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A B S T R A C T   

Variability in local weather patterns has long been suggested as a major barrier impeding laypeople from 
recognizing long-term climate trends. However, as humans are able to detect and interpret rapid signal fluctu
ations, it seems psychologically plausible to assume that they are able to integrate short-term variations of 
weather variables into their mental representations of climate change. Using a combined analysis of social media 
and weather station data, here we investigated the impact of the short-term volatility of local temperature on 
climate change-related tweets from 2014 to 2017. We found a nonlinear hockey stick relationship between 
weekly temperature volatility and climate change-related tweets, a volatility rise of 1 ◦C corresponds to an 82% 
increase in climate change tweets when volatility is above 3.5 ◦C. This volatility effect was observed from 2016 
onwards, suggesting a recent change in people’s mental representations of climate change. This study provides 
empirical evidence illustrating that in the public mind, climate change may not be represented as a mere tem
perature increase any more, but as a disruption of the climate system in general.   

1. Introduction 

How do we know that the climate is changing? While the scientific 
investigation of climate change tracks incremental changes occurring at 
the timescale of decades (IPCC, 2014), public beliefs and concerns about 
climate change are largely shaped by immediately accessible local 
weather information. Perceived or experienced deviations of local 
temperature averages from normal reference temperatures result in 
increased climate change concern (Howe et al., 2019). This local 
warming effect reflects heuristic information processing (Kahneman and 
Frederick, 2012) where boundedly rational humans replace judgments 
about attributes that are difficult to compute (in this case, global climate 
trends) with judgments about readily available, more salient informa
tion (average local temperatures). Local variability in weather patterns, 
in contrast, has been suggested as a major cognitive barrier preventing 
laypeople from recognizing long-term climate trends by adding noise 
which obscures mean temperatures, impedes the creation of mental 
representations of climate change, and results in reduced climate change 
concern (Hansen et al., 2012). 

Research investigating the impact of local temperature perceptions 

on climate change beliefs has so far focused on the high and low ends of 
the temperature scale, revealing that belief in climate change increases 
when temperatures are perceived as being warmer or colder than usual 
(Hamilton and Stampone, 2013; Joireman et al., 2010; Kirilenko et al., 
2015; Li et al., 2011; Sisco et al., 2017; Zaval et al., 2014). These studies 
have privileged a long-term perspective when defining a “normal” 
climate, frequently relying on deviations from a 30-year reference 
period (Howe et al., 2013; Kirilenko et al., 2015). Similarly, studies 
investigating the impact of extreme weather events on public attention 
to climate change also relied on predefined long-term baselines to 
identify these events (Sisco et al., 2017). This approach based on the so- 
called climate normals, where reference periods are calculated by only 
averaging a large number of previous years, is probably informative for 
elaborating physical climate models but may not optimally reflect how 
today’s temperatures impact climate change perception. For instance, 
climatic norms could lead to different estimation of anomalies as a 
function of the chosen reference period (Jarnevich and Young, 2019; 
Wilks, 2013; Zhang et al., 2011). Moreover, in a changing climate, the 
perception of what people believe as a normal climate is shifting as well, 
with the weather experienced in recent years being a crucial 
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determinant of people climatic baseline instead of the longer historical 
periods (Moore et al., 2019). 

From a psychological perspective, a mental representation of an 
abstract state such as a 30-year weather average needs to be constructed 
in a resource-intensive computational process (Trope and Liberman, 
2010; 2003) that is unlikely to be regularly applied by individuals with 
limited cognitive resources (Weber, 2006). It should rather be expected 
that individual perceptions of climate change are driven by elements of 
the current situation, instead of changes relative to historical averages, 
and consequently should be modelled as a function of the current 
weather situation. This rationale is more in tune with what we know 
about the cognitive mechanisms underlying human judgment and 
decision-making which are based mainly on readily available informa
tion without relying on complex mental elaborations (Tversky and 
Kahneman, 1973). For instance, when suffering a sweltering day, people 
may think about global warming just because temperatures were very 
high on that day (i.e., readily available information) and not because it 
was warmer than the mean of the previous 30 years (i.e., complex 
mental elaborations). 

Climate change being a long-term phenomenon that is happening 
over a considerable time span, it has been argued that is difficult to 
directly experience the long-term trend given the variability that exist 
between years, seasons and months (Hansen et al., 2012). Previous 
findings suggest that people can actually perceive climate change im
pacts in changing seasonal temperatures at the local level (Howe, 2018). 

Therefore, extending the rationale presented above, a short-term index 
of variability such as the variation of weekly temperatures (or weekly 
volatility of temperatures) is a piece of available information that may 
be used to create a representation of the stability or volatility of the 
climate. 

It is moreover questionable to assume that the information of short- 
term weather fluctuations is not integrated to some extent in people’s 
mental representation of climate change, given that humans evolved to 
detect rapid changes around them in order to anticipate threats and to 
cope with risks in a changing environment (Rees, 2008). They are able to 
detect and interpret rapid signal fluctuations, as for instance illustrated 
by investor behavior in the stock market, where rapidly fluctuating 
stocks are considered more unstable and risky (Dimpfl and Jank, 2016; 
Weber et al., 2005). It is thus entirely plausible to assume that people are 
also able to process and integrate short-term variations of weather 
variables into their mental representation of climate change, which in 
turn should result in increased concern about and attention toward 
climate change under conditions of high temperature volatility. 

Based on this reasoning, we suggest that public attention to climate 
change is not only influenced by the experience of warmer or colder 
local temperatures, but that increases in the short-term variation of local 
temperatures (i.e., increase in temperature volatility), should also in
crease public attention to climate change. (Hansen et al., 2012). 
Therefore, here we test the hypotheses that public attention toward 
climate change is affected by both (i) the short-term volatility and (ii) 

Fig. 1. Weekly (A) and total volume (B) of climate change-related tweets per region. The black bold line in panel A is the time series for the total average of weekly 
tweets and gray lines are the individual time series for each region. 
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the mean of local temperatures computed independently of the climatic 
norm. 

Testing hypotheses about the impact of short-term weather varia
tions on human attention to climate change requires data with a high 
temporal resolution. Previous research on public perceptions of climate 
change has mostly been conducted using large-scale representative 
surveys (Howe et al., 2013; Myers et al., 2012). This method is limited 
by its reliance on respondents’ recollections and reconstructions at a 
single time point. As a consequence, the true temporal dynamics of 
climate change concerns are not assessed. Social media platforms pro
vide large data sets that can be used to evaluate spontaneous and 
continuous responses in real-time. Twitter has previously been used as a 
source of real-time data to investigate psychological and social processes 
(Zimmer and Proferes, 2014). For instance, changes in the frequency of 
Twitter messages referring to climate change have been used as an in
dicator of public attention to climate change (Kirilenko et al., 2015; 
Moore et al., 2019). However, most of the previous research using 
Twitter data relied on retrieval methods that do not provide all the 
available information, but only a small sample representing approxi
mately 1% of the total volume of tweets referring to a specific keyword. 
These methods are unlikely to yield a valid representation of public 
reactions to real-world events (Kim et al., 2013; Morstatter et al., 2013). 
Therefore, in the current study, we rely on the full Twitter data stream (i. 
e., firehose data) as a proxy for public attention to climate change to test 
our hypotheses. Given the extensive cost required to analyze the full 
sample of Twitter data and limited access to the data provider, we 
focused our analysis on tweets posted in Spain between 2014 and 2017, 
which can be considered a case study illustrating the predicted effect. 

2. Data and methods 

The study was approved by the Ethics Committee of the Faculty of 
Psychology and Educational Sciences of the University of Geneva and 
conducted following the ethical guidelines of the institution (reference 
number: PSE.20190604.11). The study did not involve individual par
ticipants, no personal information was collected. 

2.1. Twitter data 

Tweets were collected using Crimson Hexagon (now known as 
Brandwatch, https://www.brandwatch.com), a Twitter-certified social 
media analytics company that provides every public tweet posted on 
Twitter (i.e., Twitter Firehose), in any language, and from any location 
(Breese, 2015). Crimson Hexagon used the available metadata to assign 
location to posts. When posts are geotagged, geographic coordinates are 
used, representing 1% of all posts. For the remaining 99%, statistical 
models are built with the available contextual information, such as the 
self-disclosed location in the profile information, to predict the location. 
This method is able to identify approximatively 70% of all tweets posted 
in a specific state or province within a country (https://www.brandwa 
tch.com/p/crimson-hexagon-help-resources/). Similar methods have 
been used in other studies to identify the location of tweets without 
exact latitude-longitude coordinates (Garcia et al., 2018; Jurgens, 2013; 
Jurgens et al., 2015). 

The lowest spatial resolution provided by Crimson Hexagon for each 
tweet originating in Spain was the regional level. Therefore, we set the 
spatial resolution of the study at the regional level. Specific queries were 
submitted to obtain the daily volume of tweets containing the keywords 
“climate change,” “global warming,” or their Spanish equivalent (i.e., 
“cambio climatico,” “calentamiento global”) originated from each Spanish 
region posted between January 1, 2014, and December 30, 2017 as a 
proxy for public attention toward the issue of climate change on the 
Twittersphere during this period. We only took into consideration the 
regions located on the continent (i.e., Andalusia, Aragon, Asturias, 
Basque Country, Cantabria, Castile and León, Castile-La Mancha, Cata
lonia, Extremadura, Galicia, La Rioja, Madrid, Murcia, Navarre, and the 

Valencian Community). The Balearic Islands, Ceuta, Melilla, and the 
Canary Islands were excluded. These search parameters led to a total 
volume of 398’761 tweets referring to climate change posted during the 
selected period. The temporal resolution of the study was fixed at the 
week level; we thus computed the weekly volume of tweets for each 
region. Note that we did not refer to the calendar weeks of the year as 
reference, we instead summed the number of tweets for seven-day pe
riods beginning on January 1, 2014, resulting in a total of 208 weeks 
between January 1, 2014, and December 30, 2017 (see Fig. 1). 

2.2. Weather stations data 

In total, 825 data files were downloaded from the open data portal of 
the Spanish state weather agency (https://opendata.aemet.es/). Each 
file contained historical weather information from each weather station 
located in the Spanish territory. In order to be able to cross meteoro
logical and social media information, we applied the same spatial and 
temporal resolution used for the selection of tweets to select the weather 
stations. We identified and selected 692 weather stations which con
tained observations between January 1, 2014, and December 30, 2017 
and were located within the 15 Spanish regions identified previously, 
resulting in a total of 954′402 data points (see Table 1). The GPS co
ordinates of each weather station were used to identify their location 
within Spain. 

We computed an index of weekly mean temperature and an index of 
weekly temperature volatility for the analysis. For each weather station, 
we averaged the daily mean temperatures to obtain the weekly mean 
temperature. We computed the standard deviation of mean daily tem
peratures as a measure of short-term volatility. Then, we averaged index 
values for all weather stations located within the geographical bound
aries of a specific region. Note that similar to the Twitter data, we did not 
refer to the calendar weeks of the year as a reference; we instead 
considered the seven-day periods from January 1, 2014, to December 
30, 2017. Therefore, for a given region with w weather stations, let yit be 
the temperature mean for weather station i at day t. Then the mean 
temperature for the first week is 

meantemp =
1
7
∑7

t=1

1
w

∑w

i=1
yit (1) 

and the weekly temperature volatility is 

voltemp =
1
7
∑7

t=1

1
w − 1

∑w

i=1
(yit − yi.)

2 (2) 

where yi.is the average over 7 days at weather station i. 

Table 1 
Total number of selected weather stations with the respective amount of ob
servations per region between January 1, 2014, and December 30, 2017.  

Region Total of weather stations Total of observations 

Andalucía 117 16′1458 
Aragon 41 56′034 
Asturias 23 31′544 
Cantabria 18 24′111 
Castilla la Mancha 60 80′914 
Castilla Leon 116 161′124 
Cataluña 73 97′788 
Extremadura 50 71′364 
Galicia 46 66′695 
La Rioja 8 11′606 
Madrid 20 26′362 
Murcia 23 32′871 
Navarra 21 28′631 
País Vasco 34 47′237 
Valenciana 42 56′663 

Total 692 954′402  
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3. Results 

Using Generalized Additive Models (GAM; Wood, 2017), we quan
tified the association between local volume of climate change-related 
tweets, local temperature volatility (operationalized as the standard 
deviation of local temperature) and local mean temperature. Each 
weather variable was modeled separately, a natural logarithmic trans
formation was applied to the highly skewed weekly tweets counts to 
better approximate normality and to mitigate the effect of outliers in the 
data. 

3.1. AIC Model comparison procedure 

A model comparison procedure based on optimal AIC (Akaike In
formation Criterion) scores was used to identify the best-fitting model 
for each weather variable. The time measure was the week count be
tween January 1, 2014, and December 30, 2017 (i.e., from 0 to 207). For 
both weather variables, data was modelized with a Gaussian distribution 
and an identity link function. The estimation of coefficients and 
smoothing parameters was based on the Restricted Maximum Likelihood 
estimator. All analyses were conducted using the statistical software R 
(version 3.5.1). The GAM estimation was based on the R package ‘mgcv’ 
(Wood, 2017). We used gam.check() to improve models by updating the 
number of basis functions based on its results. Results of the AIC model 
comparison procedure are shown in Table 2. 

We started with the simplest possible model as basis model. We 
modeled the logarithm of the number of tweets referring to climate 
change with a single one-dimensional cubic regression spline of time (i. 
e., referred to as base model in Table 2). We opted for a number of basis 
functions equal to the number of observations (k = 208), but similar 
results were obtained with a smaller number of knots. Then, the same 
procedure was followed to model both weather variables separately. 
Model 1 incorporated a cubic regression spline for the predictor (i.e., 
temperature volatility or mean temperature). In Model 2, we added a 
factor smooth interaction for the categorical variable year to calculate 
specific smooths for each year (i.e., 2014, 2015, 2016, 2017). This 
model included a separate linear term for the year variable to include a 
varying intercept allowing these categories to differ in overall means in 
addition to the shape of the smooths. Then, we added a fixed effect of 
regions to adjust for different effects possibly linked to the region such as 
region size (i.e., Model 2b). In Model 3, 4, and 5, we tested the optimal 
random-effects structure appropriate for the regional factor, that 

encompasses the fixed effect of region. Therefore, Model 3 incorporated 
a random effect for the regions to model region-specific intercepts, 
Model 4 captured by-region variation in linear effects with the inte
gration of random slopes, and Model 5 incorporated random smooths to 
capture the by-region variation in non-linear effects. As shown in 
Table 2, the comparison of AIC scores revealed that by incorporating 
individual curves to each region, Model 5 provided the best fit to model 
the relation between the logarithm of the number of tweets referring to 
climate change and both weekly temperature volatility and weekly 
mean temperature. Additionally, the random smooth incorporated in 
Model 5 allowed us to deal with the autocorrelation issue in the model. 
As shown in Fig. 2, visual inspection of the residual autocorrelation plots 
of Model 5 for each weather variable revealed acceptable levels of 
autocorrelation with low values, mainly between 0.092 and -0.097. 

3.2. Mathematical representation of the selected GAM models. 

The corresponding mathematical representation of the GAM model 
used to estimate the relation between weekly temperature volatility and 
our dependent variable (i.e., Model 5) is as follows: 

y = μ+ αj + f (t) + fr(t) + g (vr)+gj(vr)+E (3) 

where y is the logarithm of the number of tweets for week t and re
gion r, μ is the overall mean, αj is the overall year effect for the four years 
indexed by j. For the smooth parts, f(t) is the spline fit with k = 208 
nodes along the weeks taking into account all unmodelled effects. As a 
spline term, it is orthogonalized to the previous terms and has therefore 
a zero average. fr(t) is a random effect spline that codes for the difference 
of fit for a region r compared to the general effect over all regions f(t). 
The most important term is g (vr), the spline fit with k = 20 nodes along 
the weekly variability, whose estimation is shown on Fig. 1A. gj(vr) is the 
difference of fit for a given year j compared to the general effect. Fig. 1 B, 
C, D and E represent g (vr)+gj(vr) which is the overall effect of weekly 
variability per year. Finally, E is the residual error term. Note that each 
of the above spline functions can alternatively be written as Xβ where X 
is a matrix that codes the k splines bases, and β are the corresponding 
coefficients. The corresponding mathematical representation of the 
GAM model used to estimate the relation between the mean temperature 
and our dependent variable is the same as expressed in Eq. (3), except 
that the weekly volatility ν is replaced by the mean temperature. 

Table 2 
AIC Model Comparison.  

Models Model 
df 

Residual 
df 

R2
adj AIC ΔAIC 

Base model  11.89  3107.11  0.145  10344.85  – 
Temperature 

Volatility      
Model 1  15.2  3103.79  0.158  10301.19  43.65 
Model 2  27.65  3091.35  0.165  10290.03  11.16 
Model 2b  205.99  2913.01  0.923  3027.79  7262.24 
Model 3  205.99  2913.01  0.923  3027.78  0.01 
Model 4  222.07  2896.92  0.928  2848.81  178.97 
Model 5  294.32  2824.68  0.935  2599.20  249.61 

Mean Temperature      
Model 1  30.21  3088.8  0.193  10180.34  164.5 
Model 2  36.96  3082.04  0.196  10177.34  3.01 
Model 2b  203.83  2915.17  0.925  2941.17  7236.17 
Model 3  203.81  2915.19  0.925  2941.18  − 0.01 
Model 4  219.66  2899.34  0.929  2777.17  164.01 
Model 5  287.33  2831.67  0.935  2556.64  220.53 

Degrees of freedom for the Model (Model df), Residual degrees of freedom 
(Residual df), Adjusted R2 (R2

adj), Akaike Information Criterion (AIC) and delta 
AIC (ΔAIC) for the different GAM models tested for each weather variable (i.e., 
volatility and mean temperature). Models in bold are the best model for each 
weather variable when comparing models using delta AIC. 

Fig. 2. Autocorrelation function (ACF) for the GAM models used (i.e., Model 5) 
to quantify the association between the logarithm of the number of climate 
change tweets, temperature volatility and mean temperature. The dotted line 
shows the maximum and minimum values of the autocorrelation function for 
lags superior to 0. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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3.3. Increased climate change attention in periods of high local 
temperature volatility 

Results supported our central hypothesis in that an increase in 
weekly temperature volatility predicted public attention toward climate 
change. The GAM analysis identified a significant nonlinear hockey stick 
relationship between weekly temperature volatility and logarithmized 
volume of climate change-related tweets (p = .0029; see Model 5 in 
Table 3). As depicted in Fig. 3A, the main relationship between the 
weekly volatility of temperatures and climate change-related tweets was 
relatively invariant, showing no effects when weekly volatility was 
below approximatively 3.5 ◦C and rising sharply after that. The esti
mated linear trend for the increasing section showed a slope of 0.6 [log 
(#Tweet)/◦C] (i.e., dotted segment in Fig. 3A), corresponding to an 82% 
increase in the volume of climate change-related tweets for each 1 ◦C 
increase in temperature volatility. 

Note that as Model 5 included a smooth term for weekly temperature 
volatility, the interaction with the categorical variable year shown in 
Table 3 reflects the difference between the shape of the relationship 
observed for each year and the main hockey stick relationship observed 
between weekly temperature volatility and the dependent variable. In 
order to assess the specific nonlinear relation for each year, we 
computed an additional model without the main effect of temperature 
volatility (i.e., see Model 5b in Table 3). Interestingly, this model 
revealed that the nonlinear hockey stick relationship between weekly 
temperature volatility and logarithmized volume of climate change- 
related tweets was only observed in 2016 and 2017 (both ps <
0.0001; Fig. 3D and E), not in 2014 and 2015 (ps > 0.1; Fig. 3B and C), 
indicating that a significant association between temperature volatility 

and public attention to climate change has only recently been 
established. 

3.4. Increased climate change attention in periods of high and low local 
temperatures 

The GAM analysis moreover confirmed that warmer and colder 
temperatures increase Twitter activity related to climate change. It 
showed a significant gondola-shaped relationship between weekly mean 
temperatures and logarithmized volume of climate change-related 
tweets, which increased when mean temperatures fell approximatively 
below 5 ◦C or rose above 26 ◦C (p < .0001; see Model 5 in Table 4). As 
depicted in Fig. 4A, at the higher end, the slope for the estimated linear 
trend was 0.4 [log(#Tweet)/◦C], corresponding to a 49% increase in the 
volume of climate change-related tweets for a 1 ◦C increase in weekly 
mean temperatures. At the lower end, the slope was − 0.35 [log 
(#Tweet)/◦C], corresponding to a 42% increase in the volume of climate 
change-related tweets for a 1 ◦C decrease in weekly mean temperatures. 

Following the same procedure as for temperature volatility, we 
computed an additional model without the main effect of mean tem
perature to assess the specific nonlinear relation for each year (i.e., see 
Model 5b in Table 4). This model revealed a significant gondola-shaped 
relationship between weekly mean temperatures and logarithmized 
volume of climate change-related tweets for the years 2017 (p < .0001; 
Fig. 4E), 2016 (p < .0001; Fig. 4D), 2015 (p < .0001; Fig. 4C), and a 
tendency for 2014 (p = .0588; Fig. 4B). 

4. Discussion 

The study reported here demonstrates that readily available infor
mation about the weather, such as the mean and the variation of weekly 
temperatures, impacts climate change attention on social media. We 
observed an increase in the volume of climate change-related tweets 
originating in Spain during weeks where the temperature volatility (i.e., 
weekly variation of mean temperatures) was high, above 3.5 ◦C. Inter
estingly, this relationship was only observed in 2016 and 2017 (and not 
in 2014 and 2015), indicating that the link between temperature vola
tility and public attention to climate change has only recently been 
established. Moreover, we observed an increase in climate change- 
related tweets originating in Spain during periods where the weekly 
mean temperature was below 5 ◦C or above 26 ◦C across the whole 
measurement period (i.e., from 2014 to 2017). 

Our findings contrast with previous conceptualizations of local 
weather variability as a significant barrier for creating mental repre
sentations of climate change (Hansen et al., 2012). To the contrary, we 
provide empirical evidence illustrating that people can perceive small 
local variations in temperatures (i.e., local temperature volatility). 
While this perception may or may not occur at the conscious level, these 
variations are linked to an increase in Twitter activity related to climate 
change. This suggests that local temperature volatility is integrated, to 
some extent, into people’s mental representation of climate change. 

Note that we are not claiming here that a global increase in tem
perature volatility is taking place as a direct consequence of global 
warming. This issue is still the topic of considerable scientific debate 
(Alexander and Perkins, 2013; Hansen et al., 2012; Huntingford et al., 
2013), with different methodologies leading to a disparity of conclu
sions. Nonetheless, there seems to be a consensus that temperature 
variability has increased in some regions of the globe (Myers et al., 
2012) and that this will have important ecological (Stenseth et al., 2002) 
and societal impacts (Guo et al., 2016; Katz and Brown, 1992; Shi et al., 
2015). These consequences may be even more important than changes 
in average temperature (Katz and Brown, 1992), assuming that people 
will relatively easily adapt to changes in average temperatures but may 
have more difficulty adjusting to increased temperature volatility (Guo 
et al., 2016; Shi et al., 2015). Independently from the scientific debate 
on whether an increase of temperature volatility is happening as a 

Table 3 
GAM models used to estimate the relation between climate change-related 
tweets and the weekly temperature volatility.  

Model 5     
Parametric coefficients Estimate Std. Error t-value p-value 
Intercept 4.272 0.523 8.176 < 0.0001 
year2015 − 0.312 0.417 − 0.749 0.454 
year2016 − 0.444 0.591 − 0.751 0.453 
year2017 − 0.785 0.723 − 1.086 0.278 
Smooth terms Edf Ref.df F-value p-value 
s(time) 173.853 194.684 14.551 < 0.0001 
s(voltemp) 6.679 8.4 2.96 0.0029 
s(voltemp) : year2014 3.598 4.47 1.779 0.1193 
s(voltemp) : year2015 3.844 4.78 2.603 0.0246 
s(voltemp) : year2016 3.87 4.786 16.352 < 0.0001 
s(voltemp) : year2017 3.966 4.92 14.617 < 0.0001 
s(time, region) 94.512 132 252.571 < 0.0001      

Model 5b     
Parametric coefficients Estimate Std. Error t-value p-value 
Intercept 4.268 0.523 8.167 < 0.0001 
year2015 − 0.31 0.418 − 0.742 0.4584 
year2016 − 0.439 0.591 − 0.742 0.4580 
year2017 − 0.781 0.724 − 1.08 0.2804 
Smooth terms Edf Ref.df F-value p-value 
s(time) 173.879 194.699 14.577 < 0.0001 
s(voltemp) : year2014 5.468 6.847 0.437 0.8408 
s(voltemp) : year2015 5.902 7.378 0.441 0.8834 
s(voltemp) : year2016 5.928 7.366 18.22 < 0.0001 
s(voltemp) : year2017 6.144 7.645 11.932 < 0.0001 
s(time, region) 94.678 132 252.426 < 0.0001 

The table shows the estimated parametric and non-parametric components, with 
their corresponding standard errors, t-values, effective degrees of freedom, F- 
statistic and p-values for the GAM models used to estimate the relation between 
the logarithm of the number of tweets referring to climate change and the 
weekly temperature volatility using a Gaussian distribution with an identity link 
function (i.e., Model 5 and 5b). Voltemp refers to the weekly temperature vola
tility. Estimations in bold are reported and discussed in the main text. 
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Fig. 3. Main effect (A) and annual effects (B for 2014, C for 2015, D for 2016 and E for 2017) of weekly temperature volatility on logarithmized number of climate 
change-related tweets, as part of a GAM model with a Gaussian distribution and an identity link function. The other covariates are a smooth effect of time, a linear 
term for year, and a random smooth of region. The solid line is the GAM smoother, the gray polygon shows the 95% CI, points are raw data, the dotted segment in 
panel A is a linear approximation of the slope at the higher end. A sensitivity analysis based on an alternative model showed that these results are robust (see 
Appendix A). 
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consequence of global warming (Alexander and Perkins, 2013; Hun
tingford et al., 2013; Lenton et al., 2017), understanding whether and 
how public attention towards climate change is shaped by the experi
ence of short-term variability in local temperatures may contribute to 
developing more successful communication and education strategies. 

Interestingly, the relation between temperature volatility and public 
attention to climate change was observed only from 2016 onwards, 
indicating a recent change in the way people mentally represent climate 
change. In 2014, a seminal paper on the local warming effect concluded 
that “weather variability will need to become better associated with 
heightened belief in climate change, though this new association will 
need to be accomplished through education” (Zaval et al., 2014; p. 34). 
Our results indicate that this association is now beginning to show in 
large-scale public communication patterns. The public may begin to 
represent climate change not just as an increase in temperatures but 
rather as a disruption of the climate system in general. 

One possible explanation for this is that increased media coverage 
has improved societal awareness, shaping climate change attention and 
improving knowledge about climate change mechanisms. Moreover, the 
rise of climate change on the political agenda may contribute to a better- 
informed public. For instance, one may speculate that the intense 
coverage of the United Nations Climate Change Conference COP21, 
which occurred at the end of 2015, was one of the triggering moments 
that led people to update their mental template of climate change and its 
manifestations. Newspapers worldwide increasingly devote reporting 

space to climate change issues (Schmidt et al., 2013). Therefore, the 
more the media writes about climate change, the more the public pays 
attention to this issue. A recent study has also established a clear relation 
between short-term weathers anomalies and media coverage of climate 
change, analyzing online news articles covering climate change in 28 
European countries from 2014 to 2019. Their results show that positive 
deviations from short-term averages temperatures are a strong deter
minant of climate change media coverage (Pianta and Sisco, 2020). 
However, there is no convincing evidence that media coverage acts as a 
mediator in the relationship between local weather events and the 
climate change discourse in social media (Kirilenko et al., 2015). 

Independently of the effects of short-term temperature volatility on 
climate change twitter activity, our findings also revealed that high and 
low weekly mean temperatures increase public attention to climate 
change. This finding relates to what researchers refer to the local 
warming effect, where belief in climate change increases when temper
atures are perceived as being warmer or colder than usual (Hamilton 
and Stampone, 2013; Joireman et al., 2010; Kirilenko et al., 2015; Li 
et al., 2011; Sisco et al., 2017; Zaval et al., 2014). By conjointly tracking 
the development of these two effects over time between 2014 and 2017, 
we demonstrate that warmer and colder temperatures contributed to 
public attention toward climate change across the whole measurement 
period, but that local volatility contributed only from 2016 onwards. 

Three features of the study limit the conclusions we can draw about 
the impact of short-term volatility and mean temperatures on climate 
change attention. First, we collected data only from a restricted 
geographical zone (i.e., Spain) reducing our ability to generalize our 
findings to other countries. For instance, a representative survey con
ducted across Europe in 2016 put Spain on top of 23 European countries 
believing that climate change will have negative impacts (Poortinga 
et al., 2018), making them potentially more aware of subtle changes in 
the weather patterns. A comparative study should investigate if these 
findings are consistent across countries, and if country-level variables 
mediated this effect. Second, as our data collection spanned four years 
only, we were not able to investigate it the observed effects follow a 
cyclic pattern across time. This adds some uncertainty to the interpre
tation of our findings, particularly for the volatility effect, which was 
observed only for half of the time period. Third, there is an inherent 
limitation to using social media data to investigate public climate 
change perception; we cannot assume that the sample is representative 
of the general population. Moreover, depending on the method used to 
extract the information from Twitter, the data obtained may not 
represent Twitter activity on a particular topic (Kim et al., 2013; Mor
statter et al., 2013). In this study, we relied on a data provider to get 
access to the full Twitter data stream (i.e., firehose data) and get a valid 
representation of public attention to climate change in Spain. 

More generally, by estimating how public attention toward climate 
change is affected by both recent mean temperature and temperature 
volatility, and without relying on historical averages as a reference 
period, this study adds considerable evidence to a significant association 
between the experience of current weather events and the manifestation 
of public attention toward climate change. 

5. Data and materials availability 

The data reported in this paper are available on the Open Science 
Framework (https://osf.io/rwcdy/). 
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Table 4 
GAM models used to estimate the relation between climate change-related 
tweets and the weekly mean temperature.  

Model 5     
Parametric coefficients Estimate Std. Error t-value p-value 

Intercept 4.103 0.488 8.404 < 0.0001 
year2015 − 0.213 0.391 − 0.545 0.5859 
year2016 − 0.329 0.548 − 0.6 0.5483 
year2017 − 0.405 0.669 − 0.605 0.5454 
Smooth terms edf Ref.df F-value p-value 
s(time) 168.727 191.486 12.425 < 0.0001 
s(meantemp) 12.428 14.781 13.44 < 0.0001 
s(meantemp) : year2014 2.568 3.23 0.919 0.4729 
s(meantemp) : year2015 2.779 3.504 0.135 0.9646 
s(meantemp) : year2016 2.701 3.393 1.024 0.3827 
s(meantemp) : year2017 2.762 3.487 0.38 0.6715 
s(time, region) 91.365 132 247.242 < 0.0001      

Model 5b     
Parametric coefficients Estimate Std. Error t-value p-value 
Intercept 4.009 0.49 8.182 < 0.0001 
year2015 − 0.105 0.394 − 0.266 0.79 
year2016 − 0.18 0.551 − 0.327 0.7436 
year2017 − 0.298 0.673 − 0.443 0.6576 
Smooth terms edf Ref.df F-value p-value 
s(time) 168.737 191.491 12.315 < 0.0001 
s(meantemp) : year2014 9.581 11.666 1.709 0.0588 
s(meantemp) : year2015 10.574 12.814 10.839 < 0.0001 
s(meantemp) : year2016 10.077 12.29 10.373 < 0.0001 
s(meantemp) : year2017 10.583 12.874 4.405 < 0.0001 
s(time, region) 91.146 132 247.068 < 0.0001 

The table shows the estimated parametric and non-parametric components, with 
their corresponding standard errors, t-values, effective degrees of freedom, F- 
statistic and p-values for the GAM models used to estimate the relation between 
the logarithm of the number of tweets referring to climate change and the 
weekly mean temperature using a Gaussian distribution with an identity link 
function (i.e., Model 5 and 5b). Meantemp refers to the weekly mean tempera
ture. Estimations in bold are reported and discussed in the main text. 
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Fig. 4. Main effect (A) and annual effects (B for 2014, C for 2015, D for 2016 and E for 2017) of weekly mean temperature on logarithmized number of climate 
change-related tweets, as part of a GAM model with a Gaussian distribution and an identity link function. The other covariates are a smooth effect of time, a linear 
term for year, and a random smooth of region. The solid line is the GAM smoother, the gray polygon shows the 95% CI, points are raw data, the dotted segments in 
panel A are a linear approximation of the slope at the higher and lower end. A sensitivity analysis based on an alternative model showed that these results are robust 
(see Appendix B). 
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