Resource Management for Power-Constrained
HEVC Transcoding Using Reinforcement
Learning

Luis Costero, Arman Iranfar Student Member, IEEE, Marina Zapater Member, IEEE, Francisco D. Igual,

Katzalin Olcoz and David Atienza Fellow, IEEE

Abstract—The advent of online video streaming applications and services along with the users’ demand for high-quality contents
require High Efficiency Video Coding (HEVC), which provides higher video quality and more compression at the cost of increased
complexity. On one hand, HEVC exposes a set of dynamically tunable parameters to provide trade-offs among Quality-of-Service
(QoS), performance, and power consumption of multi-core servers on the video providers’ data center. On the other hand, resource
management of modern multi-core servers is in charge of adapting system-level parameters, such as operating frequency and
multithreading, to deal with concurrent applications and their requirements. Therefore, efficient multi-user HEVC streaming necessitates
joint adaptation of application- and system-level parameters. Nonetheless, dealing with such a large and dynamic design space is
challenging and difficult to address through conventional resource management strategies. Thus, in this work, we develop a multi-agent
Reinforcement Learning framework to jointly adjust application- and system-level parameters at runtime to satisfy the QoS of multi-user
HEVC streaming in power-constrained servers. In particular, the design space, composed of all design parameters, is split into smaller
independent sub-spaces. Each design sub-space is assigned to a particular agent so that it can explore it faster, yet accurately. The

benefits of our approach are revealed in terms of adaptability and quality (with up to to 4x improvements in terms of QoS when
compared to a static resource management scheme), and learning time (6 x faster than an equivalent mono-agent implementation).
Finally, we show that the power-capping techniques formulated outperform the hardware-based power capping with respect to quality.

Index Terms—Resource Management, DVFS, Power Capping, Reinforcement learning, Q-Learning, HEVC, self-adaptation.

1 INTRODUCTION

HE emergence of massively parallel and heterogeneous
Tarchitectures forces the co-location of applications in
order to exploit the potential underlying performance, usu-
ally under tight system-level (for example in terms of
maximum power performance) or application-level limits
(minimum Quality of Service). The development of holistic
and autonomous resource management schemes to simul-
taneously adapt application- and system-wide knobs with
real-time requirements is far from being a trivial task, but
it will become mandatory for such systems. Fortunately,
Artificial Intelligence (AI) techniques can provide great help
in this type of scenarios. Actually, the development of
agents that optimally learn and improve their behaviour in
an autonomous fashion has traditionally been one of the
paramount goals of Al. Responsiveness and self-adaptation to
the environment transform Al systems into appealing pieces
of software that can sense, interact and react to environ-
mental changes without human intervention. Specifically,

o Luis Costero, Francisco D. Igual and Katzalin Olcoz are with the Departa-
mento de Arquitectura de Computadores y Automdtica at the Universidad
Complutense de Madrid, Spain. E-mail: {Icostero figual katzalin}@ucm.es

o Arman Iranfar, Marina Zapater and David Atienza are
with the Embedded Systems Laboratory (ESL) at the Swiss
Federal Institute of Technology Lausanne (EPFL), Switzerland.
E-mail:{arman.iranfar,marina.zapater,david.atienza}@epfl.ch

o This work has been supported by the EU (FEDER) and Span-
ish MINECO (TIN2015-65277-R, RT12018-093684-B-100), and MECD
(FPU15/02050), by Spanish CM (52018/TCS-4423), the ERC Consolida-
tor Grant COMPUSAPIEN (725657), and H2020 RECIPE (801137)

Reinforcement Learning (RL) [1] is a field of Al that aims at
learning by interaction, featuring a so-called reward-driven
behavior. In RL, autonomous agents proceed by interacting
with their environment, progressively altering their behav-
ior by observing the consequences of their actions in form
of state-action-reward tuples. RL agents are in general well
suited to problems appearing in complex scenarios featuring
large state spaces, highly dynamic and without any pre-
existing knowledge.

In this paper, we integrate RL techniques into a self-
adaptive resource manager to tackle the problem of au-
tomatic and dynamic application- and system-wide knob
adaptation for multi-user video transcoding scenarios on
modern multi-core servers. Then, we demonstrate that RL is
an effective and efficient technique to automatically extract
and apply policies that simultaneously fulfill performance,
quality, and power restrictions when targeting resource
management on multiple application instances. Our pro-
posal is based on a design space decomposition into sub-
spaces, facilitating the coverage of a large design space.
Thus, each agent independently explores a particular sub-
space to attain sufficient knowledge about the environment
faster. Once the design space is fully explored by all the
agents, each agent exploits its internal knowledge jointly
with others” knowledge in a cooperative manner to opti-
mally behave in the environment.

Our proposal is based on a specific use case of wide
appeal nowadays: multi-user video transcoding via a highly
tuned HEVC encoder (Kvazaar [2]) modified to expose dy-

namic application-level knobs. High Efficiency Video Cod-
ing (HEVC) has emerged as a feasible solution to allevi-
ate the exponential growth in network traffic originated
both for live streaming and video on demand, because
it provides up to 50% better compression compared with
their predecessors keeping video quality [3]. This reduction
in bitrate comes at the cost of an increase in computing
demands on the server side. As a consequence, the burden
is shifting from network pressure to compute requirements
in terms of both performance and energy consumption [4].
Moreover, video streams often have to be converted to
match the requirements of different clients by means of
online video transcoding, which is a very resource intensive
process [5], [6]. In multi-user scenarios, video providers’
servers receive multiple simultaneous transcoding requests,
each with different quality or throughput restrictions. Many
modern video transcoding systems expose a number of
dynamically tunable knobs with direct implications in re-
source usage and attainable quality of service (QoS); sim-
ilarly, modern techniques exposed by hardware also have
considerable impact on application throughput and power
consumption. Hence, a proper selection of application-side
and system-level parameters to simultaneously fulfill QoS
requirements of clients while optimizing resource usage
becomes a challenging task to increase the productivity of
the underlying computing platforms.
Our main contributions are:

o We present a detailed analysis of parameters of a real-
time encoding process (dynamic knobs) and their impact
in throughput, power consumption, and video quality for
a modern, multi-threaded video encoder. We show how
application- and system-level knobs can be decomposed
and policies to apply on them can be automatically learned
through RL to provide fast and efficient run-time manage-
ment of a highly tuned HEVC encoder on a modern multi-
core server.

o We integrate turbo frequency management and power
capping abilities (software and hardware), and demon-
strate that application-aware power capping can reach
equal or better results than traditional hardware-based tech-
niques [7]], both in terms of QoS and power consumption.

o Targeting multi-user real-time HEVC transcoding, we
validate our approach on a server with state-of-the-art
power-management capabilities. Compared with an equiv-
alent static knob selection approach, we achieve a reduction
in the number of QoS violations up to 2x for a single video,
and up to 4x for a fully loaded server.

« Our insights reveal the advantages of a multi-agent over
a mono-agent implementation in learning speed (6 faster)
and policies (12% improvement in QoS). In terms of QOE,
the multi-agent approach achieves a reduction of 7x in the
number of changes in QP, and a 30% reduction on average
QP distance, ultimately meaning a better user experience.

o Comparing with state-of-the-art heuristics for resource
management on similar scenarios, we achieve a maximum
improvement of 14 x in the number of QoS violations —5.7 %
on average-.

The rest of the paper is structured as follows: Section
provides a comprehensive study of HEVC as a case of study,
and motivates the necessity of machine learning techniques

2

to tackle the resource management problem. In Section
and [we provide a deep description of our proposal to-
wards the formulation of the resource management problem
in terms of RL in general, and as a Q-learning problem in
particular, respectively. Section 5| describes the main caveats
in the deployment of a multi-agent design within the frame-
work. Sections|6|and [/]provide detailed experimental results
for a comprehensive set of scenarios. Section [§] closes the
paper with a summary of the main conclusions of this work.

2 MULTI-USER TRANSCODING: RESOURCE MAN-
AGEMENT

HEVC transcoding involves decoding a video to encode
it again with the requested features. The main complexity
of online transcoding comes from the high computational
complexity of the encoder [3]]. Thus, we exclusively focus
on resource management to HEVC encoders in order to
optimize performance and energy of the servers while pro-
viding the required per-user QoS and quality of experience

(QoE) [8].

2.1 Application- and system-wide knobs on multi-core
servers

Modern video encoders implementing high performance
versions of the HEVC standard (and similarly of other stan-
dard specifications) are composed of a set of basic building
blocks each frame has to pass through to be encoded. Each
basic building block is parameterized by means of input
knobs with application-wide impact (e.g., throughput or
encoding quality) and/or system-wide effects (e.g., power
consumption). Some of them must be decided and statically
fixed a priori with no option for runtime modification (for
example the preset selection in many HEVC encoders, that
ultimately tunes a number of static knobs before execu-
tion); others can be modified, with different granularity, at
runtime (e.g., quantization parameter -QP- or number of
threads). We will refer to them as static and dynamic knobs,
respectively, following the idea proposed in [9]. Moreover,
it is not necessary or feasible to tune all the available
dynamic knobs to significantly affect throughput, quality,
bit rate and/or power consumption. In this work, we limit
our study to those with the largest impact on the output
quality and performance, and we employ a particular high-
performance implementation of HEVC, Kvazaar, to illus-
trate how our proposal can be integrated into a state-of-the-
art HEVC encoder. Note, however, that the ideas presented
in this paper can be mapped to other knobs within the
HEVC standard with minimal changes, and to other high
performance implementations (e.g. x265ﬂ}, provided they
provide similar selectable knobs associated to their building
blocks.

1) Quantization Parameter (QP): in charge of the quan-
tization degree per frame [10], plays a significant role in
output responses and can be tuned on a frame-to-frame
basis at runtime. Among others, Huang et al. [11]], and
Biatek et al. [12] have worked on proper QP estimation and
selection. QP values in the range of 22 to 37 are suggested by
JCT-VC [13] to yield desirable quality. However, even with

1. https:/ /x265.o0rg

https://x265.org

this knowledge, the optimal value is still unknown to meet
the required PSNR, bitrate, throughput, and power budget
at runtime due to inter- and intra-video variations, and its
adaptive selection is still a subject of detailed study in the
literature [14], [15].

2) Thread parallelism in HEVC: A key feature of Kvazaar
that enables real-time encoding is Wavefront Parallel Pro-
cessing (WPP) [10]. Each frame is divided into different
rows and blocks which are processed in raster-scan order.
A pool of worker threads is deployed upon initialization.
When a thread finishes processing a block, it checks whether
there is a new block with no dependencies to be processed.
Following this paradigm allows to dynamically modify the
number of active worker threads at each moment of the
execution.

Modern multi-core architectures also expose a number of
system-level dynamic knobs. Its proper selection offer trade-
offs between power consumption and performance, and
a proper adaptation to variable workloads with imposed
resource limits. These system-wide knobs include (i) DVFS
(Dynamic Voltage-Frequency Scaling [16]) to dynamically
select operating frequency of the processor, with direct
implications on performance and energy consumption; (ii)
dynamic power capping selection to limit the energy consump-
tion based on internal hardware events to estimate instan-
taneous power draw; and (iii) turbo management, exposing
extra turbo frequency ranges that can be leveraged to boost
performance under specific application restrictions [17].
This extra power budget depends on both the number
of active cores and the type of vector instructions deliv-
ered [18]. Hence, applications need to use turbo frequencies
in a restricted and intelligent way, considering a full view of
the system usage. This situation adds an extra challenge in
runtime frequency management.

2.2 Motivation for dynamic resource and knob manage-
ment

The development of a proactive, self-adaptive policy for
resource management in a multi-user environment with
multiple video requests is motivated by two main intrin-
sic characteristics of this kind of application: intra-video
requirement variations and inter-video interactions. Let us
illustrate this fact in terms of actual throughput (reported
as frames per second or FPS), for different scenarios using
a static resource assignment. The following results have
been extracted on a real platform, later used to carry out
all the experiments. The platform comprises a 20-core Intel
Xeon server clocking from 1 GHz to 2 GHz and turbo
mode. Frequency is selectable in 100MHz steps, and turbo
frequency is limited up to 3.6 GHz as our encoder uses AVX2
instructions.

1) Intra-video requirements wvariability (due to content
variation): Black line in Figure [I| reports a timeline of the
observed throughput of a complete transcoding process
of a high-resolution video (QuarterBackSneak, see Table
using static computing resources (3 threads at 1.5 GHz
and QP = 22). Considering a target throughput of 24
FPS, video contents ultimately determine the instantaneous
throughput attained, with areas in which the computing
resources are sufficient (or even wasted) and others in which
QoS violations appear frequently.

Low Resolution High Resolution ‘

20¢ 1

100 200 300 400 500
Frame

Figure 1: Timelines representing the throughput of the
same sequence (QuarterBackSneak) with different resolu-
tions: High (1280 x 720) and Low (832 x480), when encoding
with the same knobs (3 threads at 1.5GHz setting QP=22).
The dotted line represents the real-time threshold (24 FPS).

50 [=——— 1 HR video ————{=— 6 simultanedus videos —]

» 40
& 30
20
10 L L 1 L L
100 200 A 300 400 500
Frame

Figure 2: Timeline representing the instantaneous through-
put of one High Resolution video (QuarterBackSneak) run-
ning with 3 threads and QP=22 at turbo frequency. Until
point A, the video is encoded alone. From that point on, it
is encoded simultaneously with other 5 videos (3 threads
each).

2) Inter-video requirements variability (due to different
resolution): Figure |1) shows the throughput obtained for the
same video sequence with two different resolutions: High
and Low resolution (black and blue lines) using the same
values of knobs -number of threads, frequency and QP-.
While the low resolution video transcoding process can
achieve real time transcoding (i.e., 32.5 FPS on average), the
high resolution video suffers from frequent QoS violations
(ie., 25.5 FPS).

3) Inter-video resource contention (due to changing number
of requests): Figure [2] simulates a situation in which an on-
going isolated transcoding process with fixed assigned re-
sources has its throughput diminished upon the appearance
of other independent transcoding processes (point labelled
as A in the Figure). The same sequence as that in Figure
is encoded with the same knobs except that in this case
turbo frequency is used. When the process is executed in
isolation, the throughput is much higher than required; but
as soon as other transcoding processes appear in the server,
and although each process is mapped to independent cores
in the experiment, the achieved throughput is dramatically
reduced. The attained throughput is thus highly sensitive
to both general video characteristics, associated assigned
resources and machine occupation. This type of scenario
results in wasted resources when the process runs alone
and constant quality of service violations when the server
is loaded. In this situation, an increase in QP, for example,
could balance throughput and quality. This combined deci-
sion, however, is not trivial.

FPS > 24 & POWER < 63

FPS > 24 & POWER < 57

FPS > 24 & POWER < 53

84 g 84 84
74 & 74 74
64 %g 64 64
54 & 5 54 & 54 &
44 z 44 44
34 e 34 34
24 3 ¢e® 24 24

Figure 3: Average FPS for all combinations of QP, number of threads and frequency for three different values of power
capping, when encoding the HR sequence “FourPeople”. Color-less points represent knob combinations not satisfying the

constraints.

Table 1: Feasible knob combinations producing near-24 FPS
encoding (on average), and impact on the other output
metrics.

QP N.ths Freq(GHz) FPS Power (W) PSNR
37 1 1.8 25.9 54.2 36.4
32 2 1.0 24.0 49.3 389
22 3 1.4 25.3 55.0 434
22 5 1.0 25.1 54.3 434

2.3 Necessity of ML for multi-user video transcoding

Figure[§|gives a quantitative and qualitative overview of the
complexity and amplitude of the design space considering
QP, number of threads and frequency for the encoding of a
single video (FourPeople, see Table [3) under three different
power caps. Each colored point in the figure represents a
valid solution, with different throughput (from 24 FPS in
dark blue to more than 80 FPS in red), power and quality.
Areas in which both QoS and power restrictions are met
(F'PS > 24 and power < power_cap) grow larger as power
capping is relaxed, yielding more potential knob combina-
tions. Considering only the dark blue points in Figure
which correspond to solutions close to 24 FPS on average,
Table[T|summarizes different assigned resources and output
metrics (averaged for the complete execution). Thus, for
the best quality the chosen knobs would be QP = 22, 5
threads and 1 GHz, while the lowest power solution would
be QP = 32, 2 threads and 1 GHz. Other combinations of
knobs can also be the best option for different optimization
goals.

The results above change for the different frames of
the video, depending on video contents. Let us assume an
encoding process with support for N, different encoding
knobs values and N, different system parameters (e.g.,
frequency), which can be tuned at runtime, at a frame
granularity. Consider now the encoding of a ¢-second video
at a frame rate of F: in order to find the best encoding
configuration for that frame, Nepe X Ngys X t X F. profiles
should be statically obtained. For instance, 4 QP values, 5
number of threads values, and 10 DVFES values, for a 10-
second video at a frame rate of 24 FPS, would yield 48, 000
combinations to obtain the optimal encoding configuration
and DVFS settings for the video, which gives a hint of the
complexity of the brute-force approach.

In addition, configuring the encoding parameters is dra-

matically more challenging when considering multiple con-
current videos running on a server, in a so-called multi-user
video transcoding. First, the inter-video resource contention
impacts the throughput obtained by the independent en-
coding processes. Second, the power constraint may not let
all encoding processes run at their own optimal configura-
tion simultaneously. As a result, a joint profiling becomes
mandatory.

Machine learning techniques are able to consider hidden
and complicated interrelations of encoding parameters on
any arbitrary platform along with video contents. This, how-
ever, requires a model-free learning algorithm, as provided
by RL in general, and the Q-Learning (QL) algorithm in
particular, as described in the following sections.

2.4 Related Work

From a generic perspective, our proposal gathers charac-
teristics from resource managers and auto-tuning frame-
works. Focusing on resource management, reinforcement
learning has been previously applied both in embedded sys-
tems [19] and in large-scale distributed environments [20],
[21] to take coarse-grain (heterogeneous or homogeneous)
workload allocation. Multi-agent reinforcement learning has
also been previously applied to address load balancing
problems in grid computing resources for large-scale com-
puting jobs [22]. None of the aforementioned efforts com-
bines the fine granularity in knob selection proposed by
our approach with multi-application management and con-
tention/interaction considerations in intra-node resource
management. Our results reveal that multi-agent RL is a
valid technique for real-time fine-grained resource manage-
ment.

Previous works on auto-tuning frameworks divide
strategies into static (where knobs are predefined at installa-
tion time or at process level, see Active Harmony [23] or
Autotune [24]), and dynamic (where knobs vary at run-
time based on self-extracted knowledge, as in our case).
In the framework of the ARGO project, mARGOt and
a number of related efforts [25], [26] provide heuristics
for dynamic knob selection at function level, without any
support of Al, following reactive and proactive strategies
to fulfill precision requirements. ADAPT [27] is based on
compilation techniques to expose run-time opportunities for
optimization, which are selected heuristically at execution
time. PowerDial [9] proposes an integrated framework for

dynamic adaptation of application knobs to target load and
power changes in the server. The concept of dynamic knob
is introduced and exploited in the paper, but the runtime
behaviour is reduced to heuristic knob tuning. Many of the
auto-tuning frameworks consider dynamic knob adaptation
by means of heuristic exploration; our proposal, on the con-
trary, demonstrates that RL can improve output application
metrics without the need of complex heuristics.

Many of the aforementioned related efforts consider
resource management and dynamic application auto-tuning
as completely orthogonal efforts. On the contrary, we pro-
pose a hybrid approach between a resource manager and a
dynamic auto-tuning framework. A detailed study of the
strategies integrated in our framework reveal that resource
management (e.g., frequency) and application auto-tuning
(e.g., number of threads or QP) should be considered jointly
to attain proper resource management and output applica-
tion metrics.

Specifically targeting on video transcoding, previous
works such as [28], [29], [30], have modeled the output and
complexity of an HEVC encoder as a function of a few
encoding parameters by exhaustive application profiling,
considering a few encoding parameters due to the expo-
nential complexity of dealing with a higher number. But
these models are considerably platform-dependent and any
change in the target architecture may result in an intolerable
model error. Our previous work [31] proposes a mono-
agent implementation of Q-Learning with a similar design
for states, actions and reward functions, following different
objectives (temperature and power control) without real-
time restrictions and using an unoptimized (and sequential)
HEVC implementation. While similar in philosophy, in this
work we focus on the challenges imposed by designing
and managing a multi-agent implementation following our
previous effort in MAMUT [32] with tight restrictions in
the target throughput, quality and system-wide power, on a
fully-optimized HEVC implementation. Specifically, in this
work we deeply extend the ideas presented in MAMUT,
including a comprehensive section motivating the use of
Reinforcement Learning techniques to deal with big design
spaces, and a more detailed study of other similar ap-
proaches in the literature. We incorporate Turbo Frequency
management into our formulation, forcing the redesign of
the states to consider core occupation, and demonstrating
that this complexity can be efficiently handled by an actual
centralized resource manager with a negligible overhead. In
addition, a detailed description of the design of the system
is exposed, focusing on how the system deals with system-
wide metrics and noisy measurements. Finally, we compare
against a new mono-agent approach and a state-of-the-
art heuristic in multiple scenarios, adding power capping
capabilities to our system, thus illustrating how system-
wide restrictions can also be handled by our RL formulation.

3 REINFORCEMENT LEARNING AS A SOLUTION
TO DYNAMIC RESOURCE ALLOCATION AND
SELF-ADAPTATION

3.1 Reinforcement Learning. Mono-Agent Q-Learning

RL is appropriate for problem domains where reinforced
information is available after a sequence of actions are

5

performed in the environment. RL is able to deal with
environment-dependent problems through dynamic opti-
mization programming. Q-Learning, as a model-free al-
gorithm of reinforcement learning, is able to cope with
more sophisticated industrial problems. In addition, it is
exploration-insensitive, thus, more suitable for practical
problems [1]].

A (mono-agent) Q-Learning model is composed of an
agent (learner) able to select and take actions from a finite
action set, A, and observing (sensing) its current state from a
finite state space, S. The agent applies actions starting from
an initial state and moving to a new one. Applying particu-
lar actions in particular states is encouraged or discouraged
based on a reward received after moving to the new state.
Starting from a usually random policy to select actions, the
agent is ultimately able to follow a learned policy, m, which
is a mapping from the state space to the action set. This
mapping simply implies whether action a; in state s; is
worthwhile to be applied.

a) Learning process — method: To learn the best policy,
the agent maximizes the reward by storing a Q-value per
state-action pair as Q™ (s, a) indicates the quality of applying
action a in state s. In other words, the Q-value represents
the most probable long-term reward, provided the agent
starts from state s, applies action a, and follows the policy
m. All the different Q-values are stored in a Q-table, which is
updated as follows [1]:

Qir1(st,ar) = [1 = alse, ar)] X Qe(s4,a)+
a(sy,ar) X [Reyr + 7 max Q1(St41,0)]

M

where Q:(st, at) and Q¢4+1(st, at) are, respectively, the cur-
rent and updated Q-values corresponding to the current
taken action a; at the current state s;, R;; is the immediate
reward after next state s;11 is observed, a(s¢, a;) determines
the learning rate, and + is the discount factor and controls the
significance of the history of the Q-values against the recently
obtained reward. The learning rate defined in Q-learning
depends on the state-action pair. Then, through the learning
rate definition, we ensure that a specific state-action pair has
been observed a sufficiently large number of times.

In stochastic environments where action a; at state s;
does not always result in a particular next state s, the
learning rate is critical to ensure a fast and flawless learning
phase. If the learning rate is assumed constant and set to
1, the previous reinforced information is overridden every
time the state-action pair of (s;,a;) is observed. If the
learning rate is constant and set to zero, there is no learning.
For fully deterministic environments, a.(s¢, a;) = 1 provides
optimal learning. However, for stochastic problems [1f], a
decreasing-to-zero function for learning rate is able to pro-
vide optimal learning phase. A common definition used [33]

is:
a(st,atr) = B/Num(st, ar))

where 8 is a constant and Num(s,at) is the number of
observations of the state-action pair (s, a;).

b) Learning process — phases: We consider three phases
for the learning process similar to the literature [34], [35]. In
this approach each pair state-action is updated based on the
value of its learning rate. In the first phase, called exploration
(o < oyp1), actions are taken randomly trying to explore all

the states and actions as quickly as possible. Once a state
is explored enough times (aup1 < a < aup2), it moves
to the exploration-exploitation phase, where now the taken
action is the one that maximizes the Q-values learned in
the previous phase (a = arg max,c, Q¢(s¢, a)), at the same
time the Q-tables are still updated. In the last phase, called
exploitation (cup2 < «), the agent has already learned the
final policy 7, thus it takes the actions that maximize the
Q-values similar to the previous phase, but not updating
these values anymore.

3.2 Multi-Agent Q-Learning

Multi-agent learning (MAL) tackles a particular category
of learning problems where multiple agents need to inter-
act and behave cooperatively or competitively with some
degree of autonomy. The problem domain may be de-
composed into smaller sub-problems and each agent takes
charge of one of them independently while communicating
and interacting with other agents. As a result of such co-
operative and concurrent learning, it is feasible to deal with
a considerably large search space, as it can be split into
smaller sub-spaces. Therefore, if complexities arising from
interactions between agents are managed well, cooperative
multi-agent learning is promising to explore larger design
spaces with less computational complexity leading to a
faster learning phase compared to mono-agent learning.
However, the main challenge of cooperative concurrent
learning is that each learner (agent) needs to adjust its
behavior according to the others.

In this paper, we propose the use of Multi-Agent RL for
our particular problem. The next two sections develop the
formulation of the multi-user video transcoding scenario as
a generic Q-Learning problem (Section) and the necessary
adaptations applied to transform this generic formulation
into a multi-agent approach (Section 5).

4 MODELLING MULTI-USER VIDEO TRANSCODING
AS A Q-LEARNING PROBLEM

Our framework is deployed considering a multi-core server
in which a number of transcoding requests from users
arrive at random points in time, each one possibly of a
different video type (resolution and contents). The frame-
work responds to this requirement by assigning a vari-
able amount of system resources by tuning application-
wide dynamic knobs (QP and number of threads) of each
concurrent encoding instance and system-wide knobs (core
frequency) to meet joint restrictions in terms of performance
(THROUGHPUT), quality (PSNR) and power (applying a
power cap, F.qp). The scenario includes two extra con-
ditions, namely: (i) resource usage should be minimized
provided THROUGHPUT is met, and (ii) quality should be
maximized if there are enough available resources.
Mapping this problem statement into an actual
Q-Learning process requires a correct definition of states,
actions and reward functions. The number, granularity and
value distribution of states and actions is ultimately a trade-
off between learning time and control degree on the accu-
racy of output metrics, in which both expert knowledge and
application specifics play an important role. Hence, a correct

6

definition of the reward function ultimately determines the
success in maximizing/minimizing output metrics, optimal-
ity in resource usage and the compliance with the restric-
tions imposed.

4.1 State definition

Since in this work we aim at QoS-aware real-time transcod-
ing under power budget constraints, the agents constantly
sense output metrics (PSNR, THROUGHPUT, and POWER)
on a frame-to-frame basis, mapping each particular system
observation into a particular state. For 8-bit-depth videos
and lossy compression, PSNR should range between 30 dB
and 50 dB for acceptable human vision [36]. We divide
this range into the following intervals to constitute PSNR
states (Spsnr): PSNR < 30, < 35, < 40, < 45, < 50, and
> 50 dB. The POWER state (Spower) is defined based on
the power consumption constraints of the running server:
power < Pqp and power > P,p,. THROUGHPUT (measured
in FPS) is divided into the following states, since the target
frame rate is 24 FPS (the one defined in the NTSC stan-
dard [37]): FPS < 24, < 28,< 32,< 35,< 40,< 50 and
> 50. This non-regular formulation of the states is a trade-
off between quality of the obtained policy and learning time.
On one side, having smaller intervals near the threshold
allows the system to distinguish the effects of similar actions
and to have a more precise control on the applications. On
the other side, having larger intervals far from the threshold
reduces learning times, and it has a minimum impact on the
quality of the obtained policy.

Additionally, as detailed in Section @ the use of turbo
frequency management into our framework motivates the
introduction of buckets of level of occupation (number of cores
occupied at a given execution point by all simultaneous
transcoding processes) as an additional state (S,..), as the
actual processor frequency directly depends on this value.
In our platform, S,.. can take 6 different values.

4.2 Reward Function

To provide suitable feedback to each agent, the selected
reward function is a linear combination of three different
rewards, one per state, all of them normalized:

a) THROUGHPUT (minimize output metric under one
lower limit): based on the target frame rate (24 FPS):

—4 FPS <24
ax FPS+b 24 < FPS <50 3)
0 FPS > 50

R(FPS) =

This function provides negative values if the throughput
is smaller than the target frame rate. A value of —4 was
chosen to penalize those states below the constraint even
if the other functions give the maximum reward, ensuring
the system will learn not to visit those states in the future.
The a and b parameters are adjusted to produce a maximum
reward of 1.0 if FPS meets the target of 24, and a decreasing
reward down to O for larger FPS (a = —1/26, b = 25/13).
The reason is that when F'PS > 24, spare encoded frames
can be buffered. Buffered frames can be used to compensate
the overall framerate if, at some points, FPS temporarily
drops below the target. Nevertheless, achieving larger FPS

[m1 %2 3 A4 -5 6

[(E-10 612
59 P:22

14 —A-16 ©-18 2.0

QP27 Qp:32_Qp:37

B — S|

20 40 60 80‘ 20 40 60 80
Throughput (FPS) Throughput (FPS)

Figure 4: Metrics obtained when setting 2.0 GHz and vary-

ing the number of threads (left), and setting 4 threads and

varying the frequency (right), while encoding a 1280x720

video.

may result in wasting resources, which ultimately means
fewer users can be served. Therefore, this reward function
directs the agents to save resources, provided the QoS is
met.

b) PSNR (maximize output metric between two limits): As
explained before, a minimum PSNR of 30 dB is required.
However, the goal of this work is to achieve higher video
quality if there are enough resources. Hence, a higher re-
ward is given when the agent moves to a state with larger
PSNR:

—4 PSNR < 30 or PSNR > 50
R(PSNE) = {c x ePNR/S0 g otherwise
)
where ¢ and d are set to give a maximum reward of 1.0
when PSNR=50, and a reward of 0 when PSNR=30, thus
maximizing quality (c ~ 1.12, d =~ —2.03).

c) POWER (apply tight limit in output metric): Power
consumption is limited to a value defined by the server
administrator (FPqp). If the constraint is violated, our reward
function gives a value of —4 to cancel out positive values ob-
tained from other reward (if any). Otherwise, 0.0 is obtained
and no agent is mistakenly promoted for an action with a
safe power consumption, but not a desirable PSNR or FPS.

4.3 Actions definition

The definition of actions taken by agents (both in terms of
number and distribution within a range), similarly to states,
must be chosen based on expertise (problem knowledge)
and requirements of learning time and accuracy. Figure [4]
provides Pareto curves that relate different output metrics
and actions for a transcoding process on the target architec-
ture. In the following, we use it as a baseline to justify the
selected actions.

a) QP: QP variations affect FPS, PSNR, power con-
sumption and bitrate [38]. We use QP values of 22, 27, 32
and 37 based on our observation and [13].

b) Number of Threads: While HEVC encoding can ben-
efit from multithreading to increase FPS, Figure [4 shows
that throughput saturates above a certain number of threads
because there is not enough work for more threads. In our
target platform, this limit appears for 5 threads in the case
of a HR video, and 3 threads in the case of a LR video.

¢) DVES: Our platform supports frequencies from 1.00
GHz to 2.00 GHz and Turbo mode, selectable on demand
and in a core-by-core basis in steps of 100 MHz (with Turbo
enabled, this range extends up to 3.7 GHz, but is not under

7

direct control of the user, as it depends on the current core
occupation). Therefore, in this work we consider a selection
of frequencies within this range as actions for the DVFS
agent.

5 INTEGRATING MAL INTO THE PROBLEM

Similar to conventional mono-agent learning, the QL algo-
rithm in multi-agent learning is composed of a finite action
set A split in multiple independent subspaces A;, and a
finite state space S. Each agent ¢ is in charge of taking action
ai, and moves from its current state s; to the next one s;1.
Then, the corresponding Q-table [1] is updated after each
reward, indicating the value of applying ai at s;, is received.
This formulation allows the system to deal with larger
design spaces as it is split in multiple Q-tables, each one
explored concurrently by a different agent. Specifically, we
propose a concurrent cooperative multi-agent approach for
run-time adaptation of HEVC encoding configuration and
system parameters to achieve QoS-aware real-time HEVC
transcoding under power budget constraints. The action set
A is split to three subsets A;, Az, As such that Vi # j,
A;NAj= 0, and U, A4; = A. Agents can send messages
such that each agent accesses the Q-table of the others and
both states and rewards resulting from one agent’s action
are observable to all agents. In the following subsections,
we further discuss on the design of agents, action set, state
space, learning phases, and learning rate function.

5.1 Agent design and activation sequence

In MAL, we consider three different agents, each in charge
of a different knob. We define agents for tuning QP
(AGyp), deciding the number of threads used to encode
a frame (AGipreqq) through Wavefront Parallel Processing
(WPP) [10], and per-core DVFS (AG 4y ¢5)-

Action granularity is also directly related to the agent
activation sequence, and to the relative effects on output
metrics of a single step variation in each action. Hence,
one step in terms of QP implies large modifications in both
quality and throughput (see Figure). For the latter, wrong
actions taken by the QP agent can be solved or alleviated,
with more detail, by subsequent application of actions by
the threads or DVFS agents, each one with progressively
finer granularity.

We experimentally determine how frequently each agent
should act, based on system overhead, the impact on our
target objectives, and the number of parameter values to
be explored as it is desirable that all agents finish the
exploration phase roughly at the same time. For our setup,
AGy)p acts every 24 frames. With one frame as the offset,
AG'hread takes action every 12 frames. AG g, ¢, takes action
every 6 frames with an offset of 2 frames. Since AGg,fs
and AGipread act after AGyp, they can modify the out-
put throughput if it is degraded (or above the required
constraints) because of AG, taking an action to increase
(decrease) the video quality. In addition, as AGg,fs takes
actions more frequently, it can take charge of content varia-
tions and tune the throughput to the desired FPS. Figure [f
shows the proposed sequence for the agents.

~ ~

N m o m [\ m
ess I AG; | AG, ! AG; INULL oo | AG; INULL »es : AG, ! AG;iNULL see i AG;:ese

>

m-I" m "“m+l m+2" Frame

Figure 5: Agent sequence. Different arrows show which
agents need to look at the Q-table of the next agent.

5.2 Learning process — dealing with power measure-
ments

Metrics relative to each encoding request are application-
wide; on the contrary, power consumption is a system-wide
metric, which yields some additional considerations. This
fact implies that changes observed in power consumption
cannot be directly related to modifications applied to a
single application instance, as they can be potentially caused
by a combination of multiple changes applied to different
concurrent instances. In our formulation, this fact can lead
to incorrect learning policies from the agents, updating the
Q-tables based on observations that are not consequences
of their own actions, but consequences of actions applied
by other agents at the same time. This problem only arises
during the learning period, while Q-tables are being filled
and incorrect observations can lead to low quality policies.

To tackle this problem, we propose a modified learning
process, where only one sequence is encoded through our
system. With only one video encoded at a time, the agent
is able to relate changes in the observed metrics to its
own actions. Obviously, as the final goal of the system
is to run on a scenario with multiple instances running
concurrently, multiple codification processes are executed
in the background using a static knob configuration, pursuing
a dual purpose: (i) Agents can observe the dependencies
between encoding processes, adding this information to
their Q-tables and therefore, obtaining better policies in the
future; and (ii) The system can visit different state values
that an individual encoding process cannot visits by its
own (for example, some Socc and Spower states can be only
visited if almost all the cores are used simultaneously by
multiple application instances).

5.3 General system overview

Figure [6] depicts a general diagram of our formulation, and
shows how actions are chosen and applied. The system is
continuously sensing the environment and receiving dif-
ferent (application- and system-wide) metric values frame-
to-frame basis, storing and processing them. Upon each
agent activation, the state is built from the current and
stored metrics, discretizing the continuous values according
to the states defined in the previous section (Step 1 in the
diagram). This state is used to update the Q-table of the
previous agent (Step 2, Equation , and to determine the
action of the next agent (Step 3). As the learning rate is de-
fined for each state/action pair, different pairs can belong to
different learning phases —exploration, exploration-exploitation
or exploitation— for the same state. In Step 4, the system
determines the phase of the next action and then which
action belonging to that phase applies (Step 5). How the
phase is chosen requires an additional explanation, shown
next. Finally, the system applies the chosen action in step 6.

T T
QP, N. Ths DVFS, N. Ths
(Y Y
S 6. Appl
[oo ENVIRONMENT thy
[Application 1 acon
| A
Q-table 1 FPS, PSNR Power, Occ 5. Ch
--4|_Q-able 2 i -
' action on
' Q-table 3 i i
1. Discretize that phase

b A ; ':H:' stato o

; i’| AGqgp

\ Current

-) 2. Update State _| 3. Determine 4 Choose
r ths |iq {< “P < » F»| phase to
! prev. Ag. next Ag. |

Figure 6: General system overview.

The fact that different learning rates exist for each
state/action pair allows a more precise control of the learning
progress of each state. However, it remains unclear which
action an agent should choose among those available, as
this decision ultimately depends on the learning phase. To
solve this problem, we follow a two-step approach: (i) In
Step 4, the agent selects the phase of the next action to
choose, but not yet a specific action, as the action selection
strategy depends on the phase just selected; and (ii) in Step
5, the agent chooses, between the actions belonging to the
previously selected phase the next action to take. If the
selected phase is exploration, the next action will be chosen
randomly between those pairs belonging to the exploration
phase. In the other phases, the action will be chosen in a
co-operative way, as described in detail in Section

Algorithm 1: Learning phase selection (Step 4 in Fig-

ure6)

Data: number of actions at each phase (nExploration, nExplor_Exploi, . ..)
and number of available actions (| A;|).
Result: chosen < phase of the next action to choose.

1 begin

/* =A=: All the pairs are in the same phase: */
2 if nExploration = | A;| then chosen < exploration;
3 else if nExplor_Exploi = | A;| then chosen <— explor_exploi;
4 else if nExploitation = | A;| then chosen < exploitation;

/+ =B=: Pairs mixed with different phases */
5 else if nExploration > 0 then
6 if rand() > 0.5 then // P=0.5
7 | chosen < exploration;
8 else // P=0.25
9 L chosen <— randomSel(explor_exploi, exploitation);
10 else
1 | chosen « randomSel(explor_exploi, exploitation); // P=0.5

12 Function randomSel (phasel, phase2) is:
13 L Selects randomly between both phases.
1

Checks if there is at least one action in each phase before choosing it.
Algorithm [1| shows the pseudo-code followed by an
agent to choose the phase of the next action to apply (Step 4).
If all actions belong to the same phase, the decision of which
phase to select next is trivial (lines [IH5). However in the
case where, in a specific state, there are actions belonging to
different phases, the agent will try to progress the learning

process by taking those actions that are still in the exploration
phase first. To do that, the agent randomly chooses the next

phase giving the double of probability to the exploration
phase than the other two phases. To do that, in the case there
is at least one pair in exploration phase, the agent will give
a probability of 1/2 to select that phase, and a probability of
1/4 to the other phases (lines 5| to[9). The decision between
exploration-exploitation and exploitation phases is taken with
the same probabilities.

5.4

1) Learning Rate Function: Each agent must have its own
learning rate for each state-action pair because of the dif-
ferent number of actions and activation frequency. The
proposed learning rate function is a decreasing function of
the number of state-action observations, defined differently
from those proposed in the literature [31], [34], [39]: if these
functions were considered, it is likely that an agent claims
the end of the exploration phase even if other agents have
not taken enough different actions. This issue ultimately
makes one or more agents behave sub-optimally. Thus, the
agent cannot maximize the reward by following the Q-table.
Alternatively, we use the following learning rate function
for each agent, AG;, which allows each agent to monitor
the number and variety of actions taken by other agents, as
follows:

Improvements over the Mono-Agent approach

©)

1+Z (grenr; (Num()))
J#i

Here, the first term is taken from literature [39], while in
the second one, Num(a) is the number of times agent
Aj has taken action a. Then, minge,(Num(a)) gives the
minimum number of times that all actions available to AG;
have been selected. Subsequently, constants /3; and Bi need
to be set such that the exploration phase for (s;,al) cannot
finish until the following two conditions are satisfied: (a)
(s¢,al) is observed so many times that W can drop
below a threshold and, (b) other agents have trited all their
actions (at least once).

In this work, we experimentally set §; =0.3 and
B: = 0.2, ayp1 = 0.1 and o = 0.05, and v = 0.6.

2) Dealing with a stochastic environment: Since each
agent has its own action set, we let the agents explore only
state-action pairs corresponding to their own actions. As
we need to deal with a stochastic environment, applying
action a} by AG, at state s, may not always result in a
particular s;41. The reason lies in the fact that (i) contents
of a video can change from one frame to another, (ii) other
agents taking charge of a single video may apply an action
that alters the next expected state to a different one, and
(iii) other videos existing in a multi-user platform with their
corresponding contents and agents can change the state
unexpectedly.

Once ai is taken at state s;, all state transitions to new
states need to be recorded during the exploration phase.

Assume that Num(s; N s¢+1) shows the number of times
that applying a! at s; resulted in s,.1, and Num(s;,al)
represents the total number of times that a} was taken at
state s;. Then, the probability by whlch after taking ai at

st, the agent observes s;41 is P(s; —> St41) = Num(sg —>

) ;léz)g(?‘ alue(Sy, a))

-
Actions Prob. dest. states

-
Prob. dest. states

Actions Actions + QValues

AG, AGy AG3

Figure 7: Different paths to explore before taking an action.

$¢+1)/Num(s;, al). This probability is updated throughout
the learning process, and used to cooperatively choose the
best action, as seen next.

3) Cooperation process: Similarly to the mono-agent
approach, the learning process of the different agents fol-
lows a three-phase approach; however, while in exploration
phase the agents still explore the different actions randomly
and independently, in the following phases they start to
cooperate.

Algorithm 2: Exploitation phase

ai
P(St —) Sf+1),

Input :Q°, // ie{l,...,N}
O‘utput: ay*; // current action taken by the i*" agent
1 ay +
arg max (Z P(s¢ 2 Sf+1) X E[Qvaiue(AG;.next(), Sf+l)])
aEA

function E[Qvqiue(AG, s)]: // list of agents, state

if (AG.next() == NULL) then
¢ a Ac
‘ return ér{lﬁu: (Q (s, a))

[NN

6 else
| L

Although each agent explores the design space sep-
arately and has its own Q-table, it needs to act in the
exploitation phase cooperatively. Consequently, the goal of
each agent is not just to maximize the Q-value attainable
from its own Q-table, but rather, maximizing the expected
Q-value after a sequence of actions taken by all agents.
Consider, for example, the sequence of agents shown as
in Figure l Starting from the m'" frame, the first agent,
A@,, is followed by two different agents, AGy and AGs.
Thus, the action taken by AG; should consider the probable
transitions from one state to the other throughout the entire
chain, composed of these three agents, in order to maximize
the Q-value. Indeed, AG4 should select an action which
ultimately moves the entire system to a state in which an
action taken by AG3 is capable of providing the highest
Q-value. This is equivalent to consider the expected Q-value
given that a particular action is selected by AG;. Hence,
the conditional expected Q-values should be computed for
all available actions in the current state s;, in the chain of
AG) — AGy2 — AGS, as shown in Algorithm [2| and Fig-
ure[7] Even though the number of different paths to explore
can grow exponentially, most of them can be pruned.

4) Dealing with Sensing Noise: When dealing with a
non-deterministic problem, it is common that all the states

return

< max (Z PAC (s % §') x E[QVGLU,Q(AG.nea:t(),s')]))

a€A%h g \'P

are not visited uniformly. This fact can be caused by
wrong/noisy measurements from the system (e.g., power
consumption measurements can be affected by other pro-
cesses, or precision problems can arise when measuring
the frame processing time). This problem cannot always be
fixed, leading to the need to adapt the learning process to
deal with this issue. In the mono-agent approach described
before, this behaviour has no impact on the learning pro-
cess as each pair state/action can evolve independently of
the other pairs, however, in the multi-agent approach, the
learning rate definition depends not only on the number
of times one pair state/action has been visited, but also
on the minimum number of times other agent has visited
each action (second term of Equation [5). This definition
affects not only the learned policy, but also the evolution
of learning phases, in the worst case, making the system
stall in the exploration phase, not allowing to progress to
the next phases. To tackle this problem, we propose the
use of a slightly modified version of the classical Z-score
algorithm [40] to detect outliers. Our proposal, shown in
Equation [6] identifies state/action pairs that have not been
visited enough times compared to the other pairs. When
the learning rate function has to be calculated, the states
detected as bottom-outliers are discarded. However, these
states are not removed from the Q-tables since they can be
potentially visited in the future enough number of times
to have an impact on the learning function. Indeed, we
have experimentally determined that discarding states with
z-score’ < —3.5 filters the desired states.

Num(sq, a}) — u

zescore’ () (sy) =———— 2 ——— ©)
lod k2
where: “
; Num(st,a,"”)) , .
@ = ZSt—t P = (4) (4)
= Num@(sy) SEES {St | Num(st,a;”) < p }

.G > (Num(se, ar) — p/)?
) _ Es}es Num(Suai >) o — s‘tes()
p 50| :

SO

6 EXPERIMENTAL SETUP

The described framework and techniques have been im-
plemented in a real server using a centralized runtime
resource manager written from scratch, that integrates the
multi-agent Q-Learning logic and allocates the registered
applications (in our case, multiple instrumented Kvazaar
instances using the predefined ultrafast configuration). The
resource manager is a client/server infrastructure coded in
C++, in charge of four main actions, namely:

(1) METRIC RECEPTION MODULE: receives application-
specific metrics on a configurable regular basis (in our case
bitrate, PSNR and throughput) from registered applications.
System-V message queues are employed to communicate
the applications with the centralized server, due to their low
latency and the ability to define custom message formats.
On the client side, communications are encapsulated into
an external C library. Then, the integration of the communi-
cation patterns between client and server is straightforward
and non-intrusive. As an example, for Kvazaar, this instru-
mentation only added 37 new lines to the original source
code.

10

(2) SENSING MODULE: performs a periodic and config-
urable sensing of the underlying system-wide metrics. In our
formulation, the module is configured to sense power con-
sumption via the RAPL component in PAPI [41], although
other alternative mechanisms can be easily integrated.

(3) DECISION MODULE: selects the most appropriate
knob combination to be applied to each registered applica-
tion based on both application metrics and platform status
gathered by the previous modules, applying predefined
techniques (e.g., multi-agent Q-Learning or mono-agent Q-
Learning, in our specific case, or others, including ad-hoc
heuristics). Concurrent multi-application support is imple-
mented via ISO C++ threads. In the case of Q-Learning, the
discretization of metrics and sensing parameters, according
to the state definitions detailed in Section is also a task
performed by the module.

(4) RESOURCE MANAGEMENT MODULE: it is in charge
of the underlying shared resource management, performing
an efficient distribution across concurrent clients. In our
formulation, it sets application-to-core affinity and accord-
ing to the DECISION MODULE outputs, manages per-core
frequency values. Application affinity is managed by means
of POSIX Thread Affinity API calls; frequency varia-
tions are carried out via the 1ibcpufreq library.

6.1 Experimental testbed

Our experimental testbed consists of a 20-core server with
an Intel Xeon Gold 6138 CPU and 128 GB of DDR4 RAM.
Hyperthreading was disabled as Kvazaar does not benefit
from it. Thanks to the use of System-V message queues
between applications and server, the measured overhead
introduced by the centralized resource manager has been
found to be negligible (i.e., less than 0.05% of the total
encoding time). Per-core DVFS ranges from 1.00 GHz to
2.00 GHz, selected by the resource manager. TDP (Thermal
Design Power) is 125W, and the maximum transition latency
for DVFS is 10.0 ps, which is small enough for real-time
DVEFS application. Hardware power capping, when neces-
sary, has been carried out through Intel RAPL.

Turbo frequency management in the Intel Xeon Gold
family requires a specific explanation. In these processors,
when turbo mode is enabled and selected by the DVFS
agent, the maximum frequency for each core depends on (a)
the specific vector instructions issued by each core (Normal,
AVX-2 —active in our setup— and AVX-512), and (b) the
number of active cores at each moment, as shown in Table[2]
and [[18].

6.2 Dataset definition

We consider videos with two different resolutions: Low Res-
olution (LR) videos, which is the default resolution provided
by Youtube (832 x 480 pixels), and High Resolution (HR)
videos which is the resolution considered as High Defini-
tion (720p/HD videos, 1280 x 720 pixels). HR videos have
been extracted from those proposed by the JCT-VC [13];
LR videos are re-scaled versions of their HR counterparts.
As shown in Table [3} the chosen videos cover different
scenarios. On one hand, videos like HR6 or HR1 produce
high variability on the obtained FPS, but with low resource
requirements (e.g., 30.6(£6.5) FPS with fixed resources for

11

Table 2: AVX2 turbo frequencies for the target architecture depending on the number of active cores.

Active cores 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frequency (GHz) | 36 3.6 | 34 34 |32 32 32 32|27 27 27 27|25 25 25 25|23 23 23 23
MAL state (Socc) 1 2 3 4 5 6
Table 3: Video characterization using static encoding re- Static execution:
sources: 3 threads, 1.5GHz, QP=22. » 40 ' ' ' ']
&30 e T N ey '
Id Name LLFPS O EPS Id Name [LFPS O FPS ?8 i \"", ' o i
HR1 FourPeople 30.6 6.5 HR4 QuarterBackSneakl 26.1 2.9
HR2 KristenAndSara 30.2 4.1 HR5 BT709Parakeets 29.1 5.1 MAL execution:
HR3 OldTownCross 154 1.5 HR6 Johnny 317 57 40k ' ' ' '
HR7 ThreePeople 297 63 £ 30 LN WJUUM_IU_UH—FI i
20 F : ' — =
10 : : : :
HR1). On the other hand, HR3 or HR4 are sequences with — Turbo
low variability but higher resource demands due to their 5 18 1
contents (26.1(42.9) FPS when encoded with the same knob = 1 g E]
values in HR4). In our experiments, the first three videos e ' ' '
were used for training, while the rest were used for testing
the obtained results. - —_’—__'—_:—__l—I_I—Ll—_:—_
<
<3f]
Z 10]
7 RESULTS
7.1 MAL evaluation: adaptability and resource usage 37 ¢ -
For comparison purposes, we show next the behavior of % % [1
our approach compared to a STATIC knob selection strategy, 2oL)))) 1
where knob values are fixed to a constant value during the 100 200 300 400
Frame

whole execution. For the sake of fairness, knob values in
STATIC correspond to the average values learned by the
MAL system for the training videos (i.e., 3 threads, 1.5
GHz and QP 32 for HR videos, and 3 threads, 1.4
GHz and QP = 22 for LR videos). We report results for
five executions of each video when running isolated, and
average values obtained for random sets of more than one
video being encoded simultaneously. For both MAL and
STATIC, Table E] reports QoS metrics in terms of (1) QoS
violations (percentage of time the video is encoded below
the predefined real-time threshold, represented as -A- in the
table), and (b) attained quality (measured in PSNR) for the
different videos in high and low resolution. The tables also
show the average knob value (QP, number of threads and
frequency) for the MAL approach.

7.1.1 Single video behavior

Focusing on observations for isolated videos, we can dis-
tinguish two types of sequences, with different learned
policies depending on their characteristics: a first group
(comprising sequences HR6 and HR7) that is encoded with
a low number of resources; and a second group which needs
more resources to be encoded (HR4 and HR5). For the latter,
the system learns to increase the frequency and average
thread number (more evident for HR4).

In Figure [8| we report the throughput of the STATIC and
MAL approaches when encoding the high-demanding HRr4
sequence. The first two plots report the instantaneous FPS
obtained by the STATIC and MAL approaches respectively,
and show how the MAL approach is able to restrict the
attained throughput to the real time threshold. On the con-
trary, the percentage of time the STATIC strategy is not able
to fulfill this restriction is larger even though the selected

Figure 8: STATIC vs MAL when encoding a HR4 sequence.

(and fixed a priori) values for each knob are those learned
by our system. This is a clear sign of the benefits of the
dynamic knob tuning.

The last three plots in Figure (8| show the actual modifi-
cations carried out in knobs to adapt to the video content,
and gives an overview of the general strategy learned by the
agents: varying system frequency more often than number
of threads, and modifying number of threads more often
than QP. This strategy does actually have an explanation. As
introduced in Section [5| one-step frequency modifications
has a relatively small impact on the encoding process,
exposing a finer-grained control over throughput. If the
system needs to perform larger changes in the encoding
process (e.g., due to large changes in video contents), it will
first modify the number of threads (N. ths in the figure) or
QP. Thus, it will need to adjust frequency immediately after
to tune the execution in a finer-grained way. This high-level
behavior exhibiting the impact of each knob (in the order of
frequency, number of threads, and QP) has been extracted
automatically after the learning process, and is one of the
main benefits of the RL-based approach.

To sum up, MAL reduces the number of QoS violations
when compared to the STATIC approach, yielding 1.6x and
2x better results for the HR and LR sequences. respectively.

7.1.2 Turbo behavior and occupation level

Next, we show that the occupation of the cores has a strong
influence on the turbo behavior. Consider the traces in
Figure [9] The first two plots represent an encoding process

12

Table 4: Output metrics and resource usage for the MAL approach compared with the STATIC assignment.

Output metrics Avg. Knob values

Output metrics Avg. Knob values

HR _A- PSNR (dB) Freq N.Ths QP LR —A- PSNR (dB) Freq N.Ths QP
MAL Static MAL Static MAL MAL Static ~MAL Static MAL
1xHR4 78 146 411 408 16 40 311 1xLr4 279 717 440 447 17 25 237
1xHR5 09 04 402 399 14 38 314 1xLrR5 74 05 444 445 15 28 224
1xHR6 10 04 407 401 12 36 313 1xLR6 09 04 48 448 13 30 220
1xHR7 05 04 393 392 13 35 319 1xLrR7 05 05 440 440 14 30 220
1xHR Avg. 25 40 403 400 14 37 314 1xLR Avg. 92 183 445 446 15 28 225
2xHR Avg. 31 54 403 401 13 33 318 2xLR Avg. 111 111 440 446 15 26 236
3xHR Avg. 45 85 394 401 13 33 337 3xLR Avg. 127 161 437 446 15 26 241
4xHR Avg. 71 99 390 401 14 31 348 4xLR Avg. 131 199 439 446 16 25 237
5xLR Avg. 150 227 433 446 15 26 252
6xLR Avg. 138 350 417 446 15 26 286

of a single high-demanding LR5 video (as described before),
while the last four plots show the behavior when 5 LR5
videos are encoded simultaneously (only the traces of one
of them shown). When only a single video is encoded, the
MAL system sets the number of threads to 3 and QP value
to 22 (same values used in the STATIC approach), adapting
itself to the video content changing only the frequency
between 1.3 GHz and turbo frequency (3.4GHz due to the
low occupation). However, as the occupation of the machine
increases, the turbo frequency decreases (down to 2.5 GHz
when there are 15 cores occupied) and, thus, not sufficient to
adapt to content variation. Consequently, the system learns
how to adapt to the content by properly modifying the other
knobs.

7.1.3 Concurrent sequences behavior

a) Scenario 1. Homogeneous-resolution videos: When there
is more than one video being encoded simultaneously, the
results clearly show how our approach is consistently able
to encode the different workloads with a low number of
QoS violations, adapting to different occupation levels and
video resolutions (mainly increasing QP, that is, decreasing
quality to compensate the lower turbo frequency). While the
STATIC approach works relatively well for a low number of
videos, its QoS decreases when the computational demands
increase, as shown in the second half of Table 4

As shown in the previous section, when there is only
one video running, the STATIC approach behaves relatively
well for most of the sequences. However, when the number
of concurrent videos increases, so does the number of QoS
violations. The flexibility of the MAL approach allows a
dynamic adaptation of knobs during the execution to satisfy
the different demands of the different videos on different
server loads, obtaining better results than the STATIC ap-
proach. In the case of HR sequences, the degradation of the
QoS ranges from 3.1% to 7.1% when the MAL approach
encodes 2 to 4 simultaneous videos respectively, and from
5.4% to 9.9% when the videos are encoded using the STATIC
approach.When LR sequences are encoded, it ranges from
11.1% when 2 videos are encoded simultaneously (for both
approaches), up to 13.8% in the MAL approach and 35.0%
in the STATIC approach when 6 videos are considered.
Although the MAL approach decreases the PSNR when
the number of videos increases, the loss in quality is only

FPS
NP0
o)

N Turbo T 7
51 -
g 10E_= \ , X X j
w 50 100 150 200 250 300
Frame
5xLR5
60 F T T T T T 3
50 R
a 40 r
%30 b
20—, L : : :]

Freq (GHz)
_{
<

~ o

orm®O

50 100

150 200 250
Frame

300

Figure 9: Encoding timeline for a single LR5 sequence is
encoded (top) vs. 5 LR5 simultaneous sequences (bottom).
For a single sequence, the system sets the number of threads
to 3 and the QP value to 22 (not shown in the plots).

of 2.9dB in the worst case, thanks to the QP adaptation
previously described.

To recap, the percentage of time in which the QoS
restrictions are violated increases with the number of simul-
taneous videos. However, the QoS degradation is greater
for STATIC than for MAL. Hence, our proposed solution is
able to adapt to different levels of occupation, which results
in more desirable outcomes (1.7x and 2.5x for HR and LR
videos respectively).

b) Scenario 2. Behavior under video combinations: Table 5]
shows the results obtained for a more realistic scenario,
where different number of videos of different resolutions

Table 5: Output metrics and number of threads (MAL vs
STATIC) for different combinations of mixed videos.

PSNR (dB) -A- N. Threads
MAL STATIC MAL STATIC MAL STATIC
1HR+1LR 415 42.0 1.2 0.3 5.7 6
1HR+3LR 42.8 43.4 7.6 9.9 10.8 12
1THR+5LR 42.0 43.8 11.6 10.7 14.8 18
2HR+1LR 41.0 41.5 2.8 2.3 8.6 9
2HR+3LR 39.6 42.6 6.3 3.8 13.3 15
2HR+5LR 39.6 43.3 10.0 20.7 18.6 21
3HR+1LR 394 40.9 2.3 3.7 10.8 12
3HR+3LR 39.8 42.3 10.0 144 16.8 18
3HR+5LR 38.6 42.7 11.3 26.6 20.0 24
4HR+1LR 39.1 40.8 3.6 39 14.0 15
4HR+3LR 38.1 41.8 7.1 16.4 19.0 21
4HR+5LR 38.1 42.6 9.0 35.5 20.0 27

are simultaneously encoded. Qualitatively, the behavior is
similar to the previous experiments: as the occupation of
the server increases, the QoS violations increase too. In
addition, in the extreme cases where the STATIC approach
assigns more threads than available cores (20 in our plat-
form) arising oversubscription (i.e., two active threads are
executed on the same physical core), our approach is able to
adapt the quality and number of threads between the videos
in order not to exceed the available physical cores and to
obtain maximum QoS. MAL obtains 2x improvements in
QoS when compared against STATIC assigning 21 threads
(experiment 2HR +5LR), and up to 4x when 27 threads are
used by STATIC (experiment 4HR +5LR). The loss in quality
is minimum, i.e., encoding always sequences with PSNR
above 38 dB.

7.2 Comparison with state-of-the-art heuristics

To compare our proposal with an existing state-of-the-
art approach, we have implemented the ARGO heuristic
described in [25], [26]. ARGO bases its decisions on an
internal database storing all feasible knob configurations
(called Operating Points -OP-), and an estimation of the
output metrics obtained for each OP. ARGO maintains a
set of constraints that the system should never violate. At
runtime it chooses, between all the promising OPS that do
not violate the constraints, the configuration that maximizes
a user-defined rank function. To provide self-adaptation,
ARGO computes on the fly different coefficients to relate
the obtained measurements to those expected and stored.
To compare our proposal with ARGO, we generate its
internal database by profiling the same videos used in our
system; we set QP and number of threads as the dynamic
knobs managed by the heuristic, delegating the frequency
adjustment to the ondemand governor of the OS. The heuris-
tic acts every 6 frames (matching the minimum frequency in
our approach), and the rank function used to evaluate OPs
matches the reward function used in the MAL approach.
Table [] shows the results obtained when executing the
same combination of videos used in the previous section.
For the sake of clarity, we report the MAL results again
in this table. Although ARGO obtains higher PSNR in all
the tested scenarios, the amount of time the system violates
the throughput constraint is systematically larger than in

13
Table 6: MAL compared to the ARGO approach.

Output metrics Knobs
HR —A- PSNR (dB) N.Ths QP
MAL ARGO MAL ARGO ARGO
1xHR4 7.8 9.6 41.1 43.6 2.7 25.0
1xHR5 0.9 8.5 40.2 425 1.5 26.7
1xHR6 1.0 9.9 40.7 429 1.1 252
1xHR7 0.5 7.0 39.3 417 1.0 26.4
1xHR Avg. 25 8.8 40.3 42.7 1.6 25.8
2xHR Avg. 3.1 9.4 40.3 427 1.6 25.8
3xHR Avg. 4.5 6.3 39.4 42.7 1.7 25.8
4xHR Avg. 7.1 7.1 39.0 427 1.9 259

our proposal. This behavior is explained in terms of the
changes in the content of the video. While our proposal
is able to perform a fine-tuning process by adjusting the
processors’ frequency, ARGO delegates this to the governor
of the operating system. This delegation results on setting
the frequency at turbo in all scenarios, thus, it needs to
increment the number of threads to compensate a violation
in the QoS constraint. However, although a change in the
number of threads can have a huge impact on the instanta-
neous throughput, the increment in FPS is slower than the
one obtained when changing the frequency. The later is the
policy followed by the MAL approach.

Table [6] also shows that the number of threads used by
ARGO increases with the number of videos. As shown in
Table [2} the turbo frequency decreases as the number of
active cores increases. Hence, an increase in the amount of
threads is needed to compensate the loss in frequency.

7.3 Multi-agent vs. mono-agent

To show the advantages and disadvantages of our multi-
agent proposal against other mono-agent-based Q-Learning
approaches, we have implemented the general mono-agent
approach described in Section For the sake of fairness,
the mono-agent takes an action every 6 frames (the mini-
mum frequency in MAL), and considers all possible combi-
nations of actions considered by MAL. All results hereafter
correspond to a training process with 4 HR simultaneous
transcoding processes, using the sequences for training and
test described before. Only results with 4 simultaneous
videos are reported due to the unfeasible time required
to train the mono-agent system for different number of
videos, as described next. The reported results correspond
to the average values obtained when encoding 4 test se-
quences selected randomly at the same time (each executed
5 times), using the same combination of sequences for both
approaches. Data measured confirm the weak points pre-
viously mentioned for the mono-agent approach and allevi-
ated by the MAL implementation, namely: the learning time
for the mono-agent is dramatically larger than that of the
MAL approach (6 times longer in our experiments), and the
mono-agent approach has less control on the consequences
of each action as the decision space considers all the knobs
together, hiding the relations between them.

a) Learning time: The two plots on the top of Figure
report the learning time for the mono-agent and multi-agent
approach, respectively, under equivalent experimental sce-
narios. Each line represents the amount of state-action pairs

monoAgent multiAgent (all agents combined)
100
75
—— Explor.
® 50 2 50 —— Explor.-Exploi.
Exploi.
MG\
7 |
0 0
0 1000 2000 3000 0 1000 2000 3000
Time (n. videos) Time (n. videos)
Al QP AGlhread dvfs
100 100 100
75 75 75
2 50 21 50 /\ 2150
25 % 25 K § 25 x
0 0 0
0 500 0 500 O 500

Time (n. videos) Time (n. videos) Time (n. videos)

Figure 10: Learning evolution of the mono-agent approach
vs multi-agent approach. Each line represents the per-
centage of state-action pairs that are in each phase. Top,
the mono-agent approach vs the multi-agent approach (all
agents combined). Bottom, a detailed view of the behavior
of each agent.

(in terms of percentage) at each phase of the learning pro-
cess. In the case of the multi-agent approach, lines represent
combined data for the three agents. Both x-axes are equally
scaled for comparison purposes, and represent the status of
the system after training with a certain number of sequences
(= 500 frames/sequence). The results clearly show how all
state-action pairs start in the exploration phase, and how they
move to exploration-exploitation and then to exploitation phase
while the pairs are being visited over time. As described in
Section |5} running the system on a real platform produces
noisy measurements, which forces the adoption of filtering
techniques to remove these noisy data. Our filtering algo-
rithm does not remove these measurements, but ignores
them until it is sure that these measurements are correct
(Equation [6). This leads to the lines in the plot not to be
monotonic, but still convergent. As the decision space for
the mono-agent considers all combinations for all actions (4
QP values x 5 different numbers of threads x 12 frequencies
= 240 different actions), the convergence for the mono-agent
is slower than for the multi-agent, which splits the decision
space and explores them concurrently, yielding 6x faster
learning times.

The plots at the bottom illustrate the learning process
of each agent in MAL. Even though all of them show the
same behavior, the convergence slightly varies among them,
due to the different number of actions each agent needs to
explore, as well as by the different frequency at which each
agent acts.

b) Learned policies: Figure shows how the num-
ber of threads and selected frequency are similar to those
learned by MAL; QP values are considerably smaller (26.9
vs 34.6), yielding higher-quality videos while the computing
resources increase. This implies an increase in the QoS vio-
lations shown in Figure |11} obtaining worse results than for
MAL. The reason of this behavior is that, when considering
simultaneous knob changes, the relation between them is
hidden, obtaining at the end a more coarse-grained control

14

value

-N. Ths - Freq (GHz) QP (x10)

(a) Avg. Knob values.

T T

45.2

I MAL
[Mono

17.2
5.0 5.9 6.1 9.6

=N WL

Lower is better
eX=k=R=K=X=]

-A- N. Changes QP
(b) QoE metrics.

Avg QP Dist.

Figure 11: Top: resource usage by the MAL and mono-agent
approach. Bottom: QoS and QoE metrics obtained. The data
represents average values for different combinations.

than the MAL approach. Also, MAL does not only rely on
the Q-values learned on the decision process, but also on
the stored probabilities between states when applying each
action. Thus, it has more information than the mono-agent
to make right decisions.

c) Actions variability (QoE): In addition to QoS, it is
also crucial to consider QoE [8]]. This is directly related to
the perception of the user when visualizing the encoded
sequence. For example, even if the frame rate is always
above 24 FPS, continuous or abrupt changes in quality
can damage QoE. To quantify these two metrics, Figure
reports the number of QP changes during the encoding
process (i.e. quality changes), and average distance between
the selected QP values (if the distance is large, the change
in quality is significant). Besides the coarser-grained control
of the mono-agent when knobs are considered jointly, it is
impossible to set a different frequency (for agent activation)
to modify each knob. This produces a higher number of
changes in QP than MAL (in our case, every 6 frames
vs every 24), and hence constant changes in quality. In
addition, as the mono-agent learned to use a lower QP value
with the same number of threads and frequency as MAL,
when the system needs to adapt the QP value, it performs
abrupt changes, damaging QoE. For the example shown in
Figure the benefits in terms of QoS and QoE can be
summarized as a reduction of 12% in FPS violations, 7 x less
QP changes, and 30% reduction on average QP distance.

7.4 Power capping

Finally, we investigate on the ability of MAL to apply tight
power capping limits while adapting resources and keeping
thresholds on THROUGHPUT and PSNR. The experiments
are based on the execution of the maximum number of
videos before oversubscription arises (in our case, 6 LR
simultaneous videos), combined with a power capping limit
(75W, which is 60% of TDP). We study three power cap-
ping mechanisms: a) software capping (MAL-SW), in which
MAL autonomously learns the optimal knob combinations
to achieve power capping following the ideas presented
in Section B} b) Hybrid software-hardware capping (MAL-
SWHW), in which no power states are considered at learning

80 I I AL-NoPcap [MAL-Sw/Hw
gg : . : | I MAL-Sw I Static-Hw
° LR4 LR5 LR6 LR7

W e (24 W oA W e (24 W o 24
716 SL 0/ ?715 S¢ /097107‘:??64 0/0971;/1?954
(a) QoS metrics.
b —— T
24 LR4 LR5 LRe LR7
P
Qo
o1
<0
'\K\%y\'b AQ\ «\‘5\)\1 AQ) «\9\(\1 AQ) «\%\e@ AQ)
(AGO‘ @
(b) Resource usage.
46 T T T T

LR4

LR5
(c) PSNR.

LR6 LR7

Figure 12: (a) QoS, (b) resource usage, and (c) quality for the
same 6 videos simultaneously encoded under a power cap
of 75 W, using the different policies described in the text.

time and there is no power reward, but instead hardware
mechanisms are applied to maintain power under the cap.
c) A STATIC-Hw implementation with hardware capping
where the values for the different knobs are statically se-
lected a priori and hardware capping is used. The values
chosen for the STATIC-Hw approach correspond to the av-
erage values learned by MAL. We report results in terms of
used resources (Figure and output metrics (Figures
and for the three power capping mechanisms and for
MAL-NOPCAP, which means MAL with TDP as power cap.

First, consider the capabilities of the three methods to
maintain power consumption below the cap. For reference,
if none of the three previous mechanisms is used, the
amount of time in which the cap is exceeded in a normal
execution of the MAL system ranges from 52% (LR4) to 10%
(LR6). By using any of the three approaches, power capping
violations (labelled as %P > 75W) reduce this range in
all cases. When hardware capping is applied, obviously,
the percentage of capping violations is reduced to a value
close to 0%. In the case of pure software capping, it ranges
from 13% (LR4) to 0% (LR6), which demonstrates the ability
of MAL to dynamically adjust knobs to meet the power
capping restrictions.

Regarding QoS, both software-hardware and software
power capping are able to achieve similar FPS violations
(columns labelled as %FPS < 24) in all cases compared
with situations in which no power capping is applied. Recall
that, in those cases, power capping is simultaneously met.
This achievement is possible due to a correct adaptation
(reduction) of quality (PSNR). At a glance, MAL manages
to slightly reduce average core frequency, from a range be-
tween 1.62 GHz (LR4) to 1.47 (LR6) to a range between 1.55

15

GHz (LRr4) to 1.23 (LR6). This reduction is accompanied by
an increase in QP, and hence a reduction in quality (PSNR),
see Figure Note that, however, quality is maintained un-
der acceptable limits. In summary, MAL achieves software
power capping, for the tested video combinations, by means
of reducing the frequency and trading off quality. Besides,
if hardware capping mechanisms are available, MAL can
cooperate with them.

8 CONCLUSIONS

In this paper, we have proposed detailed guidelines and
evidences that demonstrate the feasibility of integrating
Reinforcement Learning techniques into an ad-hoc resource
management system serving multiple (and heterogeneous)
video transcoding requests on a modern multi-core server.
The results for a highly optimized HEVC implemen-
tation have demonstrated that our multi-agent approach
adapts to changes in video contents and server occupation,
achieving an improvement of 2x /4x when the occupation
of the server is low/high, respectively. We have given evi-
dences that reveal the appealing of a multi-agent approach
in terms of learning time (6x reduction compared with a
mono-agent approach) and quality of learned policies (3.4 x
improvements on QoS, and 7x in QoE). We have shown
how power capping capabilities can be incorporated to
the resource manager obtaining competitive results when
compared against hardware power capping mechanisms.
The management of dynamic application- and system-level
knobs in a holistic fashion is general enough to be extended
with further parameters or output metrics, and to other
applications, both in the multimedia area and in other fields;
also, the architectural-related techniques applied to deal
with system knobs are of wide appeal to be applied (isolated
or in conjunction) to other present and future architectures.

REFERENCES

[1] R.S.Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[2] M. Viitanen, A. Koivula, A. Lemmetti, A. Yl4-Outinen, J. Vanne,
and T. D. Hamaldinen, “Kvazaar: Open-source HEVC/h. 265
encoder,” ACM on Multimedia Conference, pp. 1179-1182, 2016.

[3] L. Pham Van,]J. De Praeter, G. Van Wallendael, S. Van Leuven,
J. De Cock, and R. Van de Walle, “Efficient bit rate transcoding for
high efficiency video coding,” IEEE Trans. on Multimedia, vol. 18,
no. 3, pp. 364-378, 2016.

[4] D. Silveira, M. Porto, and S. Bampi, “Performance and energy
consumption analysis of the x265 video encoder,” 25th European
Signal Processing Conference, pp. 1519-1523, 2017.

[5] Z.Wang, L. Sun, C. Wu, W. Zhu, Q. Zhuang, and S. Yang, “A joint
online transcoding and delivery approach for dynamic adaptive
streaming,” IEEE Trans. on Multimedia, vol. 17, no. 6, pp. 867-879,
June 2015.

[6] X.Li, M. A. Salehi, M. Bayoumi, N. Tzeng, and R. Buyya, “Cost-
efficient and robust on-demand video transcoding using heteroge-
neous cloud services,” IEEE TPDS, vol. 29(3), pp. 556-571, 2018.

[7] H. Zhang and H. Hoffmann, “Maximizing performance under
a power cap: A comparison of hardware, software, and hybrid
techniques,” Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, pp. 545-559, 2016.

[8] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and
F. De Turck, “QoE-driven rate adaptation heuristic for fair
sutton1998reinforcementadaptive video streaming,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 12, no. 2, pp. 28:1-28:24,
2015.

[9]

(10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard, “Dynamic knobs for responsive power-aware
computing,” SIGPLAN, vol. 46, no. 3, pp. 199-212, 2011.

G.]. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand et al., “Overview
of the high efficiency video coding(HEVC) standard,” IEEE Trans.
on circuits and systems for video technology, vol. 22, no. 12, pp. 1649-
1668, 2012.

Y.-W. Huang, C.-Y. Chen, C.-M. Fu, C.-W. Hsu, Y.-L. Chang, T.-D.
Chuang, and S.-M. Lei, “Method and apparatus of delta quan-
tization parameter processing for high efficiency video coding,”
May 10 2012, uS Patent App. 13/018,431.

T. Biatek, M. Raulet, J.-F. Travers, and O. Deforges, “Efficient
quantization parameter estimation in HEVC based on p-domain,”
Signal Procc. Conf., pp. 296-300, 2014.

F. Bossen and H. Common, “Test conditions and software refer-
ence configurations,” JCT-VC Doc, 2013.

J. He, E. Yang, F. Yang, and K. Yang, “Adaptive quantization
parameter selection for H.265/HEVC by employing inter-frame
dependency,” IEEE Trans. on Circ. and Systems for Video Technology,
vol. 28, pp. 3424-3436, 2018.

T. Zhao, Z. Wang, and C. W. Chen, “Adaptive quantization param-
eter cascading in HEVC hierarchical coding,” IEEE Trans. on Image
Processing, vol. 25, no. 7, pp. 2997-3009, 2016.

E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, “Evalua-
tion of DVFS techniques on modern hpc processors and accelera-
tors for energy-aware applications,” Concurrency and Computation:
Practice and Experience, vol. 29, 2017.

E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and
D. Rajwan, “Power-management architecture of the intel microar-
chitecture code-named sandy bridge,” IEEE Micro, vol. 32, pp. 20—
27,2012.

I. Corporation. (2019, March) Intel xeon processor scalable family.
specification update.

B. Donyanavard, T. Miick, A. M. Rahmani, N. Dutt, A. Sadighi,
F. Maurer, and A. Herkersdorf, “SOSA: Self-optimizing learning
with self-adaptive control for hierarchical system-on-chip man-
agement,” MICRO '52, pp. 685-698, 2019.

Z.Liu, H. Zhang, B. Rao, and L. Wang, “A reinforcement learning
based resource management approach for time-critical workloads
in distributed computing environment,” IEEE Int. Conf. on Big
Data, pp. 252-261, 2018.

E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and application
scalability in the cloud,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 12, pp. 1656-1674, 2013.

J. Wu, X. Xu, P. Zhang, and C. Liu, “A novel multi-agent reinforce-
ment learning approach for job scheduling in grid computing,”
Future Gener. Comput. Syst., vol. 27, no. 5, pp. 430439, May 2011.
C. Tapus, L-H. Chung, and J. K. Hollingsworth, “Active harmony:
Towards automated performance tuning,” ACM/IEEE Conf. on
Supercomputing, pp. 1-11, 2002.

R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F. Bodin,
“Autotune: A plugin-driven approach to the automatic tuning of
parallel applications,” Applied Parallel and Scientific Computing, pp.
328-342, 2013.

D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt:
a Dynamic Autotuning Framework for Self-aware Approximate
Computing,” IEEE Trans. on Computers, vol. 68, no. 5, pp. 713-728,
2018.

D. Gadioli, G. Palermo, and C. Silvano, “Application autotuning
to support runtime adaptivity in multicore architectures,” Int.
Conf. on Embedded Computer Systems: Architectures, Modeling and
Simulation, pp. 173-180, 2015.

M. J. Voss and R. Eigenmann, “ADAPT: Automated de-coupled
adaptive program transformation,” Int. Conf. on Parallel Processing,
2000.

M. U. K. Khan, M. Shafique, and]. Henkel, “Power-efficient
workload balancing for video applications,” IEEE Trans. on Very
Large Scale Integration Systems, vol. 24, no. 6, pp. 2089-2102, 2016.
Y.-]. Ahn, T-J. Hwang, D.-G. Sim, and W.-J. Han, “Complex-
ity model based load-balancing algorithm for parallel tools of
HEVC,” Visual Communications and Image Processing, pp. 1-5, 2013.
Y. Zhang, S. Kwong, and S. Wang, “Machine learning based video
coding optimizations: A survey,” Information Sciences, vol. 506, pp.
395-423, 2020.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

(40]

[41]

16

A. Tranfar, M. Zapater, and D. Atienza, “Machine learning-based
quality-aware power and thermal management of multistream
HEVC encoding on multicore servers,” IEEE TPDS, vol. 29, pp.
2268-2281, 2018.

L. Costero, A. Iranfar, M. Zapater, F. D. Igual, K. Olcoz, and
D. Atienza, “"MAMUT: Multi-agent reinforcement learning for effi-
cient real-time multi-user video transcoding,” Design, Automation
& Test in Europe Conference, pp. 558-563, 2019.

E. Even-Dar and Y. Mansour, “Learning rates for g-learning,”
Journal of Machine Learning Research, vol. 5, no. Dec, pp. 1-25, 2003.
A. Tranfar, S. N. Shahsavani, M. Kamal, and A. Afzali-Kusha,
“A heuristic machine learning-based algorithm for power and
thermal management of heterogeneous MPSoCs,” in Int. Symp.
on Low Power Electronics and Design, 2015.

A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar,
and B. Veeravalli, “Reinforcement learning-based inter-and intra-
application thermal optimization for lifetime improvement of mul-
ticore systems,” in Proceedings of the 51st Annual Design Automation
Conference. ACM, 2014, pp. 1-6.

S. T. Welstead, Fractal and wavelet image compression techniques.
SPIE Optical Engineering Press, Bellingham, WA, 1999.

N. T. S. Committee, Report and Reports of Panel No. 11, 11-A,
12-19, with Some supplementary references cited in the Reports, and
the Petition for adoption of transmission standards for color television
before the Federal Communications Commission. National Television
System Committee, 1953.

A. Iranfar, A. Pahlevan, M. Zapater, M. Zagar, M. Kova¢, and
D. Atienza, “Online efficient bio-medical video transcoding on
MPSoCs through content-aware workload allocation,” Design, Au-
tomation & Test in Europe Conference, pp. 949-954, 2018.

U. A. Khan and B. Rinner, “Online learning of timeout policies for
dynamic power management,” ACM Trans. on Embedded Comput-
ing Systems, vol. 13, no. 4, p. 96, 2014.

C. Hayward and A. Madill, “A Survey of Outlier Detection
Methodologies,” Artificial Intelligence Review, vol. 22, no. 2, pp. 85—
126, 2004.

D. Terpstra, H. Jagode, H. You, and]J. Dongarra, “Collecting
performance data with PAPI-C,” in Proceedings of the 3rd
International Workshop on Parallel Tools for High Performance
Computing 2009. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 157-173. [Online]. Available: http://link.springer.com/
10.1007/978-3-642-11261-4 11

Luis Costero Luis M. Costero studied Mathe-
matics and Computer Science at Universidad
Complutense de Madrid (UCM) from 2010 to
2015, where he also obtained a Master’s degree
in Computer Science. His main research areas
involve high performance computing, asymmet-
ric processors, power consumption and resource
management. He is currently pursuing a PhD
related to the previously mentioned areas.

Arman Iranfar Arman Iranfar (S17) received the
MS degree in electrical engineering, circuits and
systems from the University of Tehran, Iran. He
is currently working toward the PhD degree in
electrical engineering in the Swiss Federal In-
stitute of Technology Lausanne (EPFL). His re-
search interest includes applied machine learn-
ing and reinforcement learning in multi-objective
management of MPSoCs. He has published over
14 peer-reviewed papers in top-notch confer-
ences and journals and served as reviewer in

IEEE TC, and TSUSC. He is student member of the IEEE.

http://link.springer.com/10.1007/978-3-642-11261-4_11
http://link.springer.com/10.1007/978-3-642-11261-4_11

Marina Zapater Marina Zapater is Associate
Professor in the School of Engineering and Man-
agement of Vaud (HEIG-VD), in the Univer-
sity of Applied Sciences Western Switzerland
(HES-SO) since 2020, and Research Associate
in the Embedded System Laboratory (ESL) at
the Swiss Federal Institute of Technology Lau-
sanne (EPFL), Switzerland, since 2016. She
received her Ph.D. degree in Electronic Engi-
neering from Universidad Politcnica de Madrid,
Spain, in 2015. Her research interests include

thermal, power and performance design and optimization of complex
heterogeneous architectures, from embedded edge devices to high-
performance computing processors; and energy efficiency in servers
and data centers. In these fields, she has co-authored more than 50
papers in top-notch conferences and journals, She is an IEEE and
CEDA member, and has served as CEDA YP representative (2019-
2020).

Francisco D. Igual Francisco D. Igual obtained
the MS degree in Computer Engineering from
University Jaume | de Castelln (Spain) in 2006,
and the Ph.D. degree in Computer Science from
the same University in 2011. In 2011, he joined
the University of Texas at Austin as a post-
doctoral researcher, and in 2012, he joined the
Department of Computer Architecture from the
University Complutense of Madrid as a Juan de
la Cierva Fellow. Since 2019, he is an associate
professor at the same University. His research
interests include high-performance and energy-aware computing, dense
linear algebra library development and optimization (collaborating with
the SHPC group at the University of Texas at Austin), and runtime
task scheduling on massively heterogeneous architectures. He has co-
authored more than 50 papers on journals and conferences in the
aforementioned fields.

Katzalin Olcoz Katzalin Olcoz is Associate Pro-
fessor in the Department of Computer Archi-
tecture and System Engineering of the Com-
plutense University. She received a Ph.D. de-
gree in Physics in 1997 from the Complutense
University (UCM) of Madrid. From 2012 to 2016
she served as head of the department of Com-
puter Architecture and System Engineering of
the same university. She was a visiting profes-
sor at EPFL (Lausanne, Switzerland) from April
to June, 2018. Her research interests include
high performance computing, resource management, energy efficiency
and virtualization. Within the computer architecture group of the Com-
plutense University, she has been involved in several projects in the
field of computer architecture and design automation from high-level
specifications, since 1992.

17

David Atienza David Atienza (M'05-SM’13-
F’16) is associate professor of electrical and
computer engineering, and heads the Embed-
ded Systems Laboratory (ESL) at EPFL. He re-
ceived his PhD degree in computer engineering
from UCM, Spain, and IMEC, Belgium, in 2005.
His research interests include system-level de-
sign methodologies for high-performance multi-
processor system-on-chip (MPSoC) and low-
power Internet-of-Things (loT) systems, includ-
ing new thermal-aware design for MPSoCs and
many-core servers, and ultra-low power edge Al architectures for loT.
He has co-authored more than 300 papers, several book chapters, and
seven patents. He received the DAC Under-40 Innovators Award in
2018, IEEE TCCPS Mid-Career Award in 2018, an ERC Consolidator
Grant in 2016, the IEEE CEDA Early Career Award in 2013, and the
ACM SIGDA Outstanding New Faculty Award in 2012. He is an IEEE
Fellow, an ACM Distinguished Member, and has served as IEEE CEDA
President (period 2019-2020).

	Introduction
	Multi-user transcoding: resource management
	Application- and system-wide knobs on multi-core servers
	Motivation for dynamic resource and knob management
	Necessity of ML for multi-user video transcoding
	Related Work

	Reinforcement learning as a solution to dynamic resource allocation and self-adaptation
	Reinforcement Learning. Mono-Agent Q-Learning
	Multi-Agent Q-Learning

	Modelling multi-user video transcoding as a Q-Learning problem
	State definition
	Reward Function
	Actions definition

	Integrating MAL into the Problem
	Agent design and activation sequence
	Learning process – dealing with power measurements
	General system overview
	Improvements over the Mono-Agent approach

	Experimental Setup
	Experimental testbed
	Dataset definition

	Results
	MAL evaluation: adaptability and resource usage
	Single video behavior
	Turbo behavior and occupation level
	Concurrent sequences behavior

	Comparison with state-of-the-art heuristics
	Multi-agent vs. mono-agent
	Power capping

	Conclusions
	References
	Biographies
	Luis Costero
	Arman Iranfar
	Marina Zapater
	Francisco D. Igual
	Katzalin Olcoz
	David Atienza

