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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

In this study, a heat pump satisfies the heating and cooling needs of a building, and two water tanks store heat and cold respectively. 
Reinforcement learning (RL) is a model-free control approach that can learn from the behaviour of the occupants, weather 
conditions, and the thermal behaviour of the building in order to make near-optimal decisions. In this work we use of a specific RL 
technique called batch Q-learning, and integrate it into the urban building energy simulator CitySim. The goal of the controller is 
to reduce the energy consumption while maintaining adequate comfort temperatures. 
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Nomenclature 

S states    Q action-value  γ discount factor 
A  actions    V state-value   policy 
R rewards    α learning rate  ANN Artificial Neural Network 
S’ States at the following time-step P transition probability MDP Markov Decision Process 
T Boltzmann exploration constant RL Reinforcement Learning  
 

1. Introduction 

Space heating is a large portion of the energy that buildings consume. In the residential sector, buildings account 
for approximately 30% of the global energy consumption, which grew at an average annual rate of 1.8% a year between 
1971 and 2010 [1]. Some advanced control approaches such as Model-Predictive Control (MPC) are often too costly 
to implement in small residential settings because they require identifying the dynamic model of the system to be 
controlled. On the other hand, model-free control approaches allow a simpler implementation without the need for a 
thermal model of the building. Reinforcement learning is a type of model-free controller that is able to adapt to the 
changing environmental conditions, including not only weather conditions but also human preferences and behavior. 

Reinforcement learning has been proved to be an effective algorithm for optimal energy control in low exergy 
buildings [2]. In this paper, we propose a batch reinforcement learning (BRL) controller with fitted Q-iteration to 
minimize the energy consumption of a heat pump that supplies heat and cooling to two water tanks. These tanks store 
and supply the energy to a building. The BRL controller learns from the outdoor temperatures, indoor temperature of 
the building, and the temperature of the water tanks in order to estimate the best times to provide additional heating or 
cooling energy. In order to test the suitability of the proposed controller, we implement it in CitySim, a building energy 
simulator developed at EPFL that computes an estimation of the energy demand for heating, cooling, and lighting of 
every building [3]. This approach allows evaluating the performance of the controller under different weather scenarios 
and in buildings of different characteristics. 

1.1. Reinforcement learning 

Reinforcement learning can be formalized using a Markov Decision Process (MDP). An MDP contains four 
elements: a set of states S, a set of actions A, a reward function R: S x A and transition probabilities between the states 
P: S x A x S  𝜖𝜖 [0,1]. The policy  then maps states to actions as : S A, and the value function V (s) of a state s is 
the expected return for the agent when starting in the state s and following the policy , i.e. 

 
𝑉𝑉𝜋𝜋(𝑠𝑠) = 𝑟𝑟(𝑠𝑠, 𝜋𝜋(𝑠𝑠)) + 𝛾𝛾 ∑𝑃𝑃(𝑠𝑠, 𝜋𝜋(𝑠𝑠), 𝑠𝑠′) 𝑉𝑉𝜋𝜋(𝑠𝑠′)        (1) 

  
where r is the reward received for taking the action 𝑎𝑎 =  𝜋𝜋(𝑠𝑠𝑘𝑘), and 𝛾𝛾 𝜖𝜖 [0,1]  is a discount factor for future rewards. 
An agent that uses 𝛾𝛾 = 1 will give greater importance to seeking long term rewards, whereas an agent using 𝛾𝛾 = 0 
will assign a greater value to states that lead to high immediate rewards. Reinforcement learning is particularly useful 
when the model dynamics (P and R) are not known, and have to be determined or estimated through interaction of the 
agent with the environment as depicted in Fig. 1 (a). Two approaches can be used to determine the values 𝑉𝑉𝜋𝜋 of every 
state. In the model-based approach, the rewards and transition probabilities of the model are first learned, and then 
used to find the values by solving the system of equations represented by eq. (1). In the model-free approach, the agent 
learns the values associated to every (s, a) pair without explicitly calculating the transition probabilities or the expected 
rewards [4]. 
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Figure 1. (a) Agent and environment interaction; (b) Artificial Neural Network for fitted Q-iteration 
 
In this paper we focus on the use of Q-Learning, which is the most widely used model-free reinforcement learning 

technique due to its simplicity [5]. In simple tasks with small finite state sets, all transitions can be represented with a 
table storing state–action values, or q-values. Each entry in the table represents a state–action (s,a) tuple, and q-values 
are updated as 

 
𝑄𝑄𝑘𝑘+1(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄𝑘𝑘(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾max𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]     (2) 

 
           
𝛼𝛼 ∈ (0,1) is the learning rate, which explicitly defines to what degree new knowledge overrides old knowledge. For 
𝛼𝛼 = 0, no learning happens, while for 𝛼𝛼 = 1, all prior knowledge is lost at every iteration. With this tabular approach, 
only one q-value is updated at a time and it requires states and actions to be discrete. When the state-action space is 
larger, and has continuous values, the Q-table is substituted by an Artificial Neural Network (ANN) [6] that maps 
states and actions directly to their q-values as Fig. 1 (b) illustrates. Instead of updating the q-values, the weights of the 
network are updated. This is the approach taken in this paper. 

2. Methodology 

We consider a heat pump and a water tank for supply and storage of heating and cooling to the building. Every 
time step, the tank provides an amount of heat to the building that is sufficient to maintain its interior air temperature 
at 21 C. Therefore, the heat pump supplies the tank with the heat it needs to vary its temperature from its current value 
to a target temperature, plus the amount of energy that the building will extract from the tank at that time step. With a 
traditional death-band rule based controller, and assuming winter conditions, the heat pump would provide the tank 
with heat only after its temperature fell below 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The amount of heat provided would increase the temperature of 
the tank to 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, while satisfying the heating needs of the building, which would extract heat from the tank in the 
same period. 

2.1. Definition of the states 

Our approach is to replace the values 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 by a single parameter 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, which is the action of the 
reinforcement learning controller, and it is proportional to the heat stored in the tank. Since the objective of the 
controller is to minimize the energy consumption of the heat pump, the penalty (or negative reward) is the amount of 
electrical energy consumed by the heat pump every hour. In order to account for any possible thermal discomfort, 
another penalty is included to account for any indoor temperature that happens to fall below 21 C. In the reinforcement 
learning problems, the actions and states should be ideally chosen such that the expectancy of receiving a reward 
under a given state and taking a given action is constant. In this system, the variables that contribute the most to the 
electrical consumption of the heat pump are: heat demand of the building, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  of the heat tank, current 
temperature of the heat tank, and ambient outdoor temperature. Of these variables, the heat demand of the building is 
highly dependent on the ambient outdoor temperature, the indoor temperature, and the internal and solar heat gains, 
which are correlated to the hour of the day. Fig. 2 shows the relationship between the penalty that the learning agent 
receives (proportional to the electricity consumption) and the different variables that are relevant in the determination 
of such penalty. Those variables are, therefore, used as states and actions. We also defined an additional state 𝑠𝑠5 which 
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is the outdoor temperature 22 hours ago, and which is used as an estimator of the forecasted temperature 2 hours 
ahead. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. State-action space definition. 
 

2.2. Action selection 

The ϵ-greedy policy and Boltzmann action-selection are two of the most common approaches to select the actions 
in the state-action space. Boltzmann action-selection selects the actions with a probability that is related to its q-value 
following eq. (3). Actions with higher q-values are more likely to be selected than actions with lower q-values. T is 
the Boltzmann temperature constant. High values of T (i.e. T > 3) make the probability of selecting any action very 
homogeneous regardless of their q-values. Low values of T (i.e. T < 0.1) lead the action-selection process towards a 
greedy policy, in which actions with the highest q-values are selected most of the time. It is convenient to start the 
learning process with high values of T in order to increase exploration, and then reduce T in order to exploit the 
acquired knowledge to maximize the rewards obtained. The probability of selecting a given action 𝑎𝑎 under a state 𝑠𝑠 
using Boltzmann action-selection equation is represented in eq. (3). 

 

Pr(𝑎𝑎|𝑠𝑠) = 𝑒𝑒
𝑄𝑄(𝑎𝑎,𝑠𝑠)

𝑇𝑇

∑𝑒𝑒
𝑄𝑄(𝑠𝑠,𝑒𝑒)

𝑇𝑇
                                                                                                                                                (3) 

           
 

In our simulations we gradually reduced T from 3.0 to 0.02 in order to make the controller evolve from an almost 
random search policy towards a greedy policy in which best actions are exploited. 

2.3. Update of q-values 

Instead of updating the q-values for each state-action tuple in a tabular approach, we used an ANN to map the 
different combinations of actions and states to their respective q-values. In this case, q-values are updating using eq. 
(2) and using 𝛼𝛼 = 1. The resulting q-values are then used as targets to fit the regression model using the ANN. The 
experience is gathered in batches 𝐷𝐷𝑘𝑘 that contain the tuples (𝑠𝑠𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖+1). Then a batch is completed, the q-values 
are updated using all the available batches and the ANN re-trained. Table 1 contains the sequence of the algorithm we 
have implemented of batch reinforcement learning with fitted Q-iteration for a non-episodic task. 
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      Table 1. Batch reinforcement learning with fitted Q-iteration 
Algorithm 1: Batch reinforcement learning with fitted Q-iteration for non-episodic task 

1:   Initialization of all states 𝑠𝑠 and actions 𝑎𝑎 
2: 𝑄𝑄           𝑄𝑄0     // q-values are initialized to small random values and the ANN is trained 
3: trainANN(S, A, Q)     // Train the ANN to initialize the weights 
4: 𝐷𝐷           0     // Reset batch of states, actions and rewards 
5: Repeat for 𝑘𝑘0 = 0 until  k < number of batches 
6:      Repeat for 𝑖𝑖0 = 0 until  i < experiences per batch 
7:  
8:           𝑎𝑎𝑖𝑖             𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑖𝑖, 𝑄𝑄𝑘𝑘) 
9: 𝑢𝑢

10:           𝑠𝑠𝑖𝑖+1           𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠𝑖𝑖, 𝑎𝑎𝑖𝑖) 
11:           𝑟𝑟𝑖𝑖           𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑠𝑠𝑖𝑖+1) 
12:           𝐷𝐷𝑘𝑘           (𝑠𝑠𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖+1) 
13:           i++ 
14:      end 
15:      scaleStates() 
16:      𝑄𝑄𝑘𝑘+1(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾 max 𝑄𝑄𝑘𝑘(𝑠𝑠′, 𝑎𝑎′)     // Update q-values using data from all previous batches D 

17:      trainANN(𝑆𝑆, 𝐴𝐴, 𝑄𝑄𝑘𝑘+1)     // Train network with states, actions and q-values from all the batches D 
18:      𝑢𝑢  
19:      k++ 
21: end 

 

3. Results and discussion 

In order to test the controller, we simulated our building under winter conditions in Austin, TX. using a typical day 
January the 1st. The controller was trained and tested for that typical day in order to test its learning capabilities. Fig. 
3 illustrates the behavior of the temperature of the heat tank with respect to the outdoor air temperature 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 . One of 
the main difficulties this controller faces is achieving a proper balance between immediate and future rewards. Since 
there is a heat storage tank, the increase of its target temperature will automatically lead to a penalty associated with 
the increased electricity consumption. However, if the target temperature is increased during a period of high outdoor 
temperature (for winter conditions), the heat pump will store energy when its COP is high. This behavior would 
increase the expected rewards in the long term even if the immediate rewards are negative. This trade-off between 
immediate and future rewards is managed with the discount factor 𝛾𝛾, which is present in eq. 2.  

Fig. 3 (a) and (b) show how increasing the discount factor reduces the dependency of the q-values on the immediate 
rewards 𝑟𝑟𝑘𝑘, while it assigns greater importance to achieving long-term rewards. This is particularly important in this 
system in which there is a delay between the action and the perceptible benefit from taking such action. In Fig. 3 (b), 
q-values are more correlated to the outdoor temperature 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 , and therefore learn better from the variation of the heat 
pump COP and the electrical consumption. 

One limitation of this controller is that the action (target temperature of the tank) is not directly related to the 
electricity consumption of the heat pump, which also depends on the building heating demand. Although we have 
included as states some variables that are useful to estimate the heating needs of the building, further work will explore 
the use of the heat flow from the heat pump as the action of the controller.  
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Figure 3. (a) simulation results for 𝛾𝛾 = 0.25; (b) simulation results for 𝛾𝛾 = 0.75 
 

4. Conclusion 

Model-based control systems can be costly to implement, which is a major drawback that prevents certain types of 
controllers such as MPC from being widely implemented in a residential setting. Reinforcement learning, by contrast, 
is a model-free control that learns from the environment where it is implemented and adapts its behaviour accordingly. 
When sufficient amount of data is available for training, it can reach near optimal solutions. In order to increase the 
speed of learning, we have used an ANN to map the state-action space to the Q-function. This allows the controller to 
work with continuous states and actions, and also to speed up the learning process. We have also observed that the 
definition of the discount factor plays a critical role on the results. The reason is that the storage tank created a delay 
between the current actions and the long-term rewards. Increasing the discount factor improves the results by assigning 
a greater importance to future rewards.  
Additionally, the integration of this controller in a building energy simulator will allow us to test it under various 
weather conditions and for different buildings in order to test its suitability for widely implementation in a residential 
built-environment. 

 

References 

[1] International Energy Agency Agency. Transition to Sustainable Buildings. 2013. 
[2] Yang, L., Nagy, Z., Goffin, P., Schlueter, A., Reinforcement learning for optimal control of low exergy buildings. Applied Energy, 2015 
[3] Robinson, D., Computer modelling for sustainable urban design, Earthscan: London, p. 121, 2011. 
[4] Barto, A.C., Sutton R.S., Reinforcement Learning: An Introduction, 1998. 
[5] Watkins, CJCH., Dayan, P., Technical Note: Q-Learning. Machine Learning 1992; 8:279–92. 
[6] Busconiu, L., Babuska, R., De Shutter, B., Ernst, D., Reinforcement Learning and Dynamic Programming Using Function Approximators, 

Automatic and Control Engineering Series, 2010. 
 


