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Camera traps and acoustic recording devices are essential tools to quantify the distri-
bution, abundance and behavior of mobile species. Varying detection probabilities 
among device locations must be accounted for when analyzing such data, which is 
generally done using occupancy models. We introduce a Bayesian time-dependent 
observation model for camera trap data (Tomcat), suited to estimate relative event 
densities in space and time. Tomcat allows to learn about the environmental require-
ments and daily activity patterns of species while accounting for imperfect detection. 
It further implements a sparse model that deals well will a large number of potentially 
highly correlated environmental variables. By integrating both spatial and temporal 
information, we extend the notation of overlap coefficient between species to time 
and space to study niche partitioning. We illustrate the power of Tomcat through an 
application to camera trap data of eight sympatrically occurring duiker Cephalophinae 
species in the savanna – rainforest ecotone in the Central African Republic and show 
that most species pairs show little overlap. Exceptions are those for which one species 
is very rare, likely as a result of direct competition.

Keywords: biodiversity monitoring, camera trap data, daily activity, niche 
partitioning, overlap coefficient, species distribution

Introduction

Thanks to their automated and non-intrusive nature of observation, camera traps, 
acoustic recorders and other devices that allow for continuous recording of animal 
observations have become an essential part of many wildlife monitoring efforts, 
especially those that aim at quantifying the distribution, abundance and behavior of 
mobile species (O’Brien et al. 2010, Burton et al. 2015, Caravaggi et al. 2017). However, 
the inference of these biological characteristics is not trivial due to the confounding 
factor of detection, which may vary greatly among recording locations. Animals are, 
for instance, more likely to trigger a picture when passing a camera trap in the open 
savanna than in a dense rainforest. Hence, variation in the rates at which a species is 
recorded (e.g. the photographic rate) may reflect differences in local abundance, but 
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might just as well reflect differences in the probabilities with 
which individuals are detected, or more likely a combination 
of both (reviewed by Burton et  al. 2015, Sollmann 2018). 
Accounting for varying detection rates is thus critical when 
comparing species densities between locations.

Since local detection rates are generally not known, 
they have to be inferred jointly with abundance or other 
state variables of interest. Commonly used methods to do 
so are variants of occupancy models that include detection 
probabilities explicitly (MacKenzie  et  al. 2002). The basic 
quantity of interest in these models is whether or not a 
particular site is occupied by the focal species. While the 
detection of a species implies that it is present, the absence of 
a record does not necessarily imply the species is absent. Since 
the probabilities of detection and occupation are confounded, 
they can not be inferred for each site individually. Detection 
probabilities are thus either assumed to be constant across 
sites or, more commonly, assumed to be a function of 
environmental covariates governed by hierarchical parameters 
(MacKenzie et al. 2002).

A problem of occupancy models is the assumption that 
there exists a well defined patch or site that is either occupied 
by a species, or not (closure assumption; MacKenzie et al. 
2002). However, the notation of a discrete patch is often 
difficult, particularly in the case of mobile species that move 
between camera trap sites, complicating the interpretation 
of occupied versus empty sites (Efford and Dawson 2012, 
Steenweg et al. 2018). In addition, summarizing such data 
by a simple presence–absence matrix ignores the informa-
tion about differences in population densities and activities 
at occupied sites. Occupancy is therefore not necessarily a 
good surrogate for abundance (MacKenzie and Royle 2005, 
Efford and Dawson 2012, Steenweg  et  al. 2018), even 
though it has been advocated for birds (MacKenzie and 
Nichols 2004), and identifying an alternative measure has 
previously been highlighted as a key challenge in wildlife 
surveys (Burton et al. 2015).

To address this issue, we here introduce Tomcat, a 
time-dependent observation model for camera trap data, 
that extends currently used occupancy models in three 
important ways:

First, we propose to quantify the rate at which animals 
pass through a specific location, rather than occupancy. This 
measure does not easily allow for an absolute quantification 
of density because it is not possible to distinguish mobility 
from abundance. But it can be readily compared in space 
to identify important habitat for a particular species, or in 
time to identify changes in abundance or activity. It therefore 
appears more useful than occupancy to monitor changes in 
species abundances over time, as for many species, changes in 
population size will be reflected in the rate at which individu-
als are detected prior to local extinction.

Second, we explicitly model daily activity patterns. Several 
models have been proposed to estimate such patterns from 
continuous recording data (Frey  et  al. 2017), including 
testing for non-random distributions of observations in 
predefined time-bins (Bu  et  al. 2016) and circular kernel 

density functions (Oliveira-santos et al. 2013, Rowcliffe et al. 
2014), with the latter allowing for the quantification of 
activity overlap between species (Ridout and Linkie, 2009). 
Jointly inferring activity patterns with the rate at which 
animals pass a location allows us not only to account for 
imperfect detection, but also to quantify overlap between 
species in both time and space, shedding additional light on 
species interactions.

Third, we explicitly account for the sparsity among 
environmental coefficients. This is relevant since many 
environmental covariates are available and it is usually not 
known which ones best explain the variation in abundance 
of a species (Kriticos et al. 2014, Title and Bemmels 2018). 
Enforcing sparsity on the vector of coefficients avoids the 
problem of over-fitting in case the number of recording 
locations is smaller or on the same order as the number of 
environmental coefficients.

In this article, we begin by describing the proposed 
model in great detail. We then verify its performance using 
extensive simulations and illustrate it by inferring spatio–
temporal overlap of eight duiker species of the subfamily 
Cephalophinae within the forest-savanna ecotone of Central 
Africa.

Material and methods

A time-dependent observation model

We begin by describing an observation model for continuous 
recording devices. An illustration of the model is shown in 
Fig. 1.

Let Λj(τ) be the event density at time τ: the rate at which 
a device at location j = 1,…,J takes observations of a particu-
lar species (or guild) at the time of the day τ ∈ [0,T], T = 24 
h. We assume that this rate is affected by three processes: 1) 
the average rate l j  at which individuals pass through loca-
tion j, 2) the daily activity patterns  ( )t  that reflect differ-
ences in activity throughout the day and 3) the probability 
pj with which an individual passing through location j is 
recorded (i.e. detected by the device and properly identified 
downstream):

L j j j

T

p d T( ) = ( ), ( ) =
0

t l t t t ò 	  (1)

The number of records Wj(d,τ1,τ2) taken by a device at 
location j within the interval (τ1,τ2) on day d is then given by 
the non-homogeneous Poisson process

W dj j( , , ) ( , )1 2 1 2t t t t Poisson L( ) 	  

with intensity function

L j j jp d( , ) = ( )1 2
1

2
t t l t t

t

t

ò  	  (2)
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As in all models dealing with imperfect detection, the param-
eters related to species densities (l j ) and detection (pj) are 
confounded and can not be estimated individually for each 
location without extra information. However, it is possible 
to estimate relative densities between locations using a hier-
archical model. Following others (Tobler  et  al. 2015), we 
assume that both parameters are functions of covariates (e.g. 
the environment), and hence only attempt to learn these 
hierarchical parameters. Here, we use

log( ) =l j ja X A+ 	  (3)

logit( ) =p Y Bj j 	  (4)

where Xj and Yj are known (environmental) covariates at loca-
tion j and a, A and B are species specific coefficients. Note 
that to avoid non-identifiability issues, we did not include an 
intercept for pj. As a consequence, the absolute level of pj is 
not determined and hence l j  is a relative measure only. Also, 
X should not contain covariates that are strongly correlated 
with covariates in Y.

Non-independent events
Another issue specific to data from continuous recordings is 
that not every record is necessarily reflective of an indepen-
dent observation as the same individual might trigger mul-
tiple observations while passing (or feeding, resting, ...) in 
front of a recording device. It is often difficult and certainly 
laborious to identify such recurrent events. We thus propose 
to account for non-independent events by dividing the day 

into no intervals of equal length h T
no

o
=  (o for observation), 

and then only consider whether or not at least one recording 
was taken within each interval (cm−1,cm), m = 1,…,no, where 
c c Tno0 = =  (Fig. 1). Specifically, for an interval m,

 W d c c w
e w

e w
j m m
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j cm cm
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= 0

1 > 0
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L

if

if
íí
ï

îï
	  (5)

where Λj(cm−1,cm) is given by Eq. 2. We note that the choice 
of no must reflect the activity of the species considered: 
intervals must be large enough such that it is unlikely that the 
same individual is recorded in multiple intervals. Too large 
intervals, however, may impact power as many independent 
events will end up in the same interval.

Daily activity patterns
Here we assume that  ( )t  is a piece-wise constant function 
(or step function) with na activity intervals of equal length 

h T
na

a
=  (a for activity), i.e. we assume that the activity is 

constant within a specific interval but independent between 
intervals (Fig. 1). While activity patterns are unlikely strictly 
piece-wise constant, we chose this function over a combina-
tion of periodic functions (Oliveira-santos et al. 2013) as they 
fit to complicated, multi-peaked distributions (e.g. crepuscu-
lar activity) with fewer parameters.

We denote by ki the relative activity in interval i = 1,…,nh 
with ki = 0 implying no activity and ki = 1 implying average 
activity. The best way to place the activity intervals within the 
day (i.e. the tiling) is usually not known. To allow for more 
flexibility, we introduce the shift parameter δ such that the 
first interval is (δ,ha + δ) and the last overlaps midnight and 
becomes (T − ha + δ,δ) (Fig. 1). We therefore have

Figure 1. Conceptual plot illustrating the model. Shown are recording devices at seven sites that differ in the rate at which animals pass l j  
and their detection probabilities pj. Passing animals may result in multiple records (stacked orange circles) or not be detected (black circles). 
Boxes illustrate the observation intervals with ho = 1 h and are hatched if at least one animal was recorded within (Wj(·) > 0). The rate at 
which animals pass is modulated by the daily activity patterns (shown at the bottom) parameterized as a piecewise-constant function   
with activity interval ha = 3 h, relative activity k = (0, 0.5, 1, 3.5, 2.5, 0.5, 0, 0) and shifted by δ = 2 h, peaking around mid-day.
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 ( ) = 1 ( )
=1

( 1) ,t t d
i

nha

i i ha ihakå -( ) - 	  (6)

where the indicator function 1 ( )0 , 1)(t t t  identifies the interval 
i within which t falls: it is 1 if t ∈ (τ0,τ1) and zero otherwise. 
Note that

0 =1

( ) = =
T

a

l

na

ld h k Tò å t t 	  

and hence

1 =1
=1

n
k

a l

na

lå 	  

Bayesian inference
We conduct Bayesian inference on the parameter vector 
θ = {a, A, B, δ, k}, where k = { , , }1k kna , by numerically eval-
uating the posterior distribution   ( | ) ( | ) ( )qq qq qqW Wµ , 
where W = {W1,…,WJ} denotes the full data from all loca-
tions j = 1,…,J.

The likelihood ( | )W qq  is calculated as

L W d c c
j

J

d D j

D j

m

M

j m m( ) = ( | ) = ( , , ) |
=1 = 1

2

=1

1qq qq qq W ÕÕÕ -( ) 	  (7)

where ( ( , , ) | )1W d c cj m m- qq  is given by Eq. 5 and Dj1 and Dj2 
denote the first and last day of recording at location j.

Prior distribution
Since it is usually not known which covariates X and Y 
are informative, nor at which spatial scale they should be 
evaluated, the potential number of covariates considered 
may be large. To avoid overfitting, we enforce sparsity on the 
vectors of coefficients A and B. Specifically, we introduce the 
indicators γλi that indicate whether covariate Xi is included in 
the model (γλi = 1), or not (γλi = 0). We then assume that Ai 
follows a normal mixture model such that

( ) = (1 ) (0, ) 0,( )0
2

0 1
2Ai i i- + +( )g s g s sl l l l lF F 	  

Here, Φ(0,σ2) denotes the normal density centered at zero 
with variance σ2 and the formulation ensures that this vari-
ance is larger in the case γλi = 1 than in the case γλi = 0. To 
ensure that σλ0 is close to zero, we chose an exponential 
prior distribution σλ0 ~ Exp(r0) and set r0 = 103. In contrast, 
we assume an exponential prior distribution σλ1 ~ Exp(r1) 
with r1 = 2. We further assume a Bernoulli distribution 
( =1) =g pl li  with the exponential prior πλ ~ Exp(rπ) and 
used rπ = 5, which implies that ( < 0.5) 0.9pl » . The prior 
on Bi is analogous with indicators γpi and parameters σp0, σp1 
and πp.

The priors for the remaining parameters were as follows: 
We chose a normal prior with density F(0, )2sa  on a and set 
sa

2 = 0.1. We chose uniform, improper priors on k and δ, 
namely ( ) 1k µ  for all vectors of k that satisfy 

l

nh
l hk n

=1
=å ,  

and ( ) 1d µ  for all 0 ≤ δ < ha. For simplicity, we only con-
sider cases in which ha, the length of the activity intervals, is 
a multiple of ho, the length of the observation intervals, and 
allow for discrete δ ∈ {0, ho, 2ho,…,ha − ho} only.

We note that the choices for r0, r1, rπ and sa
2  may vary 

between applications. We also note that to estimate the param-
eters πλ and πp, data must be available for more sites than envi-
ronmental covariates. If the number of camera trap sites is 
small or on the same order as the number of environmental 
covariates, πλ and πp should be fixed to the fraction of environ-
mental covariates thought to explain the data.

MCMC
We used an MCMC algorithm with Metropolis–Hastings 
updates to generate samples from the posterior distribution 
( | )q W , as detailed in the Supporting information. We ran 
this MCMC for 10 000 iterations after ten successive burn-
ins of 1000 iterations each. We found these settings to result 
in proper convergence as assessed using the Gelman–Rubin 
convergence diagnostics (Gelman and Rubin 1992) on mul-
tiple independent runs (Supporting information).

Prediction
Using a set of M posterior samples qq qq qq1, , ( | )… ∼M  W , 
we project event densities to a not-surveyed location i  with 
covariates Xi  by calculating the mean l̂i  of the posterior 
( | , )li Xi W  as

ˆ expli i» +å1 ( )
=1

( ) ( )

M
a X A

m

M
m m 	  (8)

where a(m) and A(m) denote the m-th posterior sample of these 
parameters.

Species overlap in space and time
An important interest in ecology is to compare activity 
patterns among species and to see how overlapping patterns 
may relate to their interaction such as competition or 
predation (Ridout and Linkie 2009, Rowcliffe et al. 2014). 
For that purpose, Ridout and Linkie (2009) introduced 
overlap coefficients

D( , ) = ( ), ( )f g f x g xò { }min 	  (9)

that quantify the overlap between the activity patterns of two 
species f(x) and g(x), respectively, and range from 0 (no over-
lap) to 1 (identical activity patterns). The overlap Δ(f,g) is 
related to the distance measure L1 as

D( , ) =1 1
2

; = | ( ) ( ) |1 1f g L L f x g x dx- -ò 	  (10)
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which justifies their visualization of overlap coefficients 
between k species using a multidimensional scaling (MDS) 
by considering 1 ( , )- D̂ f g  as a measure of dissimilarity.

In practice, the true density functions f(x) and g(x) 
are usually not known. Here we obtain an estimate of Δ 
numerically from samples m = 1,…,M of the species-spe-
cific posterior distributions obtained with Tomcat. We 
distinguish three types of overlap coefficients: ΔT for over-
lap in time, ΔS for overlap in space and ΔST for overlap 
in time and space. While ΔT matches that of Ridout and 
Linkie (2009), the latter two are extensions made possible 
by the joint inference of habitat use ( l j ) and activity pat-
terns (  ) and are informative about niche partitioning in 
space and time.

Overlap coefficient ΔT
For a large number nT of equally spaced time values 
t t t1 2, , , [0, nT TÎ ] , we sample DT

m( )  from the posterior dis-
tribution ( | , )(1) (2)DT W W  where W ( )

1
( ) ( )= { , , }s s

J
sW W  

denotes the full data for a species s = 1, 2.

DT

m

T i

nT
m

i
m

in

( )

=1
1
( )

2
( )= 1 ( ), ( )å { }min  t t 	  (11)

where l
m( )  is computed according to Eq. 6 with species spe-

cific parameters ds
m( )  and ks

m
s
m

s
m

snha

mk k k( )
1
( )

2
( ) ( )= , , ,( )  sampled 

from ( | )( )qqs
sW .

Overlap coefficient ΔS
For a given number nS of sites reflecting the habitat in a 
region, we sample DS

m( )  from the posterior distribution 
( | , )(1) (2)DS W W  as

D S

m

S j

nS

j
m

j
m

n

( )

=1
1
( )

2
( )= 1 ,å { }min l l 	  (12)

where l sj
m s( ), =1,2  is computed according to Eq. 3 and nor-

malized such as 
j

nS
sj
m

=1

( ) =1å l  with species specific param-

eters as
m( )  and As

m( )  sampled from ( | )( )qqs
sW .

Overlap coefficient ΔST
For nT time values and nJ number of sites, we sample DST

m( )  
from the posterior distribution ( | , )(1) (2)DST W W  as

D ST

m

T S i

nT

j

nJ

j
m m

i j
m m

n n

( )

=1 =1
1
( )

1
( )

2
( )

2
( )= 1 ( ), (

´ ååmin l t l t  ii ){ } 	 (13)

where for species s = 1, 2 we calculate  s
m( )  according to Eq. 

6 and l sj
m( )  according to Eq. 3 with species specific param-

eters as
m( ) , As

m( )  and ks
m( )  sampled from ( | )( )qqs

sW , but 
normalized such that

i

nT

j

nS

sj
m

s
m

i

=1 =1

( ) ( )( ) =1åål t 	  

Note that ΔST ≤ ΔT and ΔST ≤ ΔS.

Implementation
All methods were implemented in the C++ program Tomcat, 
available through a git repository at <https://bitbucket.org/
WegmannLab/tomcat/> together with a wiki detailing its 
usage. As input, it requires three files: 1) a description of all 
camera trap sites in terms of both their start and end date Dj1 
and Dj2, respectively, as well as their environmental covariates 
Xj. 2) A similar file listing the environmental covariates Yj for 
each camera trap site. 3) A file containing all observations of a 
species, consisting of a camera trap identifier and a timestamp. 
From this input, Tomcat will first calculate the full data matrix 
W based on the specific choice of the observation interval no.

Simulations

To assess the performance of our algorithm, we generated 
three sets of simulations:

Set 1. To assess the performance of inferring activity patterns 
 , we chose na = 24 intervals of ha = 1 h each with 
k1:4 = k13:16 = (1 + α, 1 + 3α, 1 + 3α, 1 + α) and all other 
k5:12,17:24 = 1 − α. We then used α = 0, 0.5, 1, with α = 0 
resulting in a uniform activity pattern and α = 1 in an 
activity pattern with two pronounced peaks. We simulated 
a single site with a = 0 and no environmental covariate 
such that we expect 0.5 observations per day.

Set 2. To assess the performance of inferring habitat preferences 
captured by l j  and in particular of identifying the correct 
environmental variables affecting l j  (i.e. sparsity), we 
simulated 50 environmental covariates X and Y, of which 
ten each affected l j  and pj, respectively. In all cases, we 
set Ai,Bi = 0 for all covariates with γλi = 0 and γpi = 0 and set 
A B Vi i, = /10  for all covariates with γλi = 1 and γpi = 1, 
such that the total variation in l j  was V = 0.1, 0.2, 0.5, 
1, 2. For these simulations, we set all ki = 1 and a = 0 such 
that we expect 0.5 observations per day.

Set 3. To assess the power of inferring overlap coefficients, 
we generated simulations with a single environmental 
variable for two species s = 1, 2 with no covariate Y 
and ks, As and as chosen to result in the desired overlap 
coefficients. When simulating under a specific ΔT, we set 
A1 = A2 = 0, a1 = a2 = 0 and chose k1 and k2 as described 
under Set 1 but with k2 shifted by 6h compared to k1. We 
then used α = 0.8, 0.5, 0.2 to obtain ΔT = 0.2, 0.5, 0.8. 
To simulate under a specific ΔS, we set all k1 = k2 = 1 and 
A1 = 0.5 and then determined the parameters A2, a1 and a2 
to match ΔS = 0.2, 0.5, 0.8 as described in the Supporting 
information. To simulate under a specific ΔST, we set 
A1 = 0.5 and k1 and k2 as when simulating under a specific 
ΔT, and then determined the parameters a1, a2 and A2 to 
match ΔST = 0.2, 0.5, 0.8 as described in the Supporting 
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information. For these cases, we used α = 0.4, 0.25, 0.1 to 
give equal weight to the spatial and temporal components, 
i.e (1 ) = 1

2
(1 )- -D DT ST .

In all sets, we generated simulations for different total 
numbers of camera trapping days between 100 and 20 000 
with 100 replicates each. For cases with Set 1 and Set 3 with 
variation in l j , we used J = 100 or J = 1000 sites and chose 
D accordingly, excluding combinations for which camera 
traps were run for less than a full day.

Application to Central African duikers

We applied Tomcat to camera trapping data obtained 
during the dry seasons from 2012 to 2018 from a region in 
the eastern Central African Republic (CAR), a wilderness 
exceeding 100 000 km2 without permanent settlements, 
agriculture or commercial logging (Aebischer  et  al. 2017, 
2020). The available data was from 1059 camera traps set at 
532 distinct locations that cover the Aire de Conservation 
de Chinko (ACC), a protected area of about 20 000 km2. 
For more information about camera deployment and 
sampling design, Aebischer  et  al. (2017). Here, we focus 
on duikers Cephalophinae, which are a diverse mammalian 
group common in the data set and for which near-perfect 
manual annotation was available. We use no = 96 observation 
intervals of 15 min each, and na = 24 activity intervals of 1 
h each, except for the two species with rather limited data 
(Cephalophus leucogaster arrhenii and Cephalophus nigrifrons), 
for which we chose na = 8 of 3 h each.

To infer habitat preferences for these species, we benefited 
from an existing land cover classification at a 30 m resolution 
that represents the five major habitat types of the Chinko 
region: moist closed canopy forest (CCF), open savanna 
woodland (OSW), dry lakéré grassland (DLG), wet marshy 
grassland (WMG) and surface water (SWA) (Aebischer et al. 
2017). Around every camera trap location, we calculated the 
percentage of each of these habitats in 11 buffers of sizes 30; 
65; 125; 180; 400; 565; 1260; 1785; 3990; 5640 and 17 840 
m. We complemented this information with the average value 
within every buffer for each of 15 additional environmental 
and bioclimatic covariates from the WorldClim database ver. 
2 (Supporting information, Fick and Hijmans 2017) that we 
obtained at a resolution of 30 s, which translates into a spatial 
resolution of roughly 1 km2 per grid cell.

The sparse priors implemented in Tomcat allows 
for the simultaneous use of any number of potentially 
correlated covariates. To aid in the interpretation of habitat 
requirements, however, we processed our environmental data 
as follows: First, we kept only the additional effect of each 
covariates after regressing out the habitat covariates CCF and 
OSW at the same buffer. This allows for a direct comparison 
of the inclusion probabilities of CCF and OSW, since no 
other covariates may serve as their proxies. Second, we kept 
only the additional effect of every covariate after regressing 
out the information contained in the same covariate but at 
smaller buffers. This ensured that larger buffers may not serve 

as proxies for smaller ones, and their inclusion in a model 
implies their importance at that buffer size (cf. Supporting 
information for details).

To predict habitat preferences in the ACC and to calculate 
ΔS and ΔST between species, we determined the same habitat 
variables at 10 200 regular grid points spaced 2.5 km apart 
and spanning the entire ACC. To avoid extrapolation, we 
then restricted our analyses to the 2639 grid locations that 
exhibited similar environments to those at which camera 
traps were placed as measured by the Mahanalobis distance 
between each grid point and the average across all camera 
trap locations (cf. Supporting information for details).

To characterize detection probabilities, we used the binary 
classification of the four most common habitat types (CCF, 
OSW, MWG, DLG) at every location and determined the 
presence or absence of six additional habitat characteristics: 
animal path, road, salt lick, mud hole, riverine zone and 
bonanza.

Results

Performance against simulations

We first used simulations to assess the performance of 
Tomcat to infer daily activity patterns   for patterns of 
different complexity. For each simulation, we quantified the 
estimation accuracy by calculating DT ( , )k k̂  between the true 
values used in the simulations (k) and those inferred (posterior 
medians k̂ ). As shown in Fig. 2A, DT ( , )k k̂  converges 
towards 1 with increasing data and reached DT ( , ) 0.9k k̂ ³  
in all cases as of 2000 camera trapping days, corresponding to 
about 1000 observations in these simulations.

We next used similar simulations to assess the performance 
of Tomcat in inferring the spatial rates l j , again quantifying 
the differences between the true (l j ) and estimates values 
(posterior medians l̂ j ) by calculating DS j j( , )l l̂ . As 
shown in Fig. 2B, the accuracy of the inference increased 
with more camera trapping days or more sites surveyed. 
DS j j( , ) 0.9l l̂ ³  was again reached at a total of 2000 
camera trapping days when 1000 sites where surveyed (2 days 
per site), regardless of the effect of environmental variables. If 
only 100 sites were surveyed, a total of 5000 camera trapping 
days (50 days per site) was required to reach this threshold.

Interestingly, the effect of the total variation in l j  
(quantified by V) on the estimation accuracy varied as a 
function of data availability: If data was limited, the infer-
ence was less accurate in case V was large. If data was 
more abundant, the inference was more accurate in case 
V was large. This is probably best explained by the power 
to properly identify contributing environmental covari-
ates, which we quantified by the area under the receiver 
operating characteristic curve (AUC). As shown in Fig. 2C 
and in the Supporting information, this power increased 
with more camera trapping days, more sites surveyed, as 
well as a higher total variance V. If data was abundant, 
high V thus resulted in a more accurate identification of 
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the contributing environmental covariates, and therefore 
in more accurate estimates of l j . If data was limited, the 
identification of contributing environmental covariates was 
more challenging, but errors in this identification had less 
of an impact if V was small.

We further conducted simulations of two species to assess 
the accuracy in inferring overlap coefficients between species. 
As shown in Fig. 2D–F, all overlap coefficients were accu-
rately inferred as of about 2000 camera trapping days, with 
ΔT generally requiring the less data than ΔS and ΔST, in line 
with the previous findings that k was inferred more accurately 
than l j . If less than 1000 camera trapping days (i.e. less than 
about 500 observations) were used, however, estimates of 
overlap coefficients were biased towards prior expectations. 
For ΔT, the prior expectation is 0.5 as we give equal prior 
probability to any choice of k. For ΔS, the prior expectation 
is 1.0 as we prefer solutions in which all coefficients Ai = 0. 
For ΔST, the prior expectation matches that of ΔT as the prior 
expectation for ΔS is 1.0, implying no spatial effect.

Application to Central African duikers

We used Tomcat on existing camera trapping data 
(Aebischer et al. 2017, 2020) to study the spatio-temporal dis-
tribution and overlap of duikers Cephalophinae in the Aire de 
Conservation de Chinko (ACC), a protected area of about 20 
000 km2 eastern Central African Republic (CAR) spanning the 

entire savanna-rainforest ecotone (Boulvert 1985, Olson and 
Dinerstein 1998). Duikers are common in the data set and often 
observed in sympatry, i.e. several species were captured by the 
same camera trap within a few hours. We detected a total of eight 
species in the data set (Table 1): eastern bay duiker Cephalophus 
dorsalis castaneus, uele white bellied duiker Cephalophus leuco-
gaster arrhenii, black fronted duiker Cephalophus nigrifrons, red 
flanked duiker Cephalophus rufilatus, western yellow backed dui-
ker Cephalophus silvicultor castaneus, weyns duiker Cephalophus 
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Figure 2. Simulation results as a function of camera trapping days with 0.5 observations per day on average at 100 (solid) or 1000 sites 
(dashed). Shown are always the median and the 95% confidence interval (shaded area) across 100 replicates. (A) Differences between simu-
lated (k) and estimated (posterior medians k̂ ) activity patterns as quantified by the overlap DT ( , )k k̂  for different values of α. (B) Differences 
between simulated ( l ) and estimated (posterior medians l̂ ) average rates as quantified by the overlap coefficient DS ( , )l l̂  for different 
values for different values of V, the total variance in l . (C) Power to identify environmental covariates as quantified by the area under the 
receiver operating characteristic curve (AUC) for the same simulations as in (B). (D–F) Posterior medians of inferred overlap coefficients 
for different true values (dotted lines).

Table 1. Available data on the eight detected species of duikers.

Species Common name Pictures
Camera 

traps 

Cephalophus dorsalis 
castaneus 

Eastern bay 
duiker 

1631 66

Cephalophus 
leucogaster arrhenii 

Uele white 
bellied duiker 

432 11

Cephalophus 
nigrifrons 

Black fronted 
duiker 

102 7

Cephalophus rufilatus Red flanked 
duiker 

5762 168

Cephalophus 
silvicultor castaneus 

Western yellow 
backed 
duiker 

10 321 222

Cephalophus weynsi Weyns duiker 10 037 146
Philantomba 

monticola 
aequatorialis 

Eastern blue 
duiker 

50 979 212

Sylvicapra grimmia Bush duiker 5626 124
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weynsi, eastern blue duiker Philantomba monticola aequatorialis 
and bush duiker Sylvicapra grimmia.

The eight duiker species varied greatly in their habitat 
preferences (Fig. 3, Supporting information) as inferred by 
Tomcat. As shown in Fig. 3, C. dorsalis and C. weynsi both 
have a strong preference for CCF over OSW habitat at the 
smallest buffers, in contrast to S. grimmia that shows a strong 
preference for OSW. At higher buffers the signal is less clear, 
probably owing to the heterogeneous nature of the study area, 
in which both CCF and OSW correlated negatively with 
WMG and DLG, habitats not well suited for any of these 
species. Interestingly, P. monticola and C. silvicultor seem to 
be true ecotone species preferring a mixture of the canonical 
habitats CCF and OSW (Supporting information).

As shown in Fig. 4 and in the Supporting information, 
the species also varied greatly in their daily activity patterns, 
with some being almost exclusively nocturnal (C. dorsalis and 
C. silvicultor), some almost exclusively diurnal (C. leucogaster, 

P. monticola, C. nigrifons, C. rufilatus, C. weynsi) and one 
crepuscular (S. grimmia).

The effect of covariates on detection probabilities followed 
general expectations: detection probabilities of camera traps 
placed in CCF or along rivers were estimated as generally 
lower and those at salt licks and other bonanza as generally 
higher than average (Supporting information). However, 
there was considerable variation among species in which 
covariates impacted detection probabilities, mostly as a result 
of habitat preferences: for species generally absent at camera 
traps with a particular covariate (e.g. CCF for savanna spe-
cies), that covariate was not considered relevant in explaining 
variation in detection probabilities among observations.

To better understand how these closely related dui-
ker species of similar size and nutritional needs can occur 
sympatrically, we estimated pairwise overlap coefficients in 
space and time (Fig. 4, Supporting information). Not sur-
prisingly, most species pairs differed substantially either in 

Figure 3. Habitat preference of the three duiker species C. dorsalis, C. weynsi and S. grimmia in the Aire de Conservation de Chinko (ACC). 
Left: distribution of closed canopy forest (CCF, top, green) and open savanna woodland (OSW, bottom, yellow) across the study region 
with the ACC borders and camera trap locations (black dots). Top right: relative densities dsj of the three duikers predicted at 2639 grid 
points. For each species the colors indicates dsj sj s= / ( )10log l lmedian( ) , where median( )ls  is the median value over all the grid points j. 
Red shades indicate dsj > 0, blue shades dsj < 0. Bottom right: posterior inclusion probabilities for the CCF (green) and OSW (yellow) 
habitat covariates for each buffer. Values above the dashed line indicate the posterior probability that the habitat correlates positively with 
the relative species density, values below the dashed line imply a negative correlation.
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their habitat preferences or daily activity patterns. Of the 
two forest dwellers C. dorsalis and C. weynsi (D S = 0.36 )  
for instance, one is almost exclusively nocturnal and the other 
almost exclusively diurnal (DT = 0.18 ), resulting in a small 
overlap in space and time (D ST = 0.11 ). Similarly, the noc-
turnal C. dorsalis and the crepuscular S. grimmia that share 
a lot of temporal overlap (DT = 0.57 ) use highly dissimi-
lar habitats (D S = 0.02 ), resulting in a very small overlap in 
time and space (D ST = 0.01 ).

A visualization using multidimensional scaling (MDS) of 
the pair-wise overlap coefficients of all six species with obser-
vations from at least 50 independent camera trap locations is 
shown in Fig. 5. For these species, 84.6% of variation in the 
temporal overlap can be explained by a single axis separating 
nocturnal from diurnal species. In contrast, only 44.5% of 
the variation in the spatial overlap is explained by the first axis 
distinguishing forest dwellers from savanna species. When 
using both temporal and spatial information, the two first 
axis explain 32.3% and 25.5%, respectively, suggesting that 

Figure 4. Co-occurrence in space and time between the duiker species C. dorsalis, C. weynsi and S. grimma in the Aire de Conservation de 
Chinko. Top row: interactions in space quantified as 10 1 2/log l ls j s j( )  between species 1 and 2. Bottom: posterior mean (solid line) and 90% 
credible intervals (shades) of temporal activity patterns. The area shaded in gray represents the overlap coefficient ΔT.

Figure  5. Illustration of the overlap coefficients in time and space between six duiker species visualized in two dimensions using the 
multidimensional scaling. D̂T : overlap coefficient in time, D̂S : overlap coefficient in space, D̂ST : overlap coefficient in time and space.
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a single axis is not sufficient to explain both temporal and 
spatial differences between species.

Discussion

Devices that continuously record animal observations now 
make it possible to survey biodiversity of larger or highly 
vocal animals in relatively short time and with a reasonable 
budget (O’Brien et al. 2010, Burton et al. 2015, Sollmann 
2018). Thanks to increased battery life, larger media to store 
data and other technical advances, such data sets can now 
be produced with comparatively little manual labor, even 
under the demanding conditions of large and remote areas. 
In addition, the annotation of these data sets on the species 
level is now aided by machine learning algorithms that 
automatize the detection of common species and recordings 
without observations (Norouzzadeh et al. 2018). As a result, 
continuous recording devices have become an indispensable 
tool for wildlife monitoring.

Of particular interest is the inference of the spatial 
distribution of species. Traditionally, such distributions 
are inferred with occupancy models that account for the 
variability in detection rates between surveyed locations, 
addressing a key feature of data gathered through ecological 
surveys (MacKenzie et al. 2002, Burton et al. 2015, Sollmann 
2018). However, the major draw-back of occupancy is that 
the species distribution is represented as a simple presence–
absence matrix not reflective of differences in abundance at 
occupied sites.

To address this concern, we decomposed the rate of records 
Λj(t) of a species at site j and time t (e.g. the photographic rate) 
into three components: a spatial component l j  reflecting 
the average rate of observations at location j, a temporal 
component  ( )t  reflecting the daily activity pattern, and the 
location-specific detection rate pj. To ensure identifiability, 
and similar to occupancy models, we further assume that the 
spatial component l j  and the detection rates pj are functions 
of location-specific covariates (e.g. the environment).

The interpretation of the temporal component   is 
straight forward and matches that of other methods used to 
infer daily activity patterns from such data (Ridout and Linkie 
2009). The interpretation of the spatial component l j  and 
the detection probabilities pj warrant some discussion as the 
model has no intrinsic way to distinguish between them: it 
is their product l j jp  that describes the rate of observations, 
which itself is affected by the local abundance and activity of 
the studied species.

In occupancy models, the variation in the rates of observa-
tions at occupied sites is attributed to differences in detec-
tion rates. Hence, sites at which a species is more abundant 
or more active will result in higher detection rates. To infer 
abundances, it is therefor usually assumed that activity 
does not vary between sites. Royle and Nichols (2003), for 
instance, introduced an important extension of occupancy 
models that infers local abundances from variation in detec-
tion rates. In their model, the detection probability is a 

function of the detection probability of a single individual r 
and the local abundance Nj. To infer Nj or its distribution, r 
is then assumed not to vary among sites, implying constant 
activity, or to be well characterized through covariates.

Apart from capture–recapture, most established survey 
methods that rely on direct or indirect observations to 
quantify abundances make similar assumptions. Inferring 
local abundances from responses at call-up stations, for 
instance, requires knowledge on local response rates 
(Webster et al. 2010). Similarly, inferring local abundances 
from observations on transects (Buckland et al. 2001) requires 
knowledge on local daily travels distances, rates of nest 
building, or similar quantities depending in the nature of the 
observation. In practice, estimates of such quantities are at 
best assessed for a handful of locations (Funston et al. 2010), 
but usually borrowed from other studies (Mathewson et al. 
2008, Aebischer et al. 2020).

In Tomcat, the variation in the rates of observations 
may be attributed to either l j  or pj. By estimating pj jointly 
with l j , Tomcat explicitly accounts for the variation in 
detection between sites, also that caused by variation in 
activity. If this variation is captured well, l j  may serve as 
a good surrogate for the variation in abundance between 
sites. But since l j  and pj are confounded, their identification 
depends on the covariates X and Y used: if a covariate in Y 
explains part of the variation in the rate of observations, it is 
included in the model and contributes to pj. If that covariate 
was included in X instead, it would contribute to l j . The 
choice of covariates therefore determines which effects we 
wish to interpret as underlying l j  (abundance) and which 
as underlying pj (detection or activity).

In the application to duikers, we chose to use the covariates 
describing the environment (e.g. the habitat or humidity) 
as relevant for l j  and those describing local features (e.g. 
the presence of a salt lick or road) as relevant for pj. The 
motivation for this choice was our interest to learn about the 
environmental covariates explaining variation in abundance 
in terms of l j , while explaining high photographic rates due 
to increased activity through pj. However, and depending on 
the question, other choices may be equally interesting. If the 
surveyed area is small in relation to mobility, for instance, 
individuals are likely observed at many sites and l j  will 
reflect habitat use of these individuals.

Underlying assumptions

As mentioned above, the Tomcat model does not make any 
assumption about site closure. However, it does assume that 
records are independent between surveyed sites. That does not 
imply that a single individual may not be recorded regularly 
at multiple sites, but it implies that the times at which an 
individual is recorded at different sites is independent given 
the general activity pattern   of that species. For instance, 
two camera traps in close proximity along a deer crossing will 
not provide independent information about the importance 
of environmental covariates as a record at one camera trap is 
mostly followed by a record at the other.
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In its current implementation, Tomcat further 
assumes that while l j  and pj vary spatially (as functions of 
environmental covariates), all temporal variation is captured 
by the daily activity patterns  . However, detection 
probabilities may also vary throughout the day, as it might 
be harder (or easier), for instance, to identify a certain species 
on black-and-white camera trap pictures taken at night or 
on infrared pictures taken during cooler times. In its current 
implementation, the model would explain such variation 
through  , which might lead to biases. An even stronger 
temporal assumption is that neither l j , pj nor   changes 
seasonally. However, the model could be readily extended 
to multiple seasons. In the occupancy framework, this is 
commonly done by modeling extinctions and colonizations 
explicitly (MacKenzie et al. 2003). In the framework proposed 
here, an analogue would be to model trends in l j  over time. A 
simple extension would be to model l l g

j j
tt e( ) =  to capture 

general population trends. To capture seasonal variation 
over the year, one could modulate l j  with an additional 
function (e.g. piece-wise constant) similar to   spanning 
the relevant time period (e.g. an entire year or moon phases). 
Similar extensions can easily be envisioned for the detection 
probabilities pj or activity patterns  .

Species interactions

Records from camera traps or other continuous recording 
devices may also be used to study the interaction of species 
in space and time. To infer temporal interactions, two classes 
of methods exist (Niedballa  et  al. 2019): In a first class, 
temporal avoidance is quantified as the degree to which a 
first species influences subsequent visits of a second species 
(Harmsen et al. 2009, Karanth et al. 2017). These methods 
generally compare time intervals between observations 
of the first and the second species to determine statistical 
dependence. In a second class, daily activity patterns are 
inferred individually for each species and then compared 
using overlap coefficients (Ridout and Linkie 2009).
Tomcat implements this second class by estimating 

overlap coefficients between activity patterns   individu-
ally inferred for each species. We further extend the concept 
of overlap to space by comparing the spatial distributions of 
two species as captured by their respective l  predictions in 
a specific region. Benefiting from a joint estimation of   
and l , Tomcat also estimates overlap coefficients in the 
spatio-temporal distribution. Considering interactions in 
both space and time is particularly informative about niche 
partitioning between species (Farris et al. 2020), and captur-
ing them via overlap coefficients, as done by Tomcat, allows 
for their visualization using multidimensional scaling. As 
we show with simulations, these overlap coefficients can be 
inferred rather accurately if several hundred observations per 
species have been recorded.

If fewer observations are present, they are biased towards 
their prior expectations. This is particularly apparent for ΔT 
that is biased away from 1.0 and may hence result in wrongly 
inferred differences between species. Niedballa et al. (2019) 

previously reported this issue and proposed a bootstrap 
approach to test if an estimate of ΔT is significantly different 
from 1.0.

Just as temporal overlaps, the spatial overlap estimated by 
Tomcat is estimated based on spatial distributions inferred 
for each species individually. A more powerful approach has 
been proposed for occupancy models in which spatial interac-
tions are inferred through the probabilities of joint occupancy 
in multi-species models (MacKenzie et al. 2004, Rota et al. 
2016, Fidino et al. 2019). While not currently implemented, 
a similar extension can be envision for the model proposed 
here by adding an interaction term to the l j .

Co-existence of duikers in a savanna-rainforest 
ecotone

We here used Tomcat to infer the spatio–temporal 
distribution of eight species of duikers sympatrically occurring 
in the Aire de Conservation de Chinko (ACC) in the Central 
African Republic. These species varied greatly both in their 
daily activity patterns and habitat preferences, with some 
species being almost exclusively nocturnal, others diurnal or 
crepuscular. Similar, some species showed a strong preference 
for close canopy forest (CCF), some for open savanna 
woodland (OSW), and two appeared to be true ecotone 
species with a preference for mixed habitat. An interesting 
observation was that the two rarely studied species C. weynsi 
and C. leucogaster not only occur in large blocks of CCF as 
suggested in the literature (Kingdon  et  al. 2013), but also 
in narrow gallery forests within the forest–savanna ecotone 
several kilometers away from the next extensive forest block 
(Fig. 3, Supporting information).

When comparing these species using spatio–temporal 
overlap coefficients, we found that frequently observed and 
therefore evidently abundant species within this community 
tend to differ in their habitat preference and/or daily activity. 
In contrast, infrequently observed and therefore putatively 
rare taxa seem to have large overlap with co-occurring species. 
C. leucogaster, for instance, which is rather rare and was only 
observed at 11 distinct locations (Table 1), has similar habitat 
preferences and is active at the same time as C. weynsi, which 
is among the most common forest duikers within the ACC. 
In contrast, C. dorsalis, which is strictly nocturnal, seems 
to co-exist with the C. weynsi at higher densities (Fig. 4, 
Supporting information).

Conclusion

We here introduced Tomcat, a model that infers habitat 
preferences and daily activities from imperfect spatio-temporal 
observations. Similar to occupancy models, it allows to learn 
about the ecological requirements of animals, including rare, 
elusive and unmarked species. But unlike occupancy models, 
it does not estimate the presence or absence of a species, but 
rather a measure informative about species densities, jointly 
with site-specific detection probabilities and daily activity 
patterns. While estimating these quantities may require larger 
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data sets than the inference under occupancy models, we 
believe they constitute a major step forward in understanding 
and monitoring species distributions.
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