PVE with less than 5% error compared to numeri-

cal calculations. An exception concerned the smallest L/Te ratio

(k = L/Te = 0.6), for which differences in expected contrasts of up to

50% were observed. The origin of this bias remained unknown, but

it affected only the precision of the model for very strong z-axial

PVE.

Phantom scoring was used to study the detectability of subslice

targets and rank the perceptual image quality against the CNR,

which is commonly used as a figure of merit for image quality

assessment. This assessed the negative impact of z-axial PVE on the

detection of low-contrasted objects, and is consistent with results

obtained in a previous study.22 A straightforward relationship

between CNR and detection was confirmed, as expected by the

Rose model for the considered conditions (objects of low contrast in

homogeneous noisy background).23 Detectability and CNR of sub-

slice targets followed a sigmoidal function, in agreement with

F I G . 9 . Expected CNR normalized to its maximal possible value as
a function of the ratio L/Te.

F I G . 10 . CTDI variation as a function of the ratio between the
chosen and optimal slice thicknesses for maintaining a constant CNR
(nonoverlapping slices, a = 1).

F I G . 11 . L/Te ratio (k) for maximizing the CNR as a function of
slice spacing a and noise coefficient b.
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Weber’s law. This law predicts the detection probability of a given

object as a function of the stimulus magnitude on the image follows

a psychometric curve described by the integral of the normal proba-

bility curve.24

In our article we used cylindrical rods to represent for instance

tumors of different sizes. If the rods were placed at different orien-

tations it would have change two aspects. Indeed, a change in object

orientation relative to the longitudinal CT z-axis reverses to a change

in the characteristic longitudinal object length L. It will also affect

the sharpness of the object boundaries. These two effects are con-

sidered in our model through the calculation of the characteristic

object length (L), defined as the average width of the object z-profile.

A modification in the orientation of the objects would shorten L, and

thereby the value of the variable k = L/Te considered in our study.

The optimal slice thickness given by the model would thus change

with the object orientation in the same way it changes with the

object length or size.

Given the simplicity of the objects’ shape and phantom’s geome-

try used in our study, the algebraic model was tested under experi-

mental conditions that are as close as possible to the assumptions of

the model (objects with rectangular z-profiles in homogeneous noisy

background). To be validated, the model needed standardized and

reproducible object shapes. A lower degree of accuracy is thus

expected in a clinical environment, where tumors have complex

shapes and the patient images contain anatomical noise. Neverthe-

less, results from this study suggest that the model provides a rea-

sonable guidance to optimize reconstruction parameters in clinical

protocols. For example, the detection of rod c in protocol 3 was

compromised by z-axial PVE (detection score = 0.375, CNR = 0.41).

This result was expected since the parameter k was at a suboptimal

value of 0.6 due to a slice too thick (5 mm) compared to the object

length (3 mm). Switching to protocol 5, the detection score of rod c

could be dramatically improved to 0.95 (CNR = 1.18) while reducing

the CTDIvol by half (from 106.5 to 55.6 mGy). Protocol 5 used a

slice thickness reduced to 2.5 mm and a pitch enlarged by two, cor-

responding to an improved parameter k of 1.2 close to the optimal a

value of 4/3 given by the model. Protocol 5 reduced z-axial PVE and

thereby increased the CNR, even with a lower CDTIvol. This shows

that an optimal slice thickness may avoid increasing the dose in pur-

suit of a better detection. In clinical practice, orders of magnitude of

lesions length have to be roughly estimated and be balanced against

the choice of slice thicknesses for protocols optimization. We would

for example recommend the use of a characteristic length L ¼ p
4 d for

spherical lesions of diameter d, giving an optimal slice thickness T ffi
0.6d for nonoverlapping slices. The choice of a slice spacing of half

the slice width would optimize the tradeoff between detectability

and dose, and increase the optimal slice thickness to T ffi 0.8d. Clini-

cal experiments on human subjects could further validate the model

for images with complex anatomical features and anatomical noise.

This may be the scope of a future work that simulates various tumor

shapes in tissue-like surroundings.

Nevertheless, the analytical model may be easily applied for a

complicated clinical task such as liver lesion detection. For example,

Soo et al8 found that a slice thickness of 5 mm allowed a better

detection, by radiologists, of lesions <5 mm in diameter than 2.5,

7.5, and 10 mm slices. Z-axial PVE dramatically decreased the detec-

tion rate from 95% for 5 mm slices to 65% and 42% for the thicker

7.5- and 10-mm slices, respectively, while an increase in image noise

on the thinner 2.5-mm slices decreased detection to 90%. An opti-

mal slice thickness is therefore expected between 2.5 and 5 mm for

lesions ~5 mm in diameter. Our model applied to this task gives an

optimal slice thickness of T ffi 0.6d = 3 mm for spherical lesions of

diameter 5 mm (for nonoverlapping slices), in agreement with the

results of Soo et al’s study. The choice of a slice spacing of half the

slice width would increase the optimal slice thickness to T ffi 0.8d =

4 mm and optimize the ratio detectability / dose. A slice spacing of

half the slice width maximizes the expected detectability, and allows

a decrease in dose, but with tradeoff of increased image processing

time, time for images review, and data storage requirements. The

model may thus reasonably help clinical medical physicists optimize

reconstruction parameters in cross-sectional imaging protocols, and

maximize the balance between detectability and dose for subslice

objects.

5 | CONCLUSION

An analytical model for the average statistical effect of z-axial PVE

on contrast-to-noise ratio (CNR) and detection was developed, and

allowed to determine the optimal slice thickness and spacing for a

given detection task. Z-axial PVE was confirmed to significantly

degrade the detection of thin objects in CT imaging, causing a loss

in CNR. The analytical model provides an understanding relationship

between axial resolution, noise, and dose that takes into account

the expected contrast falloff due to z-axial PVE. The averaged con-

trasts and CNR measured on the slices for different object sizes and

positioning were in a good agreement with the model. The model

allows knowledgeable selection of the reconstruction parameters

(slice thickness and spacing) that, for a given z-axial PVE, are

required to restore the CNR to values that maximize the tradeoff

between resolution and noise, or minimize the dose for a given

object detection task. This model will contribute to help optimize

CT protocols.
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