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ABSTRACT 
 

Natural hazards such as tsunamis, impulse waves and dam-break waves are rare, but extremely destructive. 
In recent times, more importance was given to structures that could withstand such events, however, 
uncertainties still exist in the estimation of wave velocities. This project focuses on the estimation of wave front 
celerity in a laboratory environment for both smooth and rough beds and the results are successfully 
compared to previous studies and design codes. Based on the experimental data an expression for the wave 
celerity is presented and discussed. The influence of bed roughness on the propagation velocity is also 
investigated and a dependence on the bed friction is observed, pointing out the need for further studies. 
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1 INTRODUCTION 

In the past, the impacts of hydrodynamic waves on structures were considered extremely rare events and 
wave induced forces were typically neglected in the design process. In nature, the sudden release of a large 
amount of water can be found in impulse waves and tsunamis. Dam-break waves have similar behaviours and 
their solid theoretical background is widely used to describe the behaviour of hydrodynamic waves. Some 
recent catastrophic events that took place in the Indian Ocean (2004), in Chile (2010) and in Japan (2011, 
Figure 1), with large damages and casualties have shown that measures had to be taken to guarantee human 
safety and reduce reconstruction costs in coastal areas.  

 

 
Figure 1. Tsunami propagating inland during the Japan 2011 event (Keystone, 2011). 

 
Nowadays, the newly released design codes put emphasis on the importance of hydrodynamic forces in 

the design process and the role of engineers and researchers is becoming fundamental to alleviate the 
consequences of such events. In most design codes all over the world, hydrodynamic forces are computed 
using the wave front propagation celerity, however, its estimation is covered by high incertitude. In the past, 
many studies were carried out investigating the magnitude of wave celerity, including both experimental 
(Matsutomi and Okamoto, 2010; Shafiei et al., 2016; Wüthrich et al., 2017) and field surveys (Rossetto et al., 
2007; Fritz and Okal, 2008; Chock et al., 2012). Nevertheless, the consistent amount of formulae available in 
literature showed that disagreement still exists in the evaluation of the front celerity (Nistor et al., 2009). As the 
force proportional to the squared value of the velocity, these uncertainties are amplified in the computation, 
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resulting into large differences in magnitude of the resulting forces. A more precise estimation of wave 
velocities is therefore necessary to improve the design process, taking into account the influence of bed 
roughness, whose values are assumed to play an important role.  
 
2 EXPERIMENTAL SET-UP 

For the present study, tsunami generation was achieved through the sudden release of a known volume 
of water from an upper basin into a lower tank and then into the channel. Similar wave generation techniques 
were previously used by Chanson et al. (2002), Lukkunaprasit et al. (2009), Meile et al. (2011), Rossetto et al. 
(2011) and Wüthrich et al. (2017). In the current facility, different released volumes resulted into waves with 
various equivalent impoundment depths, d0 ranging between 0.40 m and 0.82 m if a classical dam-break 
waves is considered. This corresponded to waves with different hydrodynamic properties, mainly wave height 
and celerity. The waves propagated in a horizontal channel with a length of 15.5 m and a width of 1.5 m. The 
smooth surface was represented by painted wooden panels, whereas for the tests over rough bed, an artificial 
carpet was added; the latter had a thickness of 7 mm. The Darcy-Weissbach friction factors for both channels 
were deducted through free surface profiles leading to average values of f ≈ 0.02 and f ≈ 0.04 for the smooth 
and rough configurations respectively, corresponding to roughness values ε = 1.4 mm and ε = 2.4 mm. These 
values are consistent with the findings of Choufi et al. (2014) for similar materials. The facility used in the 
present study is shown in Figure 2 for both smooth and rough configurations. Both dry bed surges and wet 
bed bores were produced in the present study. The initial still water depth, h0 was controlled through a sill 
located at the downstream end of the channel. The propagating surges and bores were investigated in terms 
of wave height, using 7 Ultrasonic distance Sensors (US) located at x = 2.00, 10.10, 12,10, 13.10, 13.35, 
13.60 and 13.85 m from the channel inlet. These were sampled at a frequency of 12.5 Hz with a precision of 
±0.5mm. 
 

Figure 2. Figure of the experimental set-up: (left) smooth bed, (right) rough bed. 
 

The tested waves reached heights of 0.30 m and front celerity of 3.5 m/s at model scale. If a 1:30 Froude 
scaling ratio is assumed, these values corresponded to typical configurations observed in coastal areas 
subject to tsunami hazard. The arrival of the wave was set when a water depth of 0.01 m was measured. 
Knowing the spatial repartitions ∆x of the US sensors, an estimation of the wave propagation celerity was 
obtained through the ratio ∆x/∆t.  
 
3 METHODOLOGY 

This project specifically focused on the estimation of wave front velocities in laboratory environment and 
results were compared to previous studies and existing design codes. The study is based on an experimental 
approach and the details of the 18 tests performed are presented in Table 1 along with some key parameters 
of the reproduced waves.  

 
Table 1. Experimental program carried out for the present study. 

Bed 
condition 

Friction 
factor f 

d0 

[m] 
h0 

[m] 
U 

[m/s] 
hmax 

[m] 
N. of 

repetitions 
dry 0.02 0.82 - 3.57 0.20 3 
dry 0.02 0.63 - 3.10 0.17 2 
dry 0.02 0.40 - 2.35 0.13 2 
dry 0.04 0.82 - 2.85 0.22 3 

humid 0.04 0.82 0.001 m 2.89 0.23 1 
wet 0.01 0.82 0.05 m 2.73 0.27 5 
wet 0.04 0.82 0.05 m 2.74 0.28 2 
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4 VISUAL OBSERVATIONS 
Both dry bed surges and wet bed bores were investigated in the present study. The difference in 

behaviour between surges and bores on smooth horizontal bed has been widely investigated in previous 
studies, including Ramsden (1996), Chanson (2004) and Wüthrich et al. (2016; 2017). Dry bed surges are 
characterized by a constant increase of water depth without aeration, whereas bores have a turbulent aerated 
front propagating along the channel. Surges are associated with higher velocities, whereas bores have greater 
wave heights. The same differences between surges and bores were also observed on the rough condition, 
as shown in Figure 3. Nevertheless, dry bed surges propagating on rough bed had higher wave heights and 
slower velocities compared to the smooth condition. Furthermore, the propagating front was more aerated. 
For wet bed bores, the difference in behaviour between the smooth and the rough condition was, visually, very 
small. 

 

Figure 3. Dry bed surge (left, d0 = 0.82m) and wet bed bore (right, d0 = 0.82m, h0 = 0.05m) on rough bed. 
 

5 RESULTS 
It was shown by Wüthrich et al. (2017) that the surges produced through the vertical release technique 

were similar to the classical dam-break scenario on smooth bed described by the theory of Ritter (1892). The 
latter assumed the sudden removal of a gate in front of an infinite reservoir under ideal fluid conditions, 
producing a wave propagating over a smooth horizontal surface. The longitudinal wave profiles obtained when 
the dry bed surge reached x = 13.85 m (location of US 7) were successfully compared to the theoretical 
solutions proposed by Ritter (1892) and Chanson (2009), as shown in Figure 4. Unfortunately, the smooth bed 
condition is merely theoretical and the influence of bed friction was implemented by Dressler (1952; 1954) and 
Whitham (1955). The profiles obtained for the experiments over rough bed were compared to these theoretical 
solutions in Figure 4, where a good match can be observed with Whitham (1955) and Chanson (2009). The 
results were also compared with the experimental data of Schoklitsch (1917), where some differences can be 
observed, most probably attributed to the difference in surface roughness.  

For wet bed bores, no differences were observed between the smooth and the rough conditions in terms 
of wave profiles (herein not shown) and wave front celerity (Figure 6b), showing that both scenarios were well 
described by the theory of Stoker (1957). These findings suggested that for the tested roughness values, the 
initial still water depth, h0 had a greater influence on the resulting wave than friction.  

 

 
Figure 4. Comparison of longitudinal wave profiles for smooth and rough beds with theoretical solutions. 
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For engineers designing structures resistant to hydrodynamic loads, it is fundamental to determine the 
celerity U of the incoming wave. While for wet bed bores velocities can be precisely predicted using the Stoker 
(1957) theory, great incertitude still exists in the evaluation of front celerity for dry bed surges (Nistor et al. 
2009, Wüthrich et al. 2017). For dry bed surges, it is commonly assumed in the literature that: 

 
ܷ ൌ ඥ݃݀଴ [1]ߙ

 
where U is the wave front celerity, d0 the equivalent impoundment depth and ߙ is a parameter whose value is 
covered by high uncertainties. The velocity coefficient, ߙ can also be expressed as a dimensionless velocity: 
 

ߙ ൌ
ܷ

ඥ݃݀଴
 

 
[2]

 
and various values of ߙ can be found in literature; the most relevant ones are presented in Table 2. The same 
values are presented graphically in Figure 5 and compared to the experimental results of the present study. 

 
Table 2. Coefficient α in Eq. [1] and [2]. 

Reference α
Iizuka and Matsutomi (2000) 1.1 
Kirkoz (1983) √2  
Ritter (1892), FEMA55 (2000) 2 
Murty (1977) 1.83 
Bryant (2008) 1.67 
Matsutomi and Okamoto (2010) 0.66 
Shafiei et al. (2016) 1.7 
Wüthrich et al. (2017) 1.25 

 
For the tests carried out in the present study on the smooth channel, the best approximation was found 

with a coefficient α = 1.3 (Figure 5). As previously discussed, this value slightly underestimated the waves with 
higher values of d0 and overestimated the lower ones. 

 

 
Figure 5. Comparison of experimental data with previous existing formulae. 

 
The values presented in Table 2 and Figure 5 for the smooth configuration, were also compared to the 

experimental tests obtained for the rough bed. A significant influence of roughness was observed and lower 
celerity values were measured over rough bed, leading to an overestimation of the celerity values up to 25 % 
for a coefficient α = 1.3. These findings clearly indicated a dependence of α on the friction factor f that should 
be taken into account in the prediction of the incoming wave celerity. For wet bed bores, the roughness was 
shown to have a less significant influence and the same celerity values were recorded for both smooth and 
rough scenarios. Both behaviours are presented in Figure 6, in which the values of α were plotted as a 
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function of the friction factor, f. The decreasing behaviour of α for larger values of f confirms its dependence 
on the bed roughness for dry bed surges. In this preliminary study, only two roughness values were tested, 
implying that only an overall indication of this relationship can be drawn; further studies are therefore 
necessary to implement it. 

 

 
a) Dry bed surge 

 
b) Wet bed bore (h0 = 0.05 m) 

Figure 6. Velocity coefficient α as a function of friction factor f for both dry bed surges and wet bed bores.  
 
The experimental points were also compared to some existing theories found in literature, mainly in Dressler 
(1952; 1954) and Whitham (1955). Dressler (1952) solved the Saint-Venant equations using a perturbation 
method assuming a constant friction factor, leading to the Eq. [3] (readapted by Chanson, 2004). 
 

ܷ

ඥ݃ ∙ ݀଴
ൌ
2
3
ቆ1 ൅

ݔ

ݐ ∙ ඥ݃ ∙ ݀଴
ቇ ൅ ଵܨ ∙

݂
8ඨ

݃
݀଴
∙ [3] ݐ

 
where F1 is a first order correction factor for the flow resistance, whose value is expressed in Eq. [4]. 
 

ଵܨ ൌ െ
108

7ቆ2 െ
ݔ

ݐ ∙ ඥ݃ ∙ ݀଴
ቇ
ଶ ൅

12

2 െ
ݔ

ݐ ∙ ඥ݃ ∙ ݀଴

െ
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ݔ

ݐ ∙ ඥ݃ ∙ ݀଴
ቇ

ଷ
ଶ
 

[4]

 
An analogous solution was proposed by Whitham (1955), solving the Saint-Venant equations using an 

adaptation of the Polhausen Method (Chanson, 2004), leading to Eq. [5]. 
 

ܷ

ඥ݃ ∙ ݀଴
ൌ

2

1 ൅ 2.90724 ቈ൬
݂
8൰ට

ଶݐ݃
݀଴

቉
଴.ସଶହହ [5]

 
For both theories, on a completely smooth surface (f = 0), a celerity value equal to the propagation of the 

forward characteristic in the Ritter (1892) theory can be assumed, implying	ߙ ൌ 2. An asymptotic behaviour 
toward this value can be observed in Figure 6a for ݂ → 0 leading to a vertical tangent. For large roughness 
values (݂ → ∞), zero velocity should be expected, implying	ߙ ൌ 0, even if this scenario is physically 
impossible. This represents a limitation for both theories of Whitham (1955) and Dressler (1952; 1954) that 
are no longer valid for large tip regions, i.e. for large roughness values (Chanson, 2004). Figure 6 shows a 
relative good match for low friction factors with both theories, however, differences become more important for 
rougher surfaces and Whitham (1955) theory represented the experimental tests better. 
 
6 CONCLUSIONS 

In the design phase of structures resistant to hydrodynamic loading, the estimation of the approaching 
velocity is fundamental. Previous studies and field surveys showed that the disagreement and high 
incertitudes still exist in the evaluation of this parameter. The present study was based on an experimental 
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approach and it focused on the evaluation of wave front celerity. Waves were reproduced in a large scale 
facility through a vertical release technique and both a smooth and a rough surface were tested. Produced 
waves were investigated in terms of wave height using Ultrasonic Distance Sensors located along the 
channel, allowing the estimation of the average wave celerity. The wave profiles were shown to be in 
agreement with existing theories in the domain of dam-break waves for both smooth and rough horizontal 
beds. While no influence of bed roughness was observed for wet bed bores, results clearly showed a 
dependence of the wave celerity on the friction factor for dry bed surges. For the two tested roughness values, 
lower celerity were observed for higher roughness, suggesting that friction should be considered when 
estimating the approaching velocity of a tsunami inland. The experimental points showed good agreement 
with previous theoretical solutions found in the literature. Nevertheless, only two values were investigated, 
pointing out the need of a more extensive experimental work to validate these preliminary results.  
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NOTATION 
d0 equivalent impoundment depth  [m] t time  [s] 
f Darcy-Weissbach friction factor  U wave front celerity  [m/s] 
F1 first order correction of flow resistance in Eq. [3] x longitudinal coordinate along the channel  [m] 
g gravity constant  [m/s2] α velocity coefficient, defined as U/(gd0)

0.5 
h wave height  [m] ∆t increment in time [s] 
h0 initial still water depth  [m] ∆x Increment in distance  [m] 
hmax maximum wave height  [m]   
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