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ABSTRACT

The buffer allocation problem in production lines is an NP-hard combinatorial optimisation prob-
lem. This paper proposes a new hybrid optimisation approach (using simulation) relying on genetic
algorithm (GA) and finite perturbation analysis (FPA). Unlike the infinitesimal perturbation analy-
sis, which deals with small (infinitesimal variation) perturbations for estimating gradients of the
performance measure, FPA deals with larger (finite) or more lasting perturbations. It is an exten-
sion specifically dedicated to discrete decision variables and applicable to most discrete-event
dynamic systems. The proposed method allows a global search using GA, with refinement in spe-
cific solution-space regions using FPA. The main objective is to maximise the average production
rate of a production line with unreliable machines, by allocating the total buffer capacity in locations
between machines. Extensive numerical experiments show that: (1) the proposed hybrid GA-FPA
method clearly outperforms the state-of-the-art methods from the literature; (2) combining FPA and
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GA is beneficial when compared to employing GA or FPA independently.

1. Introduction

The design of unreliable manufacturing systems, such
as production lines with human operators or automated
assembly systems, has received considerable attention
from both academics and industrial worlds. Numerous
researches are dedicated to the Buffer Allocation Problem
(BAP), that is, how much buffer capacities to allow and
where to place them within the line (Dolgui, Eremeey,
and Sigaev 2007). A classification review of the studies on
BAPs is presented in (Weiss, Schwarz, and Stolletz 2018)
and in (Demir, Tunali, and Eliiyi 2014).

Most of the methods for designing production lines
are based on flow simulations that require numerous iter-
ations (Shi and Men 2003). In the industry, it is difficult
to implement such methods since running them requires
a huge amount of time. Therefore, this study focuses on
reducing the time needed to reach convergence, while
trying to reach the optimal buffer allocation scheme. An
efficient technique that shows good convergence features
is the Finite Perturbation Analysis (FPA) method. This
method is an analytic technique that provides a solu-
tion to the design problem after a single simulation run
of the system’s model (Suri 1989). This paper proposes
a hybrid method using the Genetic Algorithm (GA) and

the FPA approaches, coupled to discrete-event simulation
technique. The advantage of using GA lies in the fact
that it offers a strong diversification ability to explore the
solution space. GA is coupled here with FPA to allow
an intensification of the search in some regions of the
solution space. An exploration direction in the searched
area is determined by calculating the expectation of the
gradient of the performance measure (in this paper, the
performance measure is the production rate) with respect
to the system parameters. The gradient is used in an
allocation technique of buffer capacities for unreliable
production lines operating in a stochastic environment.
The advantage of the technique is that it converges in
a single simulation run and ensures scalability, as it can
address different sizes of production lines (with differ-
ent numbers of machines and buffers). To the best of
our knowledge, combining GA with FPA has never been
addressed in the literature, which shows the novelty of
our work.

The paper is organised as follows. Section 2 gives the
formulation of the problem and reviews the related work
of BAP in production lines. In Section 3, we present
the overall approach for solving the BAP. Section 4
gives a detailed development of the used optimisation
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techniques. Section 5 presents the experiments, the
results and their discussions. Finally, conclusions and
future research directions are provided in Section 6.

2. Presentation of the problem and related
work

In this section, we first explain the BAP in serial pro-
duction lines and we formulate the problem. Second, we
provide a comprehensive literature review.

2.1. Problem description and formulation

Consider a serial production line that consists of a
sequence (M, ..., M,) of n machines connected in
series. The machines are separated by (n-1) buffers
(b1, ..., by—1), where bjrepresents the size of the buffer
located between the machines M; and Mt 1, By is a
fixed non-negative integer that represents the total buffer
space available for the whole production line, and f (s)
is a mathematical function that represents the Produc-
tion Rate (PR) of the production line (see Figure 1).
Each part enters the system through the first machine,
passes sequentially through all machines and the inter-
mediate buffers, and then exits the line through the last
machine. In open production lines, the first machine
is never starved (i.e. there are always available parts at
the input of the system), and the last machine is never
blocked (i.e. there is available space for parts storage at
the output of the system). It is assumed that the transfer
times to move parts from a machine to a buffer and vice
versa are negligible.

Formulation: The design problem considered in this
paper consists in allocating By, throughout (u-1)
buffers. The objective is to maximise the average produc-
tion rate in open serial production lines. In mathematical
terms, the problem can be written as follows:

Find: s = (b1, b3, ...,b,—1) so as to maximize f(s)

(1)
n—1
Subject to: Z bi = Bmax; bi
i=1

> 0 and integer (for each i)  (2)

Machine 1 Machine i

Buffer1

2.2. Literature review

The design of production lines is a well-known prob-
lem in industry. It can be separated into two main cat-
egories. The first category focuses on designing the total
cycle time across workstations, whereas the second one
(namely, the BAP) focuses on buffer allocation between
machines to store work in process. Regarding the latter,
several authors address this problem for small-sized pro-
duction lines by using analytical models and techniques.
Markov chain models are one of the analytical techniques
that have been widely addressed in the literature. To reach
the optimal buffer allocation, Hillier and So (1991) use an
exact analytic model based on Markov-chain represen-
tations for small-sized production lines. However, they
show that any attempt to expand the model to a realis-
tic situation leads to state space problems. Diamantidis
and Papadopoulos (2009) study a serial flow line with
two workstations and an intermediate buffer. They pro-
pose an analytical approach based on a Markov process
model to describe the characteristics of the system. For
more details on timed Markov models of manufacturing
systems, the reader can refer to (Papadopoulos, Li, and
O’Kelly 2019).

To evaluate large systems, approximation methods
are developed relying on decomposition or aggregation
methods. These methods are applied if a huge state space
makes the numerical solution of Markov chains too slow
or impossible (Weiss, Schwarz, and Stolletz 2018). The
decomposition method (Liberopoulos 2018; Diamantidis
etal. 2019; Shaohui et al. 2019) is based on a decomposi-
tion of the n-machine line into a set of (n-1) two-machine
lines where the buffer between the upstream machine
and the downstream machine has the same capacity. On
the other hand, the aggregation methods (Zhao et al.
2017) replace a two-machine line with an equivalent sin-
gle machine, and then reduce iteratively the number of
machines until obtaining only one machine. This reduc-
tion allows for a fast performance evaluation of long
lines. Recently, some researchers use metaheuristics to
solve BAPs for reliable or unreliable machines. For details
about metaheuristics, the reader can find some princi-
ples and rules in (Zufferey 2012; Gendreau and Potvin
2019). Nahas, Ait-Kadi, and Nourelfath (2006) propose a
new local search approach based on the degraded ceiling
metaheuristic to solve the BAP in unreliable production

Machine i+ Machine n
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Figure 1. Open serial production line.



lines. They conclude that the degraded ceiling gives bet-
ter results in an acceptable amount of time, and as the
size of the line increases, the solutions become more
competitive. Spinellis and Papadopoulos (2000) apply
two stochastic methods, GA and simulated annealing,
for solving the BAP with the objective of maximising
the production rate. They show that both methods can
be used for optimising large production lines. Spinellis,
Papadopoulos, and MacGregor (2000) present a gener-
alised queuing network algorithm as an evaluative proce-
dure for optimising production-line configurations using
simulated annealing. Dolgui et al. (2002) propose an
approximate method based on the Markov-model aggre-
gation approach using a GA. They obtain better solu-
tions in comparison with other methods. Costa et al.
(2015) propose a new parallel tabu-search algorithm
using an adaptive neighbourhood generation mecha-
nism, which consists in minimising the total buffer capac-
ity of a serial production system under a minimum PR
constraint. In another study, Vergara and Kim (2009)
develop a buffer allocation method that can be applied
to open or closed production lines. They use a heuris-
tic to find a near-optimal solution and the performance
of the heuristic is compared to the performance of GA
for various test cases. Demir, Tunali, and Eliiyi (2011)
use an adaptive tabu-search algorithm where the PR of
the production line is evaluated by using a decomposi-
tion method. Recently, Cruz, Duarte, and Souza (2018)
develop a multi-objective GA to allocate the buffers and
service rates to generate a set of solutions for more than
one objective functions. Yegul et al. (2017) focus on
the problem of optimising production-line configura-
tions and propose several simulation-based optimisation
approaches based on ant-colony optimisation. Kose and
Kilincci (2020) combine two metaheuristics and propose
a hybrid-evolutionary simulation-optimisation approach
for the multi-objective BAP in open serial production
lines.

In other studies, authors propose to hybridise meta-
heuristics with other search techniques. Dolgui, Ere-
meev, and Sigaev (2007) present a hybrid optimisation
algorithm, using GA and branch-and-bound approaches.
For the evaluation of objective function, they pro-
pose a Markov-model aggregation technique. Bierlaire,
Thémans, and Zufferey (2010) have combined variable
neighbourhood search (Thevenin and Zufferey 2019)
(with the aim to explore the solution space) with a modi-
fied trust-region algorithm (for intensification purposes),
for nonlinear global optimisation. For solving the BAP
in unreliable machines, Shi and Men (2003) propose a
tabu search (Schindl and Zufferey 2015) to speed up
the nested partitions method. Amiri and Mohtashami
(2011) propose a GA integrated to line-search method
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for determining the optimal/near-optimal size of each
buffer storage. According to Demir, Tunali, and Eliiyi
(2014), only 4 out of 95 studies after 1998 employ a
hybrid approach to optimise the buffer sizes, and just
one of those researches solves the problem in a multi-
objective manner whereas the others solve the BAP while
maximising the PR. The reader can refer to Li et al.
(2009) for more details on the PR evaluation. They
review and summarise the most important publications
and methods dealing with the PR analysis of produc-
tion systems with unreliable machines and finite buffer
capacities.

With respect to the objective function, the majority
of studies done in the literature deal with a single objec-
tive problem. Some papers have addressed a bi-objective
problem formulation (Lee, Chen, and Shunder 2009;
Amiriand Mohtashami 2011; Cruz et al. 2012), and other
studies involve three objectives (Gershwin and Schor
2000; Cruz, Van Woensel, and Smith 2010; Zandieh,
Joreir-Ahmadi, and Fadaei-Rafsanjani 2017). This obser-
vation is also true for the job-scheduling field, where
only a few studies have considered jointly more than
two objective-function components (e.g. Thevenin, Zuf-
ferey, and Widmer 2016; Thevenin, Zufferey, and Potvin
2017).

Simulation-optimisation  approaches are often
employed for production lines. The simulation allows
evaluating, at each execution, the stationary perfor-
mance measure, whereas the optimisation algorithm pro-
vides a direction for searching new solutions for the
design of the system. Battini, Persona, and Regattieri
(2009) use a simulation approach to determine the opti-
mal buffer allocation for a serial production line that
increases the reliability of the production line by min-
imising the micro-downtime of machines. For their sim-
ulation, they consider the impact of the cost on the
buffer allocation. BCan and Heavey (2011) employ a
genetic programming to perform symbolic regression.
They develop a sampling approach adapted to genetic
programming, obtaining simulation-based meta-models
of industrial systems. Giirkan (2000) optimises the PR
with respect to buffer capacities using sample-path opti-
misation to find optimal buffer allocations by work-
ing with a continuous-line approach instead of discrete
lines. This is because continuous-line simulations are
substantially faster and the approximations are quite
accurate. Dealing with continuous parameters enables
him to compute directional derivatives of the PR that
are valuable for optimisation purposes using infinitesi-
mal perturbation analysis (Turki, Hennequin, and Sauer
2013). Cheikhrouhou, Paris, and Pierreval (2002) pro-
pose an algorithm designed to determine simultane-
ously the sizes of storage space and service times in
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stochastic transfer lines. Based on FPA, the developed
technique retrieves information on throughput gradient
with respect to system parameters. The provided infor-
mation is integrated into a multidimensional optimisa-
tion procedure to determine the best configuration of the
system parameters.

Classical simulation-optimisation methods and tech-
niques based on evolutionary algorithms (Fu 1994)
consume significant computing time. Indeed, they require
a large number of simulations before an optimal/near-
optimal solution can be found. Therefore, this work
uses FPA that provides a solution to the design problem
using a single long simulation of the system, significantly
reducing the computation time. The advantage of FPA is
to be able to use the same simulation to estimate the gra-
dients and to develop the configuration using a stochastic
algorithm. Indeed, during the simulation, it is possible
to obtain updated values of the gradient of the consid-
ered performance measure at regular time intervals. At
each update, these values are used to guide the search for
solutions throughout the simulation.

Although hybridising different methods has been pro-
posed to solve the BAP, to the best of our knowledge, we
could not find any study combining GA and FPA to solve
the BAP in unreliable production lines for maximising
the production rate. The proposed approach exploits the
advantages of the two algorithms. GA tends to quickly
identify promising regions of the solution space, whereas
FPA deeply explores such regions to find competitive
solutions. Moreover, an experimental study is carried out
to identify the best parameters of the proposed method.
The algorithms are applied equally to short and large
production lines. A contribution of our work is thus the
development of a general optimisation approach (GA
combined with FPA) using a single simulation for the
design of buffer capabilities for stochastic production
lines. Another advantage of this approach is that it can
take into account different sizes of production system.

3. Problem solving framework

The proposed approach is based on a combination of
GA with FPA. Figure 2 represents the detailed optimi-
sation approach, where the same FPA algorithm forms
the core element providing the different gradients esti-
mates for the Stochastic Algorithm (SA). The advantage of
using GA is to approach competitive solutions in a rea-
sonable time. The interest of FPA is to use, on the one
hand, the same simulation to estimate the gradients, and
on the other hand, to develop the configuration with a
SA. In other words, the optimisation and the simulation
take place simultaneously. In the initial population of m
different solutions, P = (s1, $2, . . . ,Sm), €ach solution s; =

Initial population of individuals (solutions)
P = {.1'[,.5':,.... Sm }

Y

Calculation of the fitness (PR) of each individual b; using the
discrete-event simulation model.

h

Apply tournament selection

l

Apply arithmetic crossover

Maximum number of
generations reached?

MNew population of solutions

P =L\‘;.s;4_,.,s':,,]

l

Calculation of the gradients of the
production rate using FPA

v

Caleulation of different buffer
capacities using SA

Maximum number
of parts reached, or is not
possible to improve PR?

Estimated optimal/near-optimal solution

Fe !];‘,b;,.,..b,:_;]

Figure 2. Framework of our solution approach for the BAP.

(bi1>bip, . .. bij,....bin—1) is generated randomly from a
discrete uniform distribution over nonnegative integers,
where b; ; denotes the jth buffer of the i solution. The
evolution of the current population P to the new popu-
lation P’ = (s],s5,...,s,,) is achieved by the application
of the selection and crossover operators for a number



of generations, with the objective of approaching the
zone containing an optimal/near-optimal solution s* =
(b}, b5, ...,b;_,). Each solution (or configuration) of P’
is the input of the SA based on the calculation of the gra-
dients of the production rate df /dbi with respect to the
decision variables (buffer capacities) b;,i = 1,2,...,n —
1. This solution method is derived from the optimisation
approaches by the technique of gradient descent (Rob-
bins and Monro 1951).

Consider the original simulation that consists in sim-
ulating P parts. Each iteration k is done by simulating
L parts (where L < P), after which a new evaluation
of the gradients is calculated by FPA. This evaluation
determines the new search direction for the design solu-
tion. This search method requires, for each iteration k,
the estimation of the projections’ vectors of the gra-
dients on the hyperplane Z?:_ll b; = Biax. Indeed, for
a parameter b;, the projected gradients allow to deter-
mine the best direction for improving the current solu-
tion (Robbins and Monro 1951). Thereafter, an iterative
hill-climbing-type procedure is used. The objective is to
evolve from the solution found towards a better solu-
tion using the gradient descent technique. The iteration
(k+1) improves, from one configuration to another, the
parameters b¥, representing the buffer capacity b; at the
iteration k.

Hence:

of 1 & af
k+1 _ ok N 9
bi o bl * & (ab,‘ n—1 ; 3171‘) 3

where,

e g is a numeric suite that verify the following
conditions of convergence:

k— 00

o o0
lim akzo,Zak:oo,Zai<oo (4)
k=1 k=1

i) 1 —1 0 . .
e The term (% = %) in equation (3) rep-
resents the projection of the gradient ;—{; on the hyper-

plane constraints Z?:_ll b; = Bmax-

SA stops if it is not possible to improve the PR anymore
with a new solution (the gradients’ values become negli-
gible), or when the maximum number of parts produced
in the simulation is reached.
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4. Development of the optimisation technique
4.1. Genetic algorithm (GA)

GA is a global optimisation technique that considers an
optimisation problem as the environment where feasible
solutions are the individuals living in that environment.
A set of feasible solutions takes the place of a population
of organisms. Every organism represents a possible valid
solution to the problem. In general, a GA begins with a
randomly generated set of individuals. Once it has been
generated, the GA enters a main loop. After each iteration
(generation), the population changes and a new popu-
lation is produced by applying a number of stochastic
operators to the previous population (Tomassini 1999).

We present below the components of the proposed
GA, relying on the following notation.

N is the number of individuals

P(t) is the current population

P(t+1) is the new population

MinBuffer is the smallest value allowed

MaxBuffer is the largest value allowed

PositionBuffer is the rank of the buffer

GapStock is a parameter that allows adjusting the dif-

ference between MinBuffer and MaxBuffer

e U{a,b} is a function that randomly generates (with a
uniform distribution) an integer in the set {a, b}

e Int[c] is an operator that takes only the integer value

of ¢

Initial population: the first step of the proposed GA con-
sists of building an initial population using Algorithm 1.
The initial population is composed of m different solu-
tions (or configurations). Each configuration is generated
randomly with the discrete uniform distribution. To sat-
isfy Constraint (2), some buffer values are then increased
or decreased in a well-distributed manner i.e. a repair
procedure is performed to make the solution feasible. The
repair procedure works as follows. It distributes, over the
buffers, the value of a possible gap between (a) and (b),
where (a) is the sum of the buffer capacities that are gen-
erated by the uniform distribution, and (b) is the total
capacity B,y required by Constraint (2) (Z;’z_ll bi =
Bmax)- If the gap is negative as (a) < (b) (resp. positive
as (a) > (b)), the repair is performed by sequentially
increasing (resp. decreasing) by one unit the value of
some b;’s, picked up randomly among the b;’s that are
below (resp. above) the largest (resp. smallest) b;, until a
feasible solution is reached. To illustrate this procedure,
we give an example of allocation of 30 buffers at four
positions. Suppose that the uniform distribution gives the
configuration (3, 8, 6, 10), which amounts to 27 (the gap
is thus equal to -3). Therefore, to satisfy the constraint
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of reaching 30, the repair procedure could increase by
one unit the values of the first three stocks to finally give
the following configuration (4, 9, 7, 10). The main objec-
tive of this phase is to have configurations that cover, in a
non-biased manner, various regions of the solution space.

Algorithm 1. Generation of initial population of m
individuals

While the number of individuals is not reached, do

For each individual, do

SumBuffer = 0 (initialisation of the sum of values of
all the capacities allocated to the stocks)

MinBuffer = Int[Bax / (n-1)] - GapStock (n-1 denotes
the size of the generated individual; # is the number of
machines)

MaxBuffer = Int[By,y / (n-1)] + GapStock

For each position, do

PositionBuffer ~ U{MinBuffer, MaxBuffer} (position
gives the rank of the buffer) PositionBuffer = SumBuffer+
PositionBuffer

D = Bmax  (if D # 0, the repair procedure is applied)

If D = 0, the individual is already feasible

If D > 0, increase in a well-distributed way some val-
ues of the individual

If D < 0, reduce in a well-distributed way some values
of the individual

Evaluation: the fitness value of each individual, namely
f, represents the PR of the production line and is the result
of the execution of a simulation model (Arena).

Solution encoding: each decision variable is associated
with a gene. A set of genes constitutes a chromosome,
and one or several chromosomes represent an individual
(i.e. a solution). In this paper, there is one type of gene:
buffer capacity. Thus, each individual consists of a unique
chromosome s = (by, by, . ..,b,—1).

Selection: the tournament selection is used, which is a
useful and robust selection mechanism commonly used
by GAs (Miller and Goldberg 1995). It consists in first
selecting randomly two individuals of the population,
then in comparing their PR, and finally in selecting the
winner for the next generation.

Crossover: two parent solutions of the current popu-
lation interact and give two child solutions (offsprings) of
the next population (for the next generation). The major
reason that makes this crossover operator very suitable to
the problem under consideration is that it assures feasibil-
ity of the offspring. Since both parents are feasible, both
children must also be feasible (Matondang and Jambak
2010). The crossover phenomenon is essential because it
allows GA to explore the search space efficiently. In this
paper, we use the arithmetic crossover operator with a
constraint criterion (Duman 2018). From a population of
parents, two parent solutions s; and s, are first selected.
Next, the two new offsprings s} and s} are generated by

linear combination of s; and s; as follows:

Ss=a-s1+(1—a) -5 (5)

S/2=(1—0l)'51+01'52 (6)

where « is a random weighting coeflicient picked uni-
formly in the interval [0, 1]. Note that in order to respect
Constraint (2), a balanced adjustment for the arithmetic
crossover is used. More precisely, some values of the off-
springs are increased or decreased in a well-distributed
manner in order to respect the total buffer space available
for the whole production line (i.e. the repair procedure is
performed). Moreover, since the buffer sizes must be inte-
ger, some values of the offsprings are modified to satisfy
this condition. The former repair procedure and the latter
rounding mechanism correspond here to the mutation
operator.
The proposed GA is described in Algorithm 2.
Algorithm 2 GA Genetic Algorithm
Initialisation
Sett =10
Generate randomly an initial population P(t) of m
individuals.
Calculate the production rate of each individual of P(¢)
using the Arena simulation model.
While P(t+1) does not contain N individuals, do
Repeat N/2 times the below process:
Select randomly two parents from P(¢) and apply
the tournament selection based on the fitness f.
Clone the best-selected individual.
Apply arithmetic crossover operator between two
parent solutions s;ands;.
Insert the offsprings s} and s, in the new population
P(t+1).
Repeat the While loop as long as an overall stopping
condition is not met

4.2. Finite perturbation analysis (FPA)

Discrete-event dynamic systems (DEDS), such as man-
ufacturing systems, are dynamic asynchronous system
where the state transitions are initiated by the occurrence
of discrete events in the system at instants of time. The
evolution in time of a DEDS is analyzed using its trajec-
tory, denoted by Nominal Trajectory (NT), representing
the events that affect the entities processed by the system.
Assuming that a parameter of the system is perturbed
in a trajectory following the occurrence of an event, the
value of the parameter changes, and a new trajectory is
obtained, denoted by Perturbed Trajectory (PT).
Perturbation analysis (PA) is an analytical technique
that calculates the performance-measure sensitivity of



a DEDS with respect to system parameters, by analyz-
ing its sample path (Ho 1987). PA allows obtaining the
perturbed performance from a nominal (original) exper-
iment or sample path without the need of doing a per-
turbed experiment. When the perturbations are finite
(large amplitude), and where the changes of order of
events in the trajectory do not influence the performance
measure of the system, an extension of the PA must be
introduced. It is called FPA or first order PA (Cao 1987).
We can thus emit the hypothesis that once a perturbation
is introduced, the type of future interactions that it can
encounter and/or lead through system (machines, buffers
and parts in the system) in the PT is statistically similar
to that in the nominal one (Ho 1987). Hence, the con-
struction and simulation of the PT is not necessary and
only the NT will be used to define the system’s response
to a perturbation. This development is supported by spe-
cific experimental results of particular DEDS (Heidelberg
et al. 1988).

The purpose of applying the perturbation analysis is
to provide a prediction of an estimate of PR through the
development of two sets of rules: the perturbation gener-
ation rules and the perturbation propagation. These rules
are based on the prediction of future events and their
respective durations after the introduction of perturba-
tions in the NT by changing the capacity of some buffers.
First, we consider the unitary cell shown in Figure 3 for
the development of the FPA rules. Next, from the differ-
ent results obtained, we can generalise them to the entire
production line.

Consider the sequence of events of the NT of the
machine M;, denoted as M;(t), and that of M;4 ;, denoted
as M;;1(¢), and the buffer level b;(t) of the Unitary cell
(see Figure 4). The occurrence of a long-duration failure
of Mjy; leads to an accumulation of parts in buffer b;,

Machine i Bufferi  Machine i+1

—be

Figure 3. Unitary cell.

Buffer level
Mift) e e e =t -9
FO
e || Operating
/\? ®&—® failure
i) == Blockage/ Starvation
Misi(t) “t---0—9-1
fh I
N —

Time

Figure 4. Nominal trajectory of a unitary cell.
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supplied by M; that is in operating order. At time ¢;, b;()
reaches its maximum capacity B; and any part produced
by M; cannot be stored in the buffer. Although machine
M; remains operational, it becomes blocked (noted FO)
until the instant ¢, when the machine M;y, is finally
repaired and becomes operational. Next, it begins to pro-
cess parts from the intermediate stock b;. Hence, this
marks the end of the blocked period for machine M;. At
time t3, M; breaks down, allowing M;;; to continue to
process the parts already in the stock b;. This explains the
reduction in the level of b;, which subsequently contin-
ues to vary with the different states of M; and M;; ;. The
blocked period of Figure 4 could be reduced if the buffer
capacity of b; is higher.

During the period [t1, £;], the storage space remains
saturated, as shown on the trajectory. This is due to our
choice of representation of the total stock capacity in the
model that takes into account the unit on M; waiting to be
placed in b;. This unit is directly stored as soon as a place
is released in b;. Moreover, since the buffer is a discrete
parameter, we should have represented the evolution of
the level of b; in steps, but for sake of clarity, we preferred
a representation where the buffer level is considered as if
it is a continuous variable.

4.2.1. Perturbation generation rules in a unitary cell
All the propositions hereafter are described in detail in
(Cheikhrouhou 2001) and they form the core of the FPA.

Proposition 4.1: Let M;(t) be a blocked machine (FO)
during a period [t1, t,] of the nominal trajectory. A pertur-
bation (or local gain) of size At; is created in the sequence
of events of this machine, if a variation in the size of stock
ADb; is injected when M; passes through the FO period (or
earlier). The perturbed trajectory of M;, denoted M;(t), is
specified as follows:

M(t) = M;(t + At),Vt > 1 (7)
At; = t; - Ab; (8)

where t; is the average service time of M;, and At is the
resultant perturbation in its trajectory. Figure 5(a) graphi-
cally reflects equations (7) and (8) for an eligible perturba-
tion provoked by Ab; =1 and where the sequence of events
M;(1) is translated in time by a value of At; corresponding
to the equivalent gain in production time.

Note that if the perturbation is not eligible for this
interval, ie. (f;-t;) < At;, the FO period would be
completely removed from the perturbed trajectory. The
sequence of events of M;would be advanced by a period
equal to (t,-t1). Moreover, the perturbation may be con-
sidered as a local gain because it represents a potential
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Figure 5. Generation, propagation and loss of perturbation in a unitary cell.

gain in the global execution time, if it is passed on to the
global duration of the production.

4.2.2. Perturbation propagation rules in a unitary cell
Proposition 4.2: Let [t4, ts] be a time interval in which
machine Mit1 of the unitary cell is starved (noted NI).
The operation Ab; =1 does not change the input date of
period ty between the nominal trajectory and the perturbed
trajectory. Hence

bi(ts) = bi(ty) = 0 9)

where b/(t) is the buffer level in the PT. The same result
can be formulated in the most general case with eligible
perturbations Ab; = p,Vp € N.

Proposition 4.3: Equation (7) and the hypothesis of the
existence of a period of famine (NI) (due to a failure for
example) for My, during the following period [tu, tc] in
the NT induces a reduction of this interval in the PT. The
new time interval NI is [ty, t5], calculated from (10). The
perturbation is therefore completely propagated from M; to

M.

NI'[ty, t5] = FO[ty, ts] — At; (10)

M, (1) = M1 (t+ At), Yt > t5 (11)

The sequence of events of M; denoted by M:(t) in its
perturbed trajectory M;, is represented in Figure 5(b).
The value of the total propagated perturbation from M;to
M;4 is calculated by:

A, = tg — ts = A (12)

Proposition 4.4: Suppose that the trajectory M;(t) is
translated to the left by At;, due to a particular gain
(propagation of perturbation) at an earlier time (in the
perturbed trajectory). Since My, did not undergo any per-
turbation until that moment and B; has not been modified,
the occurrence of an event FO during [tg, to] in the nomi-
nal trajectory of M;(t) implies an increase of the FO period
in the perturbed trajectory and consequently, the loss of the

perturbation (see Figure 5(c)):
FO'[tg, tg] = FO[ts, to] + At (13)

M(t) = Mi(1),Vt > tg (14)



Note that if the duration of the blockage is considered
very short, the same scheme is applicable with the same
explanation. However, this period may disappear in the
perturbed trajectory if the value of the perturbation is
longer than the duration of the blockage.

4.3. Description of the FPA and SA algorithms

4.3.1. Notation

P number of parts for each simulation

L number of parts for each iteration

T duration of a simulation

f production rate in the nominal trajectory (f =
P/T)

f estimated production rate in the perturbed
trajectory

df/obi  gradients of the production rate due to buffer
decision variable b;

N number of iterations

bk buffer between the machine i and the machine
i+1 at iteration k

Sum; accumulation of the gain time on machine i

A regulation parameter for the convergence

Anint an Arena operator that takes the near integer
value

Abs absolute value

Argmin an arena operator that takes the minimum
value

We assume that the simulation of a production line
required to produce P parts is sufficiently long so that
all possible events can occur during the simulation run.
The PR is estimated by f, where T is the duration of the
simulation. Then for a given i,

of _ (%) _ f oT
b b T (15)

T ab;

where 07/0bi represents the total perturbation time
affecting the line, due to the introduction of the per-
turbation Ab; in the simulation. The value of dT/0dbi is
calculated by applying the generation and propagation
rules of the FPA mentioned above.

4.3.2. FPA algorithm

The presented FPA relies on (Suri 1989) and it is appli-
cable only for DEDS flow-shop such as manufacturing
systems or communication networks. FPA includes the
detection of critical events in the nominal trajectory
(such as the FO and the NI), and their respective dura-
tions. Therefore, we can predict the repercussion of a
perturbation of one unit capacity of the stock associated
with each relevant event. This repercussion concerns the
persistence of the event in the perturbed trajectory and
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its duration. Algorithm 3 describes the FPA algorithm
for the optimisation of buffer capacities. It works simulta-
neously with the simulation of the nominal trajectory in
order to detect in time the events which make it possible
to generate and propagate the perturbations, such as the
beginning of a FO period or the end of a NI period.
Algorithm 3 FPA Finite Perturbation Analysis
Generation of perturbations
Step 1
For i = 1to n-1, do: Sum;; = 0; Select b; (initiali-
sation of accumulators Sum; )
Step 2
For « Mi+1(t) is FO for the first time », do: B; =
B; 4+ ABj; Sum; = t; - AB;
Propagation of perturbation
Step 3
For any event « Mi(t) is NI », do: Sum; =
max{Sum; +
[NI], Sum;y1} — max{0, [NI]}
Step 4
For any event « Mi+1(t) is FO », do: Sum; =
max{Sum;i1 + [FO], Sum;} — max{0, [FO]}
Step 5
If i=n (Last machine), then: (;’—{; =— (%) :

Sum,,;f* = #;”’”n; StOp
Else Go to Step 1

4.3.3. Stochastic algorithm (SA)

The proposed SA is based on the Robbins-Monro pro-
cedure. It is an iterative procedure used to update the
buffer capacities during the simulation run, i.e. if at each
update a new calculation of the gradients (thus a launch
of the FPA algorithm) is done, we need as many launches
as the number of buffer updates. The total duration of
simulation would be too long. To overcome this disad-
vantage, the solution is to develop a single simulation
optimisation (mono-run). FPA is then integrated into
SA (see Algorithm 4) that is used to reach a potential
optimal/near-optimal solution. It is based on the nomi-
nal trajectory that is available to update the configuration
settings (here, the buffer capacities) for each production
of a number L of parts. Step 3 presents the modified pro-
cedure of Robbins-Monro that uses the technique of gra-
dient calculation based on FPA. A perturbation is indeed
an incrementation of one unit of the capacity of a buffer
that shows blockage events during his nominal trajectory.
This incrementation is virtual and used only to evaluate
the Production Rate gradient thanks to the propagation
rules of FPA. Actually, the values of the buffers capaci-
ties are updated during the optimisation using SA and
not through their incrementation by one unit. Moreover,
each update of the buffer capacities at an iteration (k+1)
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respects the main constraint 7~ ' b5 = Y771 pk =
Bmax> Y1, which leads to the fact that, at any iteration, the
algorithm keeps the allocation of the same global capacity
on all line buffers. Step 4 is a precaution case where some
updated values of b;‘“ are negatives. We choose ay as
numeric suites of type/k, where A is a constant randomly
determined by choosing an initial value. The adjustment
is done through the calculation of the projected gradient
values, so that the step size between the iterations is con-
sistent. In other words, the value of b;after each iteration
is in the same order of magnitude.
Algorithm 4. SA Stochastic Algorithm

Initialisation k=1
Step 1 Choose the initial values of bf.‘, for
i = lton-1
Step 2 Simulate for bf L parts (L < P)
Estimate (% by using FPA
k+1_3k, (A 9 3
Step 3 b=t (8) (5 T )
Step 4 If bf“ < 0 then
bllﬁ = Arg min bi»‘
byt! = Arg min bt
a~ U(0,1)
a-bk
I= gy
k+1_pk_ (A (9f _ 1 af
b =b; +f'(ﬁ)'<a—bi—m Do aT;,-)
Step 5 If byt —bj| < € then b;= Anint(bk);
STOP
If P parts are simulated then STOP

Else k = k +1and go to step 2

Since we are dealing with discrete values,
a discretisation of stock values would be necessary. The
idea is to consider the capacities of the stocks as continu-
ous variables until the end of simulation of L parts. After
that, the algorithm transforms the value of the parameter
to a discrete value (Step 5). The parameter € represents a
trade-off between the simulation length and the accuracy
of the estimated parameter, for which a value of 0.0001 is
taken in this work. The advantage of this stopping crite-
rion is that it takes into account the variations of the all
the b;variables simultaneously. Therefore, the algorithm
stops when the difference between the values of b; from
an update to another becomes negligible or when the
maximum number of parts produced in the simulation
is reached.

Note that by changing the values of b;during the
single-run simulation, transient effects are introduced
into the system and the PR values and gradients thus
contain biases related to these effects. The algorithm pro-
posed at this stage is therefore considered as a heuristic.

5. Numerical experiments

In Subsection 5.1, the parameters of the proposed
method are identified. Numerical comparisons of our
methods are performed in Subsection 5.2 with respect
to the literature. Four sets of instances are considered,
involving 3, 5, 10 and 20 machines in the production line.
Finally, Section 5.3 demonstrates the benefit of combin-
ing GA with FPA when compared to GA or FPA only. In
each table, the best results are always highlighted in bold.
The Arena simulation language V14.0 is used to develop
the models and the algorithms are implemented in Java.
The experiments are performed on a PC with a 1.9-GHz
Core (TM) i5CPU processor with 8 GB of RAM.

Termination criterion: the algorithm stops when the
production rate obtained at a given generation is lower
than the best production rate obtained so far (only valid
after the 10th generation), or when the maximum num-
ber of 20 generations is reached.

5.1. Determination of the parameters of the
methods

On the one hand, we have to determine the number R of
replications. A large R means a long computational time,
and conversely a simulation with a small R can lead to
a biased solution. It is therefore necessary to determine
when the method converges into fewer replications. Sev-
eral test cases for different sizes of production lines are
conducted to predict the evolution of the average PR with
respect to R.

Figure 6 shows four instances involving 3, 5, 10 and 20
machines, with R ranging from 1 to 50. It contains: (A) a
Tukey’s boxplot to reflect the distributions of the PRs; (B)
a graph of the average PR for different values of R. From
the graphs, we can see that the average PR is stable from
R = 30 and above. This coincides with the law of large
numbers, which states that the average of a large indepen-
dent random variable approximately converges to their
expectation. Generally, this approximation can be used
when the size of the sample is greater than 30. Therefore,
in this paper, R = 30 replications will be used.

On the other hand, we have to determine the opera-
tor parameters of GA, as they play a crucial role in the
convergence of the algorithm. Hence, for a given ini-
tial population, the convergence can be obtained faster
while obtaining the best possible solution if the operators
are well designed (Pavai and Geetha 2019). After pre-
liminary experiments, we have set 20 generations and 30
individuals for GA. For the selection operator, we have
tested Random Selection (RS) and Tournament Selection
(TS). For the crossover operator, we have tested Single-
Point Crossover (SPC) and Arithmetic Crossover (AC).
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Table 1. Identification of parameters of GA.

Table 2. State-of-the-art methods for buffer allocation.

Average PR Authors Objective System/method  Proposed method
Number of Ho, Eyler, and Max PR Simulation Gradient
machines Bmax  RS/SPC RS/AC TS/SPC TS/AC Chien (1979) Lechr:jique
asea on
3 20 0871783 0871783 0871783  0.871783 perturbation
5 31 0494708 0494708 0494789  0.496413 analysis
10 270 0647766 0.646903 0.645671 0.649204 Gershwin and Max PRMin Decomposition Gradient search
20 100 0.351846 0.354975 0.354220 0.358180 Schor (2000) (work in
40 200 0.436278 0.438015 0.436319 0438583 process,
total buffer
size)
. . . Shiand Men Max PR Decomposition Tabu search
The computational results are summarised in Table 1. (2003) P and nested
The first two columns in this table depict the size of the Nahas. A VPR 5 5 Pafgﬁgns
. . . . ahas, Ait- a ecomposition egrade
production line (i.e. the number of machines and the total Kadi alnd X posit cgemng
buffer size available). The next columns show the average Nourelfath algorithm
PR for the following combinations of operators (RS-SPC), (2006) ;’;:ul ated
(RS-AC), (TS-SPC), and (TS-AC), respectively. One can annealing
see that for the case with 3 machines, all the PR values are De;‘:]'g EJ”';?“ Ma(>\<Nl:) ’:I':/‘i': Decomposition Ad:‘g:‘c’ﬁ tabu
equal. However, when the number of machines increases, Q011) process,
the best results are obtained when using the (TS-AC) t?ta)' buffer
. . size
combination. Massim et al. Max (PR, Profit) ~ Decomposition Artificial
(2012) immune
algorithm
5.2. Compatrison of the proposed method with K°SK?“?1'2‘; Max PR Simulation Geglegttl)crithm
respect to the literature (2015) and
simulated
GA-FPA is compared with different methods from the lit- annealing

erature (see Table 2). All the runs are conducted under
the same experimental conditions. More precisely, in all
sets of problems, it is assumed that the service times of
each machine is one time unit, the machines are sub-
ject to breakdown, and the failure and repair times follow
a geometric distribution with a probability of p;and r;,
respectively (these values will be presented later).

5.2.1. Results for a 3-machine production line
Consider a production line composed of 3 machines and
2 buffers. The information on the machines are given in
Table 3. This example is proposed by Gershwin and Schor
(2000), and used as a comparison benchmark by Massim
etal. (2012). In their study, Gershwin and Schor (2000) do
not mention explicitly the buffer configuration found and
they only give an idea on how production rate varies with
respect to buffer sizes. This is the reason why GA-FPA is
compared only with the value proposed by Massim et al.
(2012). The total buffer capacities to be allocated among
the line is 20. Table 3 shows that GA-FPA obtains higher
PR.

5.2.2. Results for a 5-machine production line

This example was initially proposed by Ho, Eyler,
and Chien (1979) and used in different papers as a
benchmarking case (Gershwin and Schor 2000; Massim
et al. 2012; Demir, Tunali, and Eliiyi 2011; Kose and Kil-
incci 2015). The total buffer size is 31, and the parameters

Table 3. Parameters and results obtained for a 3-machine
production line.

Machine 1 2 3

ri 035 0.15 0.4

pi 0.037 0.015 0.02
Authors Bimax Buffer size configuration Average PR
Massim et al. (2012) 20 14...6 0.86799
GA-FPA 20 13...7 0.87178

Table 4. Parameters and results obtained for a 5-machine
production line.

Machine 1 2 3 4 5
MTTR = 1/r; 11 19 12 7 7
MTBF = 1/p; 20 167 22 22 26
Authors Bmax Buffer size configuration  Average PR
Ho, Eyler, and Chien (1979) 31 5...11...8...7 04914
Gershwin and Schor (2000) 31 7...10...10...4 0.4943
Demir, Tunali, and Eliiyi 2011) 31 7...10...10...4 0.4943
Massim et al. (2012) 31 7...10...10...4 0.4943
Kose and Kilincci (2015) 31 7...10...10...4 0.4943
GA-FPA 31 7...11...9...4 0.4948

of the five machines are presented in Table 4. For this
example, the average production rate is estimated by sim-
ulating 100,000 parts with 50 replications. MTTR and
MTBF denote the mean time to repair and the mean
time between failures, respectively. Table 4 presents the
buffer sizes configuration and the corresponding average
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Table 5. Parameters and results obtained for a 10-machine production line.

Machine 1 2 3 4 5 6 7 8 9 10
MTTR = 1/r; 7 7 5 10 9 14 5 8 10 10
MTBF = 1/p; 20 30 2 22 25 40 23 30 45 20
Authors Bimax Buffer size configuration Average PR
Nahas, Ait-Kadi, and Nourelfath (2006) 270 14...19...30...54...45...27 ...23...24...34 0.64135
Demir, Tunali, and Eliiyi (2011) 270 14...19...30...54...45...27 ...23 ... 24 ... 34 0.64135
Massim et al. (2012) 270 14...19...30...52...47...27...23 ... 24 ... 34 0.64139
Kose and Kilincci (2015) 270 7...16...48...61...24...41...20...34...19 0.63016
GA-FPA 270 19...23...24...45...43...34...22...29...31 0.64920
production rates obtained by the different approaches.  Table 6. Results obtained for a 20-machine production line.
GA-FPA obtains a slightly better production rate with Parameters Average PR
the buffer size configuration (7, 11, 9, 4), which has the )
R o i Demir, Kose and
same allocation at the extremities of the line as Kose and Tunali, and Kilincci
Kilincci (2015), Demir, Tunali, and Eliiyi (2011), Massim ~ Pi fi Brmax Eliiyi (2011) (2015) GA-FPA
etal. (2012) and Gershwin and Schor (2000). The alloca- 0.1 0.1 100 0.234191 0.226499 0.223559
. fsmall .. he beginni dattheendof 2 0.2 100 0.297025 0.302448 0.305203
tion of small capacities at the beginning and at the end o 03 03 100 0.334450 0.349517 0.354811
the line, and important sizes in the middle, is likely tobe 04 04 100 0359637 0354299 0.394316
: oo 0.5 0.5 100 0.377895 0.382401 0.422175
eﬁﬁc1enf for fac1l}tat1ng the passage of ’Fhe parts' and thus 2 e 100 0391846 0397120 0.423916
bypassing a possible congestion of the line. Again, wecan 07 07 100 0.402760 0.446904 0.461407
see that GA-FPA obtains the best results. 08 08 100 0411638 0450032 0.476649
0.9 0.9 100 0419018 0459111 0.487760

5.2.3. Results for a 10-machine production line

This instance is proposed by Nahas, Ait-Kadi, and
Nourelfath (2006) and used in (Massim et al. 2012;
Demir, Tunali, and Eliiyi 2011; Kose and Kilincci 2015).
The dataset is shown in Table 5. The total buffer size to be
allocated is 270. As shown in Table 5, Demir, Tunali, and
Eliiyi (2011) and Nahas, Ait-Kadi, and Nourelfath (2006)
obtain the same buffer configuration (14, 19, 30, 54, 45,
27, 23, 24, 34) with an average PR of 0.64135. Massim
et al. (2012) report a slightly better solution of 0.64139
with an almost similar distribution of buffers (14, 19, 30,
52,47,27,23,24, 34). GA-FPA generates the best PR with
a different buffer allocation (19, 23, 24, 45, 43, 34, 22, 29,
31). It can be noted that when the machines are balanced,
all the methods generate, in most cases, distributions of
buffers capacities with more storage areas allocated in the
middle of the line. This buffer allocation is likely to avoid
blockages and to facilitate parts flowing downstream.

5.2.4. Results for a 20-machine production line

The three first columns in Table 6 present the parame-
ters of the production line. The fourth and fifth columns
give the results obtained by Demir, Tunali, and Eliiyi
(2011) and Kose and Kilincci (2015), respectively. The
last column gives the results obtained by GA-FPA, which
outperforms the other methods for 8 out of 9 instances.
The case where our method does not outperform the
existing methods is due to the lower value of the Produc-
tion Rate of one of the replications where the PR value is

Table 7. Parameters and results for a 5-machine production line.

Parameters Average PR CPU ()
pi ri Bmax GA FPA GA-FPA GA FPA GA-FPA
0.1 01 50 0344618 0.341419 0.344715 797 363 468
02 02 50 0.406667 0.405393 0.406667 235 881 226
03 03 50 0437662 0.436675 0.438030 475 377 320
04 04 50 0457296 0.456333 0.457545 581 387 251
05 05 50 0469631 0.468800 0.470165 686 338 455
06 06 50 0479729 0479060 0.479993 744 845 762
0.7 07 50 0486405 0.485869 0.486442 597 624 359
08 08 50 0491948 0.491634 0.492158 784 753 588
09 09 50 0.495934 0495813 0.495934 367 287 310

Table 8. Parameters and results for a 10-machine production line.

Parameters Average PR CPU (s)

FPA

100
100
100
100
100
100
100
100
100

GA-FPA

0.333260
0.422943
0.475451
0.505700
0.524021
0533112
0.531353
0.524930
0.515859

FPA

0.330340
0.416035
0.468834
0.502103
0.520809
0.527433
0.528109
0.524174
0.514694

GA-FPA GA

0.335682 1435
0.423577 1899
0.475533 2708
0.506404 1563
0.524761 1573
0.533875 1559
0.532405 1603
0.526177 1051
0.516297 1940

2337
1841

2067
1486
1304
1731

1243
2528
1333

1122
1177
1941
1645
1035
1140
1270
950

1368

0.20357. In this case, the nominal trajectory in the sim-
ulation presents a high number of starving periods (NI)
which increased the total production time to produce the
needed number of parts, thus decreasing the production
rate.
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5.3. Benefit of combining GA and FPA

In order to measure the benefit of combining GA with
FPA in a single method GA-FPA, an idea is to compare
GA-FPA with its components GA and FPA considered
alone. Results are given for instances with 5, 10 and 20
machines, in Tables 7-9, respectively. In each table, the
data is first given (column 1-3), followed by the aver-
age PR for GA, FPA and GA-FPA (column 4-6), and
finally, computing times (to reach the best encountered
solutions) are provided in seconds at the end (column
7-9). The instances are characterised as follows: the ser-
vice time of each machine is one time unit; the failure and
repair times follow a geometric distribution with a prob-
ability of p;and r;, respectively; all machines are identical
and have the same failure and repair probabilities, rang-
ing from p; = r; = 0.1 to p; = r; = 0.9 with increments
of 0.1. The total buffer size to be allocated is 50, 100
and 200 for the instances with 5, 10 and 20 machines,
respectively.

On the one hand, we can easily observe that regard-
ing quality, GA-FPA obtains the best PA results for each
of the 27 instances (note that for two instances with 5
machines, GA obtains equivalent solutions). On the other
hand, regarding speed, GA-FPA is the quickest method
for 13 out of 27 instances. It seems that for the larger
instances with 20 machines, GA-FPA need more time to
converge to its best solutions. The success of GA-FPA
can be explained by the fact that the GA component
can quickly identify promising regions of the solutions
space (exploration ability), whereas the FPA component
can intensify the search in such regions (exploitation

ability).

5.4. Sensitivity analysis

When all machines of the production line are identical
(the same service times and the same probabilities of fail-
ure and repair), all the methods (our method as well as
the methods with which we made a comparison) gen-
erate, in most cases, allocation of buffers capacities with
more storage areas for the middle of the line. The pur-
pose of the sensitivity analysis proposed is to determine
whether this allocation is still respected in the case when
the production line is unbalanced (different service times
and parameters) and to determine, otherwise, whether
there is a specific buffer allocation pattern.

Three series of experiments were carried out and a
description of each of the test cases is presented. In all
cases, the PR of the buffer allocations obtained by the GA-
FPA approach is estimated by simulating 10,000 parts for
30 replications.

Table 9. Parameters and results for a 20-machine line.

Parameters Average PR CPU (s)
pi Ii Bmax GA FPA GA-FPA GA  FPA GA-FPA
0.1 0.1 200 0286791 0275098 0.286923 2559 4586 2293
02 0.2 200 0364922 0352133 0.367650 4880 2295 3032
03 03 200 0.408896 0399193 0.409025 3261 1890 2287
04 04 200 0.435904 0430023 0.436041 3881 3577 3950
05 05 200 0453522 0446965 0.453614 4430 6049 4620
06 06 200 0.466875 0459231 0.467263 3616 2105 2340
0.7 0.7 200 0.476955 0473205 0.477123 2212 6861 3489
0.8 0.8 200 0.4848388 0.483725 0.484942 3934 3601 3295
09 09 200 0491401 0491431 0.491442 1367 5287 1930

Table 10. Parameters and results for set of experiments 1 for a
5-machine line.

Case Service times Buffer size configuration
1 tHh=3tHh=t3=t3=ts=1 10...9...6...5
2 h=3tHh=tLz=ty=t;=1 7...11...7...5
3 B3=3Hh=th=ty=ts =1 6...9...11... 4
4 th=3Hhh=th=t3=t;=1 4...9...7...10
5 ts=3,Hh=th=t3=1t;=1 6...6...8...10

Table 11. Parameters and results for set of experiments 2 for a
5-machine line.

Buffer size
Case Repair rates configuration
1 1/r1=30,1/ry=1/r3=1/rs=1/rs=10 5...7...12...6
2 1/ry=30,1/ri=1/r3=1/rs=1/rs=10 6...8...10...6
3 1/r3=30,1/r1=1/r=1/rs=1/rs=10 5...9...10...6
4 1/ra =30,1/r1=1r,=1/r3s=1/rs=10 7...11...6...6
5 1/rs=30,1/rn=1/rn=1rs=1r=10 7...11...8... 4

Table 12. Parameters and results for set of experiments 3 for a
5-machine line.

Buffer size
Case Failure rates configuration
1 1/p; =100,1/p, = 1/p; = 1/py = 1/ps =30010...9...6...5
2 1/p,=100,1/p; =1/p3=1/py=1/p;=3007 ... 11 ...7...5
3 1/p3=100,1/p; =1/p, =1/p, =1/ps =3006...9...11...4
4 1/p,=100,1/p; =1/p; =1/p; =1/ps =3004...9...7...10
5 1/ps=100,1/p, =1/p, =1/p3 =1/p, =3006...6...8...10

Experiment set 1

In this case, we consider a 5-machine unbalanced pro-
duction line. The total buffer size is set to 30. The different
service times of the five machines are presented in the
first column of Table 10, where the service time of one
machine is, in each case, bigger than the other machines.
The machines are subject to breakdown, and the fail-
ure and repair times follow geometric distributions with
pi = 1/300, and r;, = 1/10 respectively.

Experiment set 2

We examine in this case the buffer allocation in a 5-
machine balanced production line. It is assumed that the
service time of every machine is one time unit, the failure
times follow a geometric distribution with a probability



pi = 1/200. The repair rates of the five machines are dif-
ferent, and presented in the first column of Table 11. In
each of the 5 cases, just one machine needs less time to
repair compared to the others machines.

Experiment set 3

This test examines the buffer allocation in a 5-machine
balanced production line. The service times of each
machine is one time unit and the repair rates of all
machines are set to r; = 1/10. The different failure rates
of the five machines are presented in the first column of
Table 12. In each case, just one machine has a high proba-
bility of breaking down compared to the other machines.

The results of the experiment set 1 (see Table 10) show
that a larger stock size should be allocated to the input
stock of the slower machine. This would allow the fastest
upstream machines to continue to be operational and
thus avoid any possible blockage.

The results of the experiment set 2 (see Table 11) show
that in the case where the repair rates are different, the
allocation found is comparable with the one in the case
of balanced production lines, where a high accumulation
of intermediate stocks is required. This buffer allocation
is likely to avoid blockages and to facilitate parts flowing
downstream.

From the results of the experiment set 3 (see Table 12),
a configuration tends to persist, where the stock after
the machine with a larger MTBF would require larger
storage capacities. This could be explained by the need
to facilitate parts flowing along the line, and thus pre-
vent the upstream machines from being blocked and the
downstream machines from starving.

6. Conclusion

This paper proposes a quick and efficient hybrid
simulation-optimisation approach combining the genetic
algorithm (GA) and the finite perturbation analysis
(FPA) for the buffer allocation problem (BAP) of serial
production lines with unreliable machines (the capac-
ity of each buffer has to be decided, without exceeding
the total available capacity for the production line). The
heart of the proposed method is a stochastic algorithm
based on the gradient estimates by FPA, complemented
by GA for finding its input solutions. The role of GA is
to approach quickly the optimal/near-optimal solution-
space regions (thanks to its diversification and explo-
ration ability), whereas the role of FPA is to investigate
deeply such regions to find better solutions (thanks to
its intensification and exploitation ability). An advantage
of the proposed approach is to use a single simulation
only. This is achieved because FPA can evaluate gradi-
ents of steady production rates at regular intervals during
the simulation. The performed experiments show on the
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one hand that GA-FPA outperforms the state-of-the-art
methods from the literature on instances where the num-
ber of machines varies from 3 to 20 machines. On the
other hand, GA-FPA outperforms both GA solely and
FPA solely with respect to solution quality, and often with
respect to speed (i.e. the time needed to find its best
solutions).

Various research directions could be derived from this
work. First, GA-FPA could be extended to other types
of production systems with different features, such as
assembly/disassembly systems or transportation systems.
Next, due to advances in manufacturing technologies and
the rise of Industry 4.0, new solutions are opening up
to improve the efficiencies and the production rates of
these systems. The emergence of intelligent and intercon-
nected collaborative industrial robots and storage sensors
allows to monitoring the inventory levels and the differ-
ent operations achieved by the robots, including material
transfer between the different robots and operators in the
workshop. This opens an avenue of research in the design
of production lines. In fact, designing production lines
would be not only allocating storage capacities on the dif-
ferent buffers, but it extends to the allocation of service
times over the different robots and humans that are in
charge of executing the operations on the line. Our design
approach, based on optimisation using simulation, can
be interesting to tackle such problems. In that case, the
GA-FPA algorithms will be used to allocate, simultane-
ously, buffer capacities and robot/operator service times
in a single simulation-optimisation run.
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